用户名: 密码: 验证码:
染料敏化太阳能电池中含二氢喹啉、希夫碱、硝基结构三种染料和硫、碘双组份电解质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏染料作为染料敏化太阳能电池的主要部分之一,起到吸收光子并将电子注入到纳米半导体导带中的作用,同时产生的氧化态染料又能快速被电解质中的氧化还原电对还原再生。光敏染料对电池的光电转换效率起到决定性的作用,同时也是敏化太阳能电池中成本最高的部分之一。为了降低染料的成本、简化合成工艺,本文设计合成了3个以二氢喹啉为供电子基团、异佛尔酮结构为π-桥基、以氰基丙烯酸基为吸电子基团的D-π-A型纯有机光敏染料,并用1H-NMR、MS等对这些染料进行了结构表征。通过研究发现在二氢喹啉结构中的氮原子上引入较长的烷基链,可以在一定程度上防止染料分子在Ti02表面的堆积。对三个染料的理论计算表明,染料处于基态时,吸电子部分有少量电子云分布,可能与Ti02导带发生电子的复合作用,从而降低电池的电压。在以后的设计中,应该减少基态下吸电子和桥基部分电子云分布。
     近红外光敏染料由于其HOMO(Highest Occupied Molecular Orbital,最高占有轨道)和LUMO(Lowest Unoccupied Molecular Orbital,最低空余轨道)相距较近,难以满足和宽禁带半导体的能级匹配,是染料敏化太阳能电池研究中的难点。为了使太阳能电池对近红外范围内的光更加有效的利用,本文设计合成了2个含有希夫碱结构的纯有机光敏染料,并用1H-NMR、MS等对这些染料进行了结构表征。对含希夫碱结构的光敏染料研究表明,过强的吸电子基团容易使染料的LUMO能级过正,从而使电子不能有效的注入到Ti02半导体的导带,导致电池不能工作。对吸电子部分进行了改进,我们发现以羟基作为吸附基团虽然减弱了吸电子部分的吸电性,但是染料吸附到Ti02表面时,紫外-可见吸收光谱的截止吸收大大增加。从而导致染料LUMO能级向正向移动。产生这种现象的原因可能是由于羟基的结构较短,与TiO2结合后,Ti02能起到一定的吸电子作用。这种现象的发现,为以后用于染料敏化太阳能电池的光敏染料的设计开辟了新的思路。
     硝基是一种良好的发色基团且易于引入有机化合物。本文合成了2个含有硝基和侧链吸附基团的D-π-A型纯有机光敏染料,并用1H-NMR、MS等对这些染料进行了结构表征。首次将含有硝基的纯有机D-π-A型光敏染料应用于染料敏化太阳能电池,通过研究发现,虽然染料的HOMO、LUMO能级很好的满足了氧化态染料被碘电解质还原和染料向Ti02导带注入电子的能级要求,但是在实际测试过程中发现电池的效率不高。对于产生这种现象的原因,我们进行了深入的研究,发现是硝基结构不能有效的将电子注入到Ti02半导体的导带。通过对封装好的染料敏化太阳能电池施加反向偏压发现,电池的颜色由原来的红色转变成后来的浅黄色,而电池的效率有了大幅度的提高。对电池进行优化后由染料JYl封装的染料敏化太阳能电池的总光电转换效率提高了五倍。通过对染料紫外可见光谱、傅里叶变换红外光谱、单色光转换效率光谱等的研究,并参考相关文献,对产生颜色变化的机理作出了合理的推断。当受到外加电场作用下,染料的-N02得到电子转化成-N022-基团,然后与Ti02表面发生键合。这种键合使电子能够有效的注入到Ti02导带,从而使电池效率大幅提高。
     电解质是染料敏化太阳电池的重要组成部分。目前最常用高效电解质中的电对为I-/I3-,但是由于其中I3-和多碘离子的存在,使得电解质在可见光有一定的吸收,损失了部分太阳光能量,并且基于碘本身化学性质,其氧化还原电势与染料HOMO能级之间也有一定的差距,造成能量损失。因此,我们设计、合成并配制了硫、碘双组份电解质。这种电解质是一种无色透明的电解质。通过对电解质的研究发现,双组份电解质无论从短路电流、开路电压还是总的光电转换效率来说,都优于碘基电解质。使得电池的短路电流得以提高的原因主要是电解质的无色透明性质使染料吸收了更多的光。通过实验表明,双组份电解质的电势比I-/I3-电对的电势更正,而且双组份电解质能在一定程度上抑制Ti02半导体表面和电解质之间的复合。另外,相比碘基电解质,双组份电解质使得Ti02的导带负向移动。以上三点是由双组份电解质封装的电池获得较高开路电压的原因。通过电对再生性计算和测试表明,双组份电解质中的电对可以良好的再生,说明由双组份电解质封装的电池可以持续、稳定的工作。通过对实验结果的总结和分析,我们对双组份电解质的工作原理做出了合理的推断。
As one of main components of dye-sensitized solar cells (DSCs), dye sensitizer takes the function of injecting the photo-excited electrons into conduction band of semiconductor. The oxidized dye is then regenerated by the redox couple in electrolyte. Dye sensitizer is the key factor of DSCs'light-to-electricity efficiency, and also one of the components with highest price. To cut the cost and simplify the synthesis procedures, we designed and synthetized three D-π-A (donor-π conjuction-acceptor) metal-free organic dyes, which was based on dihydroquinoline donor, isophorone conjunction and cyanoacrylic acid acceptor. The structures of the dyes have been characterized by mass spectra (MS) and proton nuclear magnetic resonance ('H-NMR) technology. The results showed that the introduction of alkyl chains prevent the congregation of dyes on TiO2surface. Seen from calculation, there is some distribution of electric cloud in acceptor at ground state. This probably increases the possibility of electron recombination between dyes and TiO2conduction band, and causes the decrease of open circuit voltages of DSCs. The distribution of electons in electron-withdrawing and conjuction parts should be reduced in future dyes design.
