用户名: 密码: 验证码:
人乳头瘤病毒假病毒制备方法的优化以及高通量中和实验检测系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人乳头瘤病毒(HPV)能够引起包括宫颈癌在内的多种生殖道疾病,严重危害人类健康。HPV具有严格的宿主特异性和组织分化依赖性,难以通过常规组织培养方法扩增,也难以从病变组织中分离获得足够的病毒。因此建立简便、高效的HPV体外感染模型是发展HPV预防疫苗与治疗药物的迫切需要。近来研究发现HPV假病毒可用于在体外有效模拟HPV的感染,以此基础建立的中和实验方法具有较突出准确、便捷的优点,在HPV预防疫苗、中和抗体研究中显示出巨大的应用潜力。HPV假病毒中和实验方法的广泛使用需要进一步提高假病毒构建效率,同时能够满足高通量检测的需要。本实验室已应用磷酸钙多质粒共转染方法在293FT细胞中建立了构建HPV假病毒的方法,本研究以此为基础,进一步对HPV假病毒构建体系进行系统改进和优化,建立了更为高效且适合高通量检测的HPV中和实验方法。
     建立简便高效、高通量的假病毒中和实验检测方法对提高实验效率,满足大规模抗体检测的需要具有十分重要的意义。同时,建立多个型别的HPV假病毒中和实验模型为具有高保护力的多价疫苗的开发提供了全面的中和抗体评价体系。
     本研究首先探讨了在HPV假病毒构建体系中优化质粒转染比例以及磷酸钙转染条件对假病毒构建效率的影响。结果显示,在该体系中不同的HPV结构蛋白表达质粒转染比例对于假病毒构建效率有显著影响,HPV主要结构蛋白L1的表达水平是影响构建效率的主要因素,L2表达质粒的用量过高或过低均不利于假病毒的构建。报告质粒的用量对假病毒构建效率的影响相对较小。综合比较显示,在该体系中L1和L2表达质粒和报告质粒以合适比例(1:1/10:1/2)进行共转染可获得较理想的构建效率。同时通过优化磷酸钙转染试剂的用量和DNA在磷酸钙溶液中浓度获得了较优的转染条件。通过优化改进,本研究建立了更为高效的HPV假病毒大量制备方法,在HPV16、HPV18、HPV6、HPV11假病毒构建中的应用结果显示相比原方法可显著提高构建效率10~20倍。为HPV假病毒中和实验的规模化应用提供了有利条件。
     为适应高通量检测的需要,本研究通过改进报告基因及检测方法建立了新型的HPV假病毒中和实验体系。本研究选择半乳糖苷酶作为报告基因,构建了携带优化后的半乳糖苷酶表达元件的HPV假病毒,研究结果显示,假病毒感染后的细胞加入显色底物后可呈现显著的蓝色,并且该标记可为酶联免疫图像分析系统(Elispot)所检测。酶联免疫图像分析系统可对显色后的96孔细胞培养板进行连续快速的自动扫描并计数,满足了高通量检测的需要。本研究进一步对显色方法进行优化,提高了检测效率。通过综合应用优化的半乳糖苷酶报告基因表达元件与酶联免疫图像分析系统,本研究建立新型的可满足高通量检测要求的HPV假病毒中和实验方法。本研究应用该方法对四型HPV中和单抗的鉴定结果表明,半乳糖苷酶假病毒中和实验方法与目前应用的EGFP假病毒中和实验方法的检测灵敏度相当,同时新方法还具有可自动连续检测、操作简便、结果显示直观的优点,可更好地满足大规模中和抗体检测实验的需要。本研究应用该方法鉴定获得了2株HPV16中和单抗,3株HPV18中和单抗,以及HPV6和HPV11中和单抗各5株;同时对本中心生产的HPV16、HPV18、HPV6和HPV11四价VLP疫苗的抗体保护性进行了评价,为临床实验阶段所需疫苗的合适剂量提供了参考。
     HPV58和HPV52是中国较为流行的高危HPV型别,但一直以来研究较少。建立HPV58和HPV52假病毒中和实验模型对于研究HPV58和HPV52以及预防疫苗的开发具有重要意义。我们将HPV58和HPV52的衣壳蛋白表达序列进行密码子人源化优化后,克隆到表达载体上,与报告质粒分别共转染293FT获得了感染性的HPV58和HPV52假病毒。将质粒通过尾静脉高压注射方式免疫小鼠,成功在小鼠体内诱导了高滴度的HPV58和HPV52的中和性抗体。Western blotting结果显示这两型假病毒在约55KD处均具有L1蛋白活性。多抗血清交叉中和实验表明HPV58和HPV52、HPV16和HPV58之间存在一定水平的抗体交叉保护,而HPV16和HPV52之间没有可检测的抗体交叉保护性。
Infection of Human papillomavirus(HPV) is the cause of various diseases of genital tract,including cervix cancer,which is the second most common cancer leading to death in women.HPV's infection has host specificity,moreover,completed life cycle of HPV relays on differentiation of epithelial cells.Absence of applicable cell culture systems for infectious virus and limited virus particles obtained from patients' tissues restrict research on HPV and development of HPV vaccine. Convenient and efficient infection models of HPV in vitro are necessary for development of prophylactic vaccine and therapeutic agents of HPV.In recent years, people use pseudovirus to imitate HPV and construct pseudovirus-based neutralization assay for HPV,which displays a enormous applied potential in detection of neutralizing antibodys and development of prophylactic vaccine.
     Cotransfection of plasmids with condon-optimized genes is proved more convenient and higher-yield in producing pseudovirion than other systems,which has been constructed in our lab.To evaluate the protection providing by HPV prophylactic vaccine to animals or human,a great deal pseudovirion and a rapid, simple and convenient,high-throughput neutralization assay is required.To satisfy need of development of multivalent HPV vaccine,developing pseudovirus-based neutralization assay for other HPV types is necessary.
     In construction of pseudovirus by cotransfection of plasmids,appropriately lowering transfected mole ratio of L2 expression plasmid and reporter plasmid enhances expression of L1,which is positive correlative to construction efficiency of pseudovirus under certain conditions.The optimized transfected ratio may be 1:1/10:1/2 of L1、L2 expression plasmids and reporter plasmid.Modified transfected mole ratios of plasmids、optimal DNA concentration in calcium phosphate solution and appropriate volume of calcium phosphate solution contribute to a 10~20 times higher efficiency in construction of HPV16、HPV18、HPV6 and HPV11 pseudovirion.
     To satisfy the need of high-throughput assay for neutralizing antibodies, considerring the conditions in our lab,we constructed a new neutralization assay based on pseudovirion encapsidatingβ-gal expression plasmid.We utilized Elispot reader to scan 96 wells cell culture plates and display automatic counting result of cells transducted by pseudovirion every well,what remarkably enhance efficiency of neutralization assay for HPV.The method of x-gal stainning was improved to further enhance the efficiency.The new neutralization assay for HPV has high specificity,a wide detection range and similar sensitivity comparing to that of EGFP pseudovirus -based neutralization assay,moreover,it's low-cost in reagents and easy to operate.
     The neutralization efficiency of HPV16,HPV18,HPV6 and HPV11 monoclonal antibodies generated in our lab were then evaluated by the new pseudovirus-base neutralization assay.All these neutralizing mAbs can be used to thoroughly elucidate the neutralizing eptitopes of HPV and evaluate the quality of HPV vaccines.To investigate a suitable dose of candidate VLP-mixed vaccine of HPV16/18/6/11,sixty mice were vaccinated with serial diluted HPV16/18/6/11 VLP mix and the ED50 was identified to be HPV16 0.017μg/mL、HPV18 0.017μg/mL、HPV6 0.025μg/mL、HPV11 0.067μg/mL,which will guide us in the determination of an appropriate dose of mix vaccine in clinical trial studies.