     The HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) of near infrared (near-IR) photosensitizer is very close, which makes the energy levels of dye are difficult to fit the high-gap semicondutioner. This makes the design of near-IR photoshensitizer a challenging field in DSCs. In order to utilize the light in near-IR region more efficiently, two metal-free dyes with Schiff base structure were designed and synthesized. The structures of the dyes have been characterized by MS and1H-NMR spectra. Results showed that the LUMO (Lowest Unoccupied Molecular Orbital) level of dye T1was too positive, causing that the excited electrons cannot efficiently inject to the conduction band of TiO2. This made the DSCs sensitized by dye T1did not work. To lower the LUMO, the carboxyl group of T1was changed to hydroxyl group. However, the cut-off absorption of UV-Vis (ultraviolet-visible) spectrum was red shifted a lot, when the dye sensitized to the surface of TiO2. This caused great decrease of LUMO level. The reason might structure of hydroxyl group is too short. When connected to the TiO2surface, TiO2helped acceptor to withdraw electrons. The discovery of this phenomenon broadened the design mentality of photosensitizer for DSCs.
     Nitro group is a good electron-withdraw chromophore, which can be easily introduced into the organic compouds. In this paper, pure organic D-π-A photosensitizers with nitro groups were firstly applied in DSCs. Two pure organic D-π-A dyes with nitro group as acceptor were designed and synthesized. The structures of the dyes have been characterized by MS and1H-NMR spectra. Results showed the HOMO and LUMO levels are fit the dye regeneration and electron injection. However, the efficiencies of DSCs sensitized by this kind of dye are not very high. The reason was found to be the nitro group cannot efficiently inject the electrons to the conduction band of TiO2. When a reverse bias was added to the DSCs, the color was changed from red to light yellow, and the efficiencies raised a lot. Efficiencies of DSCs sensitized by JY1had five-fold increase, when a reverse voltage was added to the devices. A reasonable mechanism was concluded according to the UV-Vis, Near-IR, IPCE (Incident Photon-to-Current Conversion Efficiency) spectra and related references. When a bias was added to the device,-NO2received electrons and changed to-NO22-; and then bonding to the HO2surface. The bonding makes the injection more efficient, and makes the device a higher light-to-electricity efficiency.
     Electrolyte is one of the most important components in DSCs. By now,I/I3-redox is the most efficient redox that ever found. However, the containing of I3-and polyiodide in this kind of electrolyte can absorb some of the visible light causing the energy loss. Moreover, the gap between potential of I-/I3-and HOMO level of efficient dyes (e.g. N719) is large. This also caused energy loss. Therefore, a new kind of sulfur, iodine hybrid electrolyte was designed, synthesized and prepared. Results showed the transparent and colorless hybrid electrolytes obtained higher short-circuit current, open-circuit voltage and efficiency than conventional I-/I3-based electrolyte. The increase of current was found to be the more light absorption of dye, which was ascribed to the colorless of hybrid electrolyte. The higher voltage was ascribed to the more positive redox potential, inhabitation of recombination between dyes/TiO2and the conduction band move of TiO2in different electrolytes. The regeneration experiments showed that DSCs with hybrid electrolytes can work continuously and stably. According to the experimental results, the mechanism of how hybrid electrolyte works was assumed.
引文
[1]“中商情报网-2007年中国石油进出口状况分析”[Online] Available: http://www.askci.com/freereports/2008-2004/200841585627.html
    [2]"US. Energy Information Administration-Spot Prices". [Online] Available: http://www.eia.gov/dnav/pet/PET_PRI_SPT_S1_M.htm (2012/02/14)
    [3]“世界核电工业总体现状”.[Online] Available:http://www.istis.sh.cn/list/list.aspx?id=3676 (2006/10/24)
    [4]Becquerel A E E. Memoire sur les effets electriques produits sous l'influence des rayons solaires [J]. Comptes Rendus de I'Academie des Sciences, Paris.1839,9:561-567
    [5]Gerischer H, Tributsch H. Electrochemische Untersuchungen zur spectraleu sensibilisierung von ZnO-Einkristallen [J]. Bunsenges Physical Chemistry.1968,72:437-445
    [6]Tributsch H. Techn. Hochschule Miinchen [D]. Germany:Technische Universitat Munchen,1968.