     HPV58 and HPV52 are popular high-risk HPV in China,popularity of HPV58 is second to that of HPV18,but little has been studied about the two types since always.Construction of HPV58 and HPV52 pseudovirion help to research on HPV58、HPV52 and development of corresponding vaccine.Codon-optimized expression plasmids of capsid protein and reporter plasmid are cotransfected to 293FT cells, successfully generating high titer infectious pseudovirion of HPV58 and HPV52 respectively.Expression of 58L1 and 52L1 in cells was detected by Western blotting. Immunizing codon-optimized 58L1 and 52L1 expression plasmids induced neutralizing antibody in mice which can neutralize infection of pseudovirion respectively.We found cross neutralization phenomena exists between HPV16 and HPV58,HPV58 and HPV52,but not between HPV52 and HPV16.
引文
[1]Durst M, Gissmann L, Ikenberg H, et al. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions[J]. Proc Natl Acad Sci U S A, 1983, 80(12):3812-5.
    
    [2]Boshart M, Gissmann L, Ikenberg H, et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer[J]. Embo J, 1984,3(5):1151-7.
    
    [3]de Villiers EM, Fauquet C, Broker TR, et al. Classification of papillomaviruses[J]. Virology,2004,324(1):17-27.
    [4]Schiffman M, Castle PE, Jeronimo J, et al. Human papillomavirus and cervical cancer[J]. Lancet, 2007, 370(9590):890-907.
    [5]Hughes FJ, Romanos MA. El protein of human papillomavirus is a DNA helicase/ATPase[J].Nucleic Acids Res, 1993,21(25):5817-23.
    [6]Conger KL, Liu JS, Kuo SR, et al. Human papillomavirus DNA replication. Interactions between the viral El protein and two subunits of human dna polymerase alpha/primase[J]. J Biol Chem, 1999, 274(5):2696-705.
    [7]Masterson PJ, Stanley MA, Lewis AP, et al. A C-terminal helicase domain of the human papillomavirus El protein binds E2 and the DNA polymerase alpha-primase p68 subunit[J]. J Virol, 1998,72(9):7407-19.
    [8]Demeret C, Desaintes C, Yaniv M, et al. Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes[J]. J Virol, 1997,71(12):9343-9.
    [9]Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins[J]. Cancer Sci, 2007,98(10): 1505-11.
    [10]Genther Williams SM, Disbrow GL, Schlegel R, et al. Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene[J].Cancer Res, 2005,65(15):6534-42.
    [11]Nakahara T, Nishimura A, Tanaka M, et al. Modulation of the cell division cycle by human papillomavirus type 18 E4[J]. J Virol, 2002, 76(21): 10914-20.
    [12]Raj K, Berguerand S, Southern S, et al. El empty set E4 protein of human papillomavirus type 16 associates with mitochondria[J]. J Virol, 2004,78(13):7199-207.
    [13]Baker TS, Newcomb WW, Olson NH, et al. Structures of bovine and human papillomaviruses.Analysis by cryoelectron microscopy and three-dimensional image reconstruction[J]. Biophys J, 1991,60(6): 1445-56.
    [14]Belnap DM, Olson NH, Cladel NM, et al. Conserved features in papillomavirus and polyomavirus capsids[J]. J Mo! Biol, 1996, 259(2):249-63.
    [15]Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins[J]. J Virol, 1993, 67(I):315-22.
    [16]Rose RC, Bonnez W, Reichman RC, et al. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles[J]. J Virol, 1993, 67(4): 1936-44.
    [17]Li M, Beard P, Estes PA, et al. Intercapsomeric disuifide bonds in papillomavirus assembly and disassembly[J]. J Virol, 1998, 72(3):2160-7.
    [18]McCarthy MP, White WI, Palmer-Hill F, et al. Quantitative disassembly and reassembly of human papillomavirus type 11 viruslike particles in vitro[J]. J Virol, 1998, 72(1):32-41.
    
    [19]Doorbar J, Gallimore PH. Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus la[J]. J Virol, 1987,61(9):2793-9.
    [20]Buck CB, Cheng N, Thompson CD, et al. Arrangement of L2 within the papillomavirus capsid[J]. J Virol, 2008, 82(11):5190-7.
    [21]Okun MM, Day PM, Greenstone HL, et al. L1 interaction domains of papillomavirus 12 necessary for viral genome encapsidation[J]. J Virol, 2001, 75(9):4332-42.
    [22]Finnen RL, Erickson KD, Chen XS, et al. Interactions between papillomavirus L1 and L2 capsid proteins[J]. J Virol, 2003, 77(8):4818-26.
    [23]Chen XS, Garcea RL, Goldberg I, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16[J]. Mol Cell, 2000, 5(3):557-67.
    [24]Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer[J]. N Engl J Med, 2003,348(6):518-27.
    [25]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin, 2005,55(2):74-108.
    [26]Hummel M, Hudson JB, Laimins LA. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes[J]. J Virol, 1992,66(10):6070-80.
    [27]Frazer IH. Prevention of cervical cancer through papillomavirus vaccination[J]. Nat Rev Immunol, 2004,4(1):46-54.
    [28]Muller M, Gissmann L, Cristiano RJ, et al. Papillomavirus capsid binding and uptake by cells from different tissues and species[J]. J Virol, 1995,69(2):948-54.
    [29]Volpers C, Unckell F, Schirmacher P, et al. Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells[J]. J Virol, 1995,69(6):3258-64.
    [30]Evander M, Frazer IH, Payne E, et al. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses[J]. J Virol, 1997, 71 (3):2449-56.
    [31]McMillan NA, Payne E, Frazer IH, et al. Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells[J]. Virology, 1999,261(2):271-9.
    [32]Joyce JG, Tung JS, Przysiecki CT, et al. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes[J]. J Biol Chem, 1999, 274(9):5810-22.
    [33]Giroglou T, Florin L, Schafer F, et al. Human papillomavirus infection requires cell surface heparan sulfate[J]. J Virol, 2001,75(3): 1565-70.
    [34]Liu WJ, Qi YM, Zhao KN, et al. Association of bovine papillomavirus type 1 with microtubules[J]. Virology, 2001, 282(2):237-44.
    [35]Selinka HC, Giroglou T, Sapp M. Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions[J]. Virology, 2002, 299(2):279-287.
    [36]Bousarghin L, Touze A, Sizaret PY, et al. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells[J]. J Virol, 2003, 77(6):3846-50.
    [37]Merle E, Rose RC, LeRoux L, et al. Nuclear import of HPV11 L1 capsid protein is mediated by karyopherin alpha2betal heterodimers[J]. J Cell Biochem, 1999, 74(4):628-37.
    [38]Nelson LM, Rose RC, LeRoux L, et al. Nuclear import and DNA binding of human papillomavirus type 45 L1 capsid protein[J]. J Cell Biochem, 2000, 79(2):225-38.
    [39]Nelson LM, Rose RC, Moroianu J. Nuclear import strategies of high risk HPV16 L1 major capsid protein[J]. J Biol Chem, 2002, 277(26):23958-64.
    [40]Klucevsek K, Daley J, Darshan MS, et al. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein[J]. Virology, 2006,352(1 ):200-8.
    [41]Fay A, Yutzy WHt, Roden RB, et al. The positively charged termini of L2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and DNA binding[J]. J Virol, 2004, 78(24): 13447-54.
    [42]Day PM, Roden RB, Lowy DR, et al. The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2,to PML oncogenic domains[J]. J Virol, 1998, 72(1): 142-50.
    [43]Scheffner M, Werness BA, Huibregtse JM, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53[J]. Cell, 1990,63(6): 1129-36.
    [44]Nguyen ML, Nguyen MM, Lee D, et al. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6's induction of epithelial hyperplasia in vivo[J]. J Virol,2003, 77(12):6957-64.
    [45]Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization[J]. Cell, 1997,90(4):785-95.
    [46]Dyson N, Howley PM, Munger K, et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product[J]. Science, 1989,243(4893):934-7.
    [47]Tommasino M, Adamczewski JP, Carlotti F, et al. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A[J]. Oncogene, 1993, 8(1): 195-202.
    [48]Zerfass-Thome K, Zwerschke W, Mannhardt B, et al. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein[J]. Oncogene, 1996,13(11):2323-30.
    [49]Funk JO, Waga S, Harry JB, et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein[J]. Genes Dev,1997,11(16):2090-100.
    [50]Crusius K, Auvinen E, Steuer B, et al. The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT[J]. Exp Cell Res, 1998,241(1):76-83.