    [7]Memming R, Tributsch H. Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes [J]. The Journal of Physical Chemistry.1971,75(4):562-570
    [8]Memming R. Photochemical and electrochemical processes of excited dyes at semiconductor and metal electrodes [J]. Photochemistry and Photobiology.1972, 16(4):325-333
    [9]Spitler M T, Calvin M. Electron transfer at sensitized TiO2 electrodes [J]. Journal of Chemical Physics. 1977,66(10):4294-4305
    [10]Gerischer H. Electrochemistry of the Excited Electronic State [J]. Journal of The Electrochemical Society.1978,125(5):218C-226C
    [11]Anderson S, Constable E C, Dare-Edwards M P, et al. Chemical modification of a titanium (Ⅳ) oxide electrode to give stable dye sensitisation without a supersensitiser [J]. Nature.1979, 280(5723):571-573
    [12]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature.1991,353(6346):737-740
    [13]Czochralski J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle [J]. Zeitschrift feur Physikalische Chemie.1917,92:219
    [14]Repins I, Contreras M A, Egaas B, et al.19.9%-efficient ZnO/CdS/CulnGaSe2 solar cell with 81.2% fill factor [J]. Progress in Photovoltaics:Research and Applications.2008,16(3):235-239
    [15]Nazeeruddin M K, Kay A, Rodicio 1, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X-CI-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. Journal of the American Chemical Society.1993,115(14):6382-6390
    [16]Gratzel M. Molecular photovoltaics that mimic photosynthesis [J]. Physical, Chemical & Earth Sciences 2001,73(3):459-467
    [17]Murakoshi K, Kano G, Wada Y, et al. Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell [J]. Journal of Electroanalytical Chemistry.1995,396(1-2):27-34
    [18]Yella A, Lee H-W, Tsao H N, et al. Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency [J]. Science.2011,334(6056):629-634
    [19]Amadelli R, Argazzi R, Bignozzi C A, et al. Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22- [J]. Journal of the American Chemical Society.1990,112(20):7099-7103
    [20]Kavan L, Gratzel M. Nafion modified TiO2 electrodes:photoresponse and sensitization by Ru(Ⅱ)-bipyridyl complexes [J]. Electrochimica Acta.1989,34(9):1327-1334
    [21]K. Nazeeruddin M, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex [J]. Chemical Communications. 1997, (18):1705-1706
    [22]Pechy P, Renouard T, Zakeeruddin S M, et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells [J]. Journal of the American Chemical Society.2001, 123(8):1613-1624
    [23]Wang P, Zakeeruddin S M, Humphry-Baker R, et al. Molecular-Scale Interface Engineering of TiO2 Nanocrystals:Improve the Efficiency and Stability of Dye-Sensitized Solar Cells [J]. Advanced Materials.2003, 15(24):2101-2104
    [24]Gao F, Wang Y, Shi D, et al. Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2008,130(32):10720-10728
    [25]Chen C-Y, Wang M, Li J-Y, et al. Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells [J]. ACS Nano.2009,3(10):3103-3109
    [26]Nazeeruddin M K, De Angelis F, Fantacci S, et al. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers [J]. Journal of the American Chemical Society.2005,127(48):16835-16847
    [27]Chiba Y, Islam A, Watanabe Y, et al. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1% [J]. Japanese Journal of Applied Physics.2006,45:L638
    [28]Cherian S, Wamser C C. Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2 [J]. The Journal of Physical Chemistry B.2000,104(15):3624-3629
    [29]Clifford J N, Yahioglu G, Milgrom L R, et al. Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films [J]. Chemical Communications.2002, (12):1260-1261
    [30]Odobel F, Blart E, Lagree M, et al. Porphyrin dyes for TiO2 sensitization [J]. Journal of Materials Chemistry.2003,13(3):502-510
    [31]Huijser A, Savenije T J, Kotlewski A, et al. Efficient Light-Harvesting Layers of Homeotropically Aligned Porphyrin Derivatives [J]. Advanced Materials.2006,18(17):2234-2239
    [32]Hasobe T, Kamat P V, Troiani V, et al. Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrin-Peptide Oligomers with Fullerene Clusters [J]. The Journal of Physical Chemistry B.2004,109(1):19-23
    [33]Luo L, Lo C-F, Lin C-Y, et al. Femtosecond Fluorescence Dynamics of Porphyrin in Solution and Solid Films:The Effects of Aggregation and Interfacial Electron Transfer between Porphyrin and TiO2 [J]. The Journal of Physical Chemistry B.2005,110(1):410-419
    [34]Hasselman G M, Watson D F, Stromberg J R, et al. Theoretical Solar-to-Electrical Energy-Conversion Efficiencies of Perylene-Porphyrin Light-Harvesting Arrays [J]. The Journal of Physical Chemistry B. 2006,110(50):25430-25440
    [35]Jasieniak J, Johnston M, Waclawik E R. Characterization of a Porphyrin-Containing Dye-Sensitized Solar Cell [J]. The Journal of Physical Chemistry B.2004,108(34):12962-12971