    
    [51]McBride AA, Romanczuk H, Howley PM. The papillomavirus E2 regulatory proteins[J]. J BiolChem, 1991,266(28): 18411-4.
    [52]Stubenrauch F, Lim HB, Laimins LA. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31[J]. J Virol, 1998,72(2): 1071-7.
    [53]Klumpp DJ, Laimins LA. Differentiation-induced changes in promoter usage for transcripts encoding the human papillomavirus type 31 replication protein E1[J]. Virology, 1999,257(1):239-46.
    
    [54]Stanley M. Immune responses to human papillomavirus[J]. Vaccine, 2006, 24 Suppl 1(S16-22.
    [55]Castle PE, Stoler MH, Solomon D, et al. The relationship of community biopsy-diagnosed cervical intraepithelial neoplasia grade 2 to the quality control pathology-reviewed diagnoses: an ALTS report[J]. Am J Clin Pathol, 2007, 127(5):805-15.
    [56]Stoler MH, Schiffman M. Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study[J]. Jama, 2001, 285(11): 1500-5.
    [57]Carter JJ, Koutsky LA, Hughes JP, et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection[J]. J Infect Dis, 2000,181(6):1911-9.
    [58]Carter JJ, Madeleine MM, Shera K, et al. Human papillomavirus 16 and 18 L1 serology compared across anogenital cancer sites[J]. Cancer Res, 2001, 61(5): 1934-40.
    [59]Lorincz AT, Richart RM. Human papillomavirus DNA testing as an adjunct to cytology in cervical screening programs[J]. Arch Pathol Lab Med, 2003,127(8):959-68.
    [60]Zahn CM. Human papillomavirus DNA testing as an adjunct in primary screening: is it prime time?[J]. Obstet Gynecol, 2004, 103(4):617-8.
    [61]Chan PK, Lam CW, Cheung TH, et al. Association of human papillomavirus type 58 variant with the risk of cervical cancer[J]. J Natl Cancer Inst, 2002,94(16): 1249-53.
    [62]Chan PK, Li WH, Chan MY, et al. High prevalence of human papillomavirus type 58 in Chinese women with cervical cancer and precancerous lesions[J]. J Med Virol, 1999,59(2):232-8.
    [63]Lai CH, Huang HJ, Hsueh S, et al. Human papillomavirus genotype in cervical cancer: a population-based study[J]. Int J Cancer, 2007,120(9): 1999-2006.
    [64]Munoz N, Bosch FX, Castellsague X, et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective[J]. Int J Cancer, 2004,111(2):278-85.
    [65]Persson G, Andersson K, Krantz I. Symptomatic genital papillomavirus infection in a community. Incidence and clinical picture[J]. Acta Obstet Gynecol Scand, 1996,75(3):287-90.
    [66]Zhou J, Liu WJ, Peng SW, et al. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability[J]. J Virol, 1999,73(6):4972-82.
    [67]Barnard P, Payne E, McMillan NA. The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha[J]. Virology, 2000,277(2):411-9.
    [68]Park JS, Kim EJ, Kwon HJ, et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis[J]. J Biol Chem, 2000, 275(10):6764-9.
    [69]Tindle RW. Immune evasion in human papillomavirus-associated cervical cancer[J]. Nat Rev Cancer, 2002, 2(1):59-65.
    [70]Ressing ME, Sette A, Brandt RM, et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides[J]. J Immunol, 1995, 154(11):5934-43.
    [71]Tindle RW, Croft S, Herd K, et al. A vaccine conjugate of 'ISCAR' immunocarrier and peptide epitopes of the E7 cervical cancer-associated protein of human papillomavirus type 16 elicits specific Th1- and Th2-type responses in immunized mice in the absence of oil-based adjuvants[J]. Clin Exp Immunol, 1995, 101(2):265-71.
    [72]Steller MA, Gurski KJ, Murakami M, et al. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7[J]. Clin Cancer Res, 1998,4(9):2103-9.
    [73]Muderspach L, Wilczynski S, Roman L, et al. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive[J]. Clin Cancer Res, 2000,6(9):3406-16.