    [36]Schmidt-Mende L, Campbell W M, Wang Q, et al. Zn-Porphyrin-Sensitized Nanocrystalline TiOi Heterojunction Photovoltaic Cells [J]. ChemPhysChem.2005,6(7):1253-1258
    [37]Wang Q, Campbell W M, Bonfantani E E, et al. Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Films [J]. The Journal of Physical Chemistry B.2005, 109(32):15397-15409
    [38]Eu S, Hayashi S, Umeyama T, et al. Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells [J]. The Journal of Physical Chemistry C.2007,111(8):3528-3537
    [39]Campbell W M, Jolley K W, Wagner P, et al. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2007,111(32):11760-11762
    [40]Eu S, Hayashi S, Umeyama T, et al. Quinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2008,112(11):4396-4405
    [41]Lu H-P, Tsai C-Y, Yen W-N, et al. Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate [J]. The Journal of Physical Chemistry C.2009,113(49):20990-20997
    [42]Hsieh C-P, Lu H-P, Chiu C-L, et al. Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells [J]. Journal of Materials Chemistry.2010,20(6):1127-1134
    [43]Bessho T, Zakeeruddin S M, Yeh C-Y, et al. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins [J]. Angewandte Chemie International Edition. 2010,49(37):6646-6649
    [44]Reddy P Y, Giribabu L, Lyness C, et al. Efficient Sensitization of Nanocrystalline TiO2 Films by a Near-IR-Absorbing Unsymmetrical Zinc Phthalocyanine [J]. Angewandte Chemie International Edition.2007,46(3):373-376
    [45]Brown M D, Parkinson P, Torres T, et al. Surface Energy Relay Between Cosensitized Molecules in Solid-State Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2011, 115(46):23204-23208
    [46]Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells [J]. Chemical Communications.2003, (24):3036-3037
    [47]Horiuchi T, Miura H, Sumioka K, et al. High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes [J]. Journal of the American Chemical Society.2004,126(39):12218-12219
    [48]Ito S, Zakeeruddin S M, Humphry-Baker R, et al. High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness [J]. Advanced Materials.2006, 18(9):1202-1205
    [49]Ito S, Miura H, Uchida S, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chemical Communications.2008, (41):5194-5196
    [50]Kuang D, Uchida S, Humphry-Baker R, et al. Organic Dye-Sensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers[J]. Angewandte Chemie International Edition.2008,47(10):1923-1927
    [51]Hagberg D P, Edvinsson T, Marinado T, et al. A novel organic chromophore for dye-sensitized nanostructured solar cells[J]. Chemical Communications.2006,(21):2245-2247
    [52]Hwang S, Lee J H, Park C, et al. A highly efficient organic sensitizer for dye-sensitized solar cells [J]. Chemical Communications.2007, (46):4887-4889
    [53]Xu W, Peng B, Chen J, et al. New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2008,112(3):874-880
    [54]Xu W, Pei J, Shi J, et al. Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells [J]. Journal of Power Sources.2008,183(2):792-798
    [55]Hagberg D P, Yum J-H, Lee H, et al. Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications [J]. Journal of the American Chemical Society.2008,130(19):6259-6266
    [56]Zhang G, Bala H, Cheng Y, et al. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary [small pi]-conjugated spacer [J]. Chemical Communications.2009, (16):2198-2200
    [57]Zeng W, Cao Y, Bai Y, et al. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks [J]. Chemistry of Materials.2010,22(5):1915-1925
    [58]Hagberg D P, Jiang X, Gabrielsson E, et al. Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye-sensitized solar cells [J]. Journal of Materials Chemistry.2009,19(39):7232-7238
    [59]Jiang X, Marinado T, Gabrielsson E, et al. Structural Modification of Organic Dyes for Efficient Coadsorbent-Free Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2010, 114(6):2799-2805
    [60]Feldt S M, Gibson E A, Gabrielsson E, et al. Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2010,132(46):16714-16724
    [61]Tsao H N, Yi C, Moehl T, et al. Cyclopentadithiophene Bridged Donor-Acceptor Dyes Achieve High Power Conversion Efficiencies in Dye-Sensitized Solar Cells Based on the tris-Cobalt Bipyridine Redox Couple [J]. ChemSusChem.2011,4(5):591-594
    [62]Kim S, Lee J K, Kang S O, et al. Molecular Engineering of Organic Sensitizers for Solar Cell Applications [J]. Journal of the American Chemical Society.2006,128(51):16701-16707
    [63]Choi H, Lee J K, Song K, et al. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell [J]. Tetrahedron.2007, 63(15):3115-3121
    [64]Jung I, Lee J K, Song K H, et al. Synthesis and Photovoltaic Properties of Efficient Organic Dyes Containing the Benzo[b]furan Moiety for Solar Cells [J]. The Journal of Organic Chemistry.2007, 72(10):3652-3658
    [65]Yum J-H, Jang S-R, Walter P, et al. Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers [J]. Chemical Communications.2007, (44):4680-4682