    [74]Qin Y, Wang XH, Cui HL, et al. Human papillomavirus type 16 E7 peptide(38-61) linked with an immunoglobulin G fragment provides protective immunity in mice[J]. Gynecol Oncol,2005, 96(2):475-83.
    [75]HalIez S, Simon P, Maudoux F, et al. Phase Ⅰ/Ⅱ trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia[J]. Cancer Immunol Immunother, 2004,53(7):642-50.
    [76]Kenter GG, Welters MJ, Valentijn AR, et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity[J]. Clin Cancer Res, 2008,14( 1): 169-77.
    [77]Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization*[J]. Annu Rev Immunol, 2000,18(927-74.
    [78]Hung CF, Wu TC. Improving DNA vaccine potency via modification of professional antigen presenting cells[J]. Curr Opin Mol Ther, 2003, 5(1):20-4.
    [79]Madrigal M, Janicek MF, Sevin BU, et al. In vitro antigene therapy targeting HPV-16 E6 and E7 in cervical carcinoma[J]. Gynecol Oncol, 1997,64(1): 18-25.
    [80]Brulet JM, Maudoux F, Thomas S, et al. DNA vaccine encoding endosome-targeted human papillomavirus type 16 E7 protein generates CD4+ T cell-dependent protection[J]. Eur J Immunol, 2007,37(2):376-84.
    [81]Tobery TW, Siliciano RF. Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization[J]. J Exp Med, 1997, 185(5):909-20.
    [82]Zhang M, Obata C, Hisaeda H, et al. A novel DNA vaccine based on ubiquitin-proteasome pathway targeting 'self'-antigens expressed in melanoma/melanocyte[J]. Gene Ther, 2005,12(13): 1049-57.
    [83]Moore RA, Walcott S, White KL, et al. Therapeutic immunisation with COPV early genes by epithelial DNA delivery[J]. Virology, 2003, 314(2):630-5.
    [84]Brandsma JL, Shlyankevich M, Zelterman D, et al. Therapeutic vaccination of rabbits with a ubiquitin-fused papillomavirus El, E2, E6 and E7 DNA vaccine[J]. Vaccine, 2007,25(33):6158-63.
    [85]Borysiewicz LK, Fiander A, Nimako M, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer[J].Lancet, 1996, 347(9014): 1523-7.
    [86]Kaufmann AM, Stern PL, Rankin EM, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer[J]. Clin Cancer Res,2002, 8(12):3676-85.
    [87]He Z, Wlazlo AP, Kowalczyk DW, et al. Viral recombinant vaccines to the E6 and E7 antigens of HPV-16[J]. Virology, 2000,270(1): 146-61.
    [88]Chiriva-Internati M, Liu Y, Salati E, et al. Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papillomavirus type 16 E7 antigen gene transduction into dendritic cells[J]. Eur J Immunol, 2002, 32(1):30-8.
    [89]Valdez Graham V, Sutter G, Jose MV, et al. Human tumor growth is inhibited by a vaccinia virus carrying the E2 gene of bovine papillomavirus[J]. Cancer, 2000,88(7): 1650-62.
    [90]Brandsma JL, Shlyankevich M, Zhang L, et al. Vaccination of rabbits with an adenovirus vector expressing the papillomavirus E2 protein leads to clearance of papillomas and infection[J]. J Virol, 2004,78(1):116-23.
    [91]Li M, Cripe TP, Estes PA, et al. Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly[J]. J Virol, 1997, 71(4):2988-95.
    [92]Heino P, Dillner J, Schwartz S. Human papillomavirus type 16 capsid proteins produced from recombinant Semliki Forest virus assemble into virus-like particles[J]. Virology, 1995,214(2):349-59.
    [93]Sasagawa T, Pushko P, Steers G, et al. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe[J]. Virology,1995,206(1):126-35.
    [94]Modis Y, Trus BL, Harrison SC. Atomic model of the papillomavirus capsid[J]. Embo J, 2002,21(18):4754-62.
    [95]Kirnbauer R, Booy F, Cheng N, et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic[J]. Proc Natl Acad Sci U S A, 1992,89(24): 12180-4.
    [96]Christensen ND, Kirnbauer R, Schiller JT, et al. Human