    [66]Kim S, Kim D, Choi H, et al. Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering [J]. Chemical Communications. 2008, (40):4951-4953
    [67]Kim C, Choi H, Kim S, et al. Molecular Engineering of Organic Sensitizers Containing p-Phenylene Vinylene Unit for Dye-Sensitized Solar Cells [J]. The Journal of Organic Chemistry.2008, 73(18):7072-7079
    [68]Qin H, Wenger S, Xu M, et al. An Organic Sensitizer with a Fused Dithienothiophene Unit for Efficient and Stable Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2008, 130(29):9202-9203
    [69]Choi H, Baik C, Kang S O, et al. Highly Efficient and Thermally Stable Organic Sensitizers for Solvent-Free Dye-Sensitized Solar Cells [J]. Angewandte Chemie.2008,120(2):333-336
    [70]Chen R, Yang X, Tian H, et al. Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells [J]. Chemistry of Materials.2007,19(16):4007-4015
    [71]Chen R, Yang X, Tian H, et al. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A:Chemistry.2007, 189(2-3):295-300
    [72]Hao Y, Yang X, Cong J, et al. Engineering of highly efficient tetrahydroquinoline sensitizers for dye-sensitized solar cells [J]. Tetrahedron.2012,68(2):552-558
    [73]Hao Y, Yang X, Cong J, et al. Efficient near infrared D-π-A sensitizers with lateral anchoring group for dye-sensitized solar cells [J]. Chemical Communications.2009, (27):4031-4033
    [74]Hao Y, Yang X, Zhou M, et al. Molecular Design to Improve the Performance of Donor-π Acceptor Near-IR Organic Dye-Sensitized Solar Cells [J]. ChemSusChem.2011,4(11):1601-1605
    [75]Ferrere S, Zaban A, Gregg B A. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives [J]. The Journal of Physical Chemistry B.1997, 101(23):4490-4493
    [76]Shibano Y, Umeyama T, Matano Y, et al. Electron-Donating Perylene Tetracarboxylic Acids for Dye-Sensitized Solar Cells [J]. Organic Letters.2007,9(10):1971-1974
    [77]Edvinsson T, Li C, Pschirer N, et al. Intramolecular Charge-Transfer Tuning of Perylenes: Spectroscopic Features and Performance in Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2007,111(42):15137-15140
    [78]Fortage J, Severac M, Houarner-Rassin C, et al. Synthesis of new perylene imide dyes and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A:Chemistry.2008,197(2-3):156-169
    [79]Li C, Yum J-H, Moon S-J, et al. An Improved Perylene Sensitizer for Solar Cell Applications [J]. ChemSusChem.2008,1(7):615-618
    [80]Cappel U B, Karlsson M H, Pschirer N G, et al. A Broadly Absorbing Perylene Dye for Solid-State Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2009,113(33):14595-14597
    [81]Cappel U B, Smeigh A L, Plogmaker S, et al. Characterization of the Interface Properties and Processes in Solid State Dye-Sensitized Solar Cells Employing a Perylene Sensitizer [J]. The Journal of Physical Chemistry C.2011,115(10):4345-4358
    [82]Boschloo G, Hagfeldt A. Characteristics of the lodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells [J]. Accounts of Chemical Research.2009,42(11):1819-1826
    [83]Snaith H J. Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells [J]. Advanced Functional Materials.2010,20(1):13-19
    [84]Nusbaumer H, Moser J-E, Zakeeruddin S M, et al. Coll(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells[J].The Journal of Physical Chemistry B.2001, 105(43):10461-10464
    [85]Nusbaumer H, Zakeeruddin S M, Moser J-E, et al. An Alternative Efficient Redox Couple for the Dye-Sensitized Solar Cell System [J]. Chemistry A European Journal.2003,9(16):3756-3763
    [86]Nakade S, Makimoto Y, Kubo W, et al. Roles of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cells (2):The Case of Solar Cells Using Cobalt Complex Redox Couples [J]. The Journal of Physical Chemistry B.2005,109(8):3488-3493
    [87]Liberatore M, Burtone L, Brown T M, et al. On the effect of Al2O3 blocking layer on the performance of dye solar cells with cobalt based electrolytes [J]. Applied Physics Letters.2009, 94(17):173113-173115
    [88]Klahr B M, Hamann T W. Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C.2009, 113(31):14040-14045
    [89]Hamann T W, Brunschwig B S, Lewis N S. Comparison of the Self-Exchange and Interfacial Charge-Transfer Rate Constants for Methyl-versus tert-Butyl-Substituted Os(III) Polypyridyl Complexes [J]. The Journal of Physical Chemistry B.2006,110(50):25514-25520
    [90]Zhou D, Yu Q, Cai N, et al. Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(Ⅱ/Ⅲ) redox shuttle [J]. Energy & Environmental Science.2011, 4(6):2030-2034
    [91]Bai Y, Zhang J, Zhou D, et al. Engineering Organic Sensitizers for Iodine-Free Dye-Sensitized Solar Cells:Red-Shifted Current Response Concomitant with Attenuated Charge Recombination [J]. Journal of the American Chemical Society.2011,133(30):11442-11445
    [92]Gregg B A, Pichot F, Ferrere S, et al. Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces [J]. The Journal of Physical Chemistry B.2001, 105(7):1422-1429
    [93]Feldt S M, Cappel U B, Johansson E M J, et al. Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple [J]. The Journal of Physical Chemistry C.2010,114(23):10551-10558
    [94]Hamann T W, Farha O K, Hupp J T. Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition [J]. The Journal of Physical Chemistry C.2008,112(49):19756-19764
    [95]Waita S M, Aduda B O, Mwabora J M, et al. Electrochemical characterization of TiO2 blocking layers prepared by reactive DC magnetron sputtering [J]. Journal of Electroanalytical Chemistry.2009, 637(1-2):79-83
    [96]Daeneke T, Kwon T-H, Holmes A B, et al. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes [J]. Nat Chem.2011,3(3):211-215
    [97]Rutkowska I, Andrearczyk A, Zoladek S, et al. Electrochemical characterization of Prussian blue type nickel hexacyanoferrate redox mediator for potential application as charge relay in dye-sensitized solar cells [J]. Journal of Solid State Electrochemistry.2011,15(11):2545-2552
    [98]Daeneke T, Uemura Y, Duffy N W, et al. Aqueous Dye-Sensitized Solar Cell Electrolytes Based on the Ferricyanide-Ferrocyanide Redox Couple [J]. Advanced Materials.2012:1222-1225
    [99]Hattori S, Wada Y, Yanagida S, et al. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2005,127(26):9648-9654
    [100]Bai Y, Yu Q, Cai N, et al. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle [J]. Chemical Communications.2011,47(15):4376-4378
    [101]Li T C, Spokoyny A M, She C, et al. Ni(Ⅲ)/(Ⅳ) Bis(dicarbollide) as a Fast, Noncorrosive Redox Shuttle for Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2010, 132(13):4580-4582
    [102]Spokoyny A M, Li T C, Farha O K, et al. Electronic Tuning of Nickel-Based Bis(dicarbollide) Redox Shuttles in Dye-Sensitized Solar Cells [J]. Angewandte Chemie International Edition.2010, 49(31):5339-5343
    [103]Nishide H, Suga T. Organic Radical Battery [J]. The Electrochemical Society's Interface.2005, 14(4):32-36
    [104]Nakahara K, Iwasa S, Satoh M, et al. Rechargeable batteries with organic radical cathodes [J]. Chemical Physics Letters.2002,359(5-6):351-354
    [105]Nishide H, Iwasa S, Pu Y-J, et al. Organic radical battery:nitroxide polymers as a cathode-active material [J]. Electrochimica Acta.2004,50(2-3):827-831
    [106]Moshurchak L M, Buhrmester C, Wang R L, et al. Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells [J]. Electrochimica Acta. 2007,52(11):3779-3784
    [107]Zhang Z, Chen P, Murakami T N, et al. The 2,2,6,6-Tetramethyl-l-piperidinyloxy Radical:An Efficient, Iodine-Free Redox Mediator for Dye-Sensitized Solar Cells [J]. Advanced Functional Materials.2008,18(2):341-346
    [108]Kato F, Hayashi N, Murakami T, et al. Nitroxide Radicals for Highly Efficient Redox Mediation in Dye-sensitized Solar Cells [J]. Chemistry Letters.2010,39(5):464-465
    [109]Min J, Won J, Kang Y S, et al. Benzimidazole derivatives in the electrolyte of new-generation organic dye-sensitized solar cells with an iodine-free redox mediator[J]. Journal of Photochemistry and Photobiology A:Chemistry.2011,219(1):148-153
    [110]Li D, Li H, Luo Y, et al. Non-Corrosive, Non-Absorbing Organic Redox Couple for Dye-Sensitized Solar Cells [J]. Advanced Functional Materials.2010,20(19):3358-3365
    [111]Liu Y, Jennings J R, Parameswaran M, et al. An organic redox mediator for dye-sensitized solar cells with near unity quantum efficiency [J]. Energy & Environmental Science.2011,4(2):564-571
    [112]Mingkui W, Chamberland N, Breau L, et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells [J]. Nature Chemistry.2010,2(5):385-389
    [113]Wu H, Lv Z, Chu Z, et al. Graphite and platinum's catalytic selectivity for disulfide/thiolate (T2/T-) and triiodide/iodide (I3-/I-) [J]. Journal of Materials Chemistry.2011,21(38):14815-14820
    [114]Tian H, Jiang X, Yu Z, et al. Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte [J]. Angewandte Chemie International Edition.2010,49(40):7328-7331
    [115]Shouji E, Matsui H, Oyama N. Examination of reactivity of protonated and deprotonated 2,5-dimercapto-1,3,4-thiadiazole and its derivatives by electrochemical experiment and semiempirical MO calculation [J]. Journal of Electroanalytical Chemistry.1996,417(12):17-24
    [116]Tatsuma T, Matsui H, Shouji E, et al. Reversible Electron Transfer Reaction between Polyaniline and Thiol/Disulfide Couples [J]. The Journal of Physical Chemistry.1996,100(33):14016-14021
    [117]Shouji E, Buttry D A. A Mechanistic Study of the Influence of Proton Transfer Processes on the Behavior of Thiol/Disulfide Redox Couples[J]. The Journal of Physical Chemistry B.1999, 103(12):2239-2247
    [118]Tian H, Yu Z, Hagfeldt A, et al. Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2011, 133(24):9413-9422
    [119]Zhang Z. Enhancing the open-circuit voltage of dye-sensitized solar cells:coadsorbents and alternative redox couples. [D]. EPFL,2008.
    [120]Yu Z, Tian H, Gabrielsson E, et al. Tetrathiafulvalene as a one-electron iodine-free organic redox mediator in electrolytes for dye-sensitized solar cells [J]. RSC Advances.2012,2(3):1083-1087
    [121]Desilvestro J, Gratzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide [J]. Journal of the American Chemical Society.1985,107(10):2988-2990
    [122]Bonhote P, Moser J-E, Humphry-Baker R, et al. Long-Lived Photoinduced Charge Separation and Redox-Type Photochromism on Mesoporous Oxide Films Sensitized by Molecular Dyads [J]. Journal of the American Chemical Society.1999,121(6):1324-1336
    [123]Argazzi R, Bignozzi C A, Heimer T A, et al. Light-Induced Charge Separation across Ru(II)-Modified Nanocrystalline TiO2 Interfaces with Phenothiazine Donors [J]. The Journal of Physical Chemistry B.1997,101(14):2591-2597
    [124]Wang Z-S, Sayama K, Sugihara H. Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3-Electrolyte [J]. The Journal of Physical Chemistry B.2005,109(47):22449-22455
    [125]Hagfeldt A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chemical Reviews.1995,95(1):49-68
    [126]Teng C, Yang X, Yuan C, et al. Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br-/Br3- Electrolytes [J]. Organic Letters.2009, 11(23):5542-5545
    [127]Teng C, Yang X, Li S, et al. Tuning the HOMO Energy Levels of Organic Dyes for Dye-Sensitized Solar Cells Based on Br-/Br3-Electrolytes [J]. Chemistry - A European Journal.2010, 16(44):13127-13138
    [128]Oskam G, Bergeron B V, Meyer G J, et al. Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells [J]. The Journal of Physical Chemistry B.2001,105(29):6867-6873
    [129]Wang P, Zakeeruddin S M, Moser J-E, et al. A Solvent-Free, SeCN-/(SeCN)3-Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells [J]. Journal of the American Chemical Society.2004,126(23):7164-7165
    [130]Bergeron B V, Marton A, Oskam G, et al. Dye-Sensitized SnO2 Electrodes with Iodide and Pseudohalide Redox Mediators [J]. The Journal of Physical Chemistry B.2004,109(2):937-943
    [131]Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature.1998,395(6702):583-585
    [132]Schmidt-Mende L, Bach U, Humphry-Baker R, et al. Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells [J]. Advanced Materials.2005,17(7):813-815
    [133]Wang M, Xu M, Shi D, et al. High-Performance Liquid and Solid Dye-Sensitized Solar Cells Based on a Novel Metal-Free Organic Sensitizer [J]. Advanced Materials.2008,20(23):4460-4463
    [134]Kron G, Egerter T, Werner J H, et al. Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar CellsComparison of Electrolyte and Solid-State Devices [J]. The Journal of Physical Chemistry B. 2003,107(15):3556-3564
    [135]Ruhle S, Cahen D. Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance [J]. The Journal of Physical Chemistry B.2004,108(46):17946-17951
    [136]Burschka J, Dualeh A, Kessler F, et al. Tris(2-(1H-pyrazol-l-yl)pyridine)cobalt(Ⅲ) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2011, 133(45):18042-18045
    [137]Veerappan G, Bojan K, Rhee S-W. Sub-micrometer-sized Graphite As a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells [J]. ACS Applied Materials & Interfaces.2011, 3(3):857-862
    [138]Liu G, Wang H, Li X, et al. A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell [J]. Electrochimica Acta.2012,69(0):334-339
    [139]Wei Y-S, Jin Q-Q, Ren T-Z. Expanded graphite/pencil-lead as counter electrode for dye-sensitized solar cells [J]. Solid-State Electronics.2011,63(1):76-82
    [140]Lee W J, Ramasamy E, Lee D Y, et al. Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes [J]. ACS Applied Materials & Interfaces.2009, 1(6):1145-1149
    [141]Huang S, Sun H, Huang X, et al. Carbon nanotube counter electrode for high-efficient fibrous dye-sensitized solar cells [J]. Nanoscale Research Letters.2012,7(1):222
    [142]Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells [J]. ACS Nano.2010,4(10):6203-6211
    [143]Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition [J]. Journal of Materials Chemistry.2011,21(21):7548
    [144]Das S, Sudhagar P, Verma V, et al. Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells [J]. Adv. Funct. Mater.2011,21:3729-3736
    [145]Cruz R, Pacheco T D A, Mendes A. Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells [J]. Sol. Energy.2012,86:716-724
    [146]Xu C, Li J, Wang X, et al. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells [J]. Mater. Chem. Phys.2012,132:858-864
    [147]Yanagida S, Saito Y. Application of poly(3,4-ethylenedioxythiophene) in dye-sensitized solar cells [J]. Transactions of the Materials Research Society of Japan.2004,29:1011-1015
    [148]Ahmad S, Yum J-H, Xianxi Z, et al. Dye-sensitized solar cells based on poly(3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids[J].J. Mater. Chem. 2010,20:1654-1658
    [149]Kawano R, Katakabe T, Shimosawa H, et al. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode[J]. Phys Chem Chem Phys.2010, 12:1916-1921
    [150]Trevisan R, Dobbelin M, Boix P P, et al. PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions Among Electrolytes and Counter Electrodes [J]. Advanced Energy Materials.2011,1(5):781-784
    [151]Balis N, Makris T, Dracopoulos V, et al. Quasi-Solid-State Dye-Sensitized Solar Cells made with poly(3,4-ethylenedioxythiophene)-functionalized counter-electrodes[J]. J. Power Sources.2012, 203:302-307
    [152]Yue G, Wu J, Xiao Y, et al. Low cost poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/carbon black counter electrode for dye-sensitized solar cells[J].Electrochim. Acta.2012,67:113-118
    [153]Saito Y, Kitamura T, Wada Y, et al. Application of Poly(3,4-ethylenedioxythiophene) to Counter Electrode in Dye-Sensitized Solar Cells [J]. Chemistry Letters.2002,31(10):1060-1061
    [154]Wang M, Anghel A M, Marsan B t, et al. CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2009, 131(44):15976-15977
    [155]Lin J-Y, Liao J-H, Wei T-C. Honeycomb-like CoS Counter Electrodes for Transparent Dye-Sensitized Solar Cells [J]. Electrochem. Solid-State Lett.2011,14:D41-D44
    [156]Lin J-Y, Liao J-H. Mesoporous Electrodeposited-CoS Film as a Counter Electrode Catalyst in Dye-Sensitized Solar Cells [J]. Journal of The Electrochemical Society.2012,159(2):D65
    [157]Sun H, Qin D, Huang S, et al. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique [J]. Energy & Environmental Science.2011,4(8):2630-2637
    [158]Sudhagar P, Nagarajan S, Lee Y-G, et al. Synergistic Catalytic Effect of a Composite (CoS/PEDOT:PSS) Counter Electrode on Triiodide Reduction in Dye-Sensitized Solar Cells [J]. ACS Applied Materials & Interfaces.2011,3(6):1838-1843
    [159]Dou Y Y, Li G R, Song J, et al. Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells [J]. Physical Chemistry Chemical Physics.2012,14(4):1339-1342
    [160]Wang G, Zhuo S, Xing W. Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells [J]. Materials Letters.2012,69(0):27-29
    [161]Bajpai R, Roy S, Kulshrestha N, et al. Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells [J]. Nanoscale.2012,4:926-930
    [162]Yen M-Y, Hsieh C-K, Teng C-C, et al. Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes [J]. RSC Advances.2012,2(7):2725
    [163]Bardakos V, Sandris C. Assignment of stereochemistry to cyclohexenylidenecyanoacetates by 1H NMR spectroscopy [J]. Organic Magnetic Resonance.1981,15(4):339-343
    [164]Ozaki H, Setaka T, Tsuchiya S, et al. Synthesis of novel fluorescent nucleoside bearing 3aminobenzonitrile as a nucleobase [J]. Nucleic Acids Symposium Series.2007,51(1):137-138
    [165]Strawn L M, Martell R E, Simpson R U, et al. Iodoaryl analogs of dioctanoylglycerol and 1-oleoyl-2-acetylglycerol as probes for protein kinase C [J]. Journal of Medicinal Chemistry.1989, 32(9):2104-2110
    [166]Wang Z-S, Kawauchi H, Kashima T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell [J]. Coordination Chemistry Reviews.2004,248(13-14):1381-1389
    [167]Sommeling P M, O'Regan B C, Haswell R R, et al. Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry B. 2006,110(39):19191-19197
    [168]Hagfeldt A, Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chemical Reviews.1995,95(1):49-68
    [169]Sayama K, Hara K, Mori N, et al. Photosensitization of a porous TiO electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain [J]. Chemical Communications.2000, (13):1173-1174
    [170]Khairutdinov R F, Serpone N. Photophysics of Cyanine Dyes:Subnanosecond Relaxation Dynamics in Monomers, Dimers, and H- and J-Aggregates in Solution [J]. The Journal of Physical Chemistry B. 1997,101(14):2602-2610
    [171]Kay A, Graetzel M. Artificial photosynthesis.l. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins [J]. The Journal of Physical Chemistry.1993, 97(23):6272-6277
    [172]Gagne R R, Koval C A, Lisensky G C. Ferrocene as an internal standard for electrochemical measurements [J]. Inorganic Chemistry.1980,19(9):2854-2855
    [173]Wang Z-S, Hara K, Dan-oh Y, et al. Photophysical and (Photo)electrochemical Properties of a Coumarin Dye [J]. The Journal of Physical Chemistry B.2005,109(9):3907-3914
    [174]Nazeeruddin M K, Humphry-Baker R, Liska P, et al. Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell [J]. The Journal of Physical Chemistry B.2003,107(34):8981-8987
    [175]Tian H, Yang X, Chen R, et al. Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes[J]. The Journal of Physical Chemistry C.2008,112(29):11023-11033
    [176]Furube A, Katoh R, Hara K, et al. Lithium Ion Effect on Electron Injection from a Photoexcited Coumarin Derivative into a TiO2 Nanocrystalline Film Investigated by Visible-to-IR Ultrafast Spectroscopy [J]. The Journal of Physical Chemistry B.2005,109(34):16406-16414
    [177]Hirva P, Haukka M. Effect of Different Anchoring Groups on the Adsorption of Photoactive Compounds on the Anatase (101) Surface [J]. Langmuir.2010,26(22):17075-17081
    [178]Smith W H, Bard A J. Electrochemical reactions of organic compounds in liquid ammonia. H. Nitrobenzene and nitrosobenzene [J]. Journal of the American Chemical Society.1975, 97(18):5203-5210
    [179]Wang M, Chamberland N, Breau L, et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells [J]. Nat Chem.2010,2(5):385-389
    [180]Peter L M. Dye-sensitized nanocrystalline solar cells [J]. Physical Chemistry Chemical Physics.2007, 9(21):2630-2642
    [181]Lee Y-L, Chang C-H. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. Journal of Power Sources.2008,185(1):584-588
    [182]杨天足,陈希鸿,宾万达,等.多硫化钠浸金研究[J].中南矿冶学院学报.1992,23(6):687-692
    [183]葛茜,史成武,邱治国,等.烷基咪唑碘的合成及性能实验[J].实验室研究与探索.2008,27(2):23-24
    [184]Marinado T, Nonomura K, Nissfolk J, et al. How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes [J]. Langmuir. 2009,26(4):2592-2598
    [185]Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I, et al. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy [J]. Physical Chemistry Chemical Physics. 2011,13(20)
    [186]Adachi M, Sakamoto M, Jin J, et al. Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy [J]. The Journal of Physical Chemistry B.2006,110(28):13872-13880
    [187]Bauer C, Boschloo G, Mukhtar E, et al. Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells [J]. The Journal of Physical Chemistry B.2002,106(49):12693-12704
    [188]Boschloo G, Hagfeldt A. Photoinduced absorption spectroscopy as a tool in the study of dye-sensitized solar cells [J]. Inorganica Chimica Acta.2008,361(3):729-734
    [189]Clifford J N, Palomares E, Nazeeruddin M K, et al. Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells:Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate [J]. The Journal of Physical Chemistry C.2007,111(17):6561-6567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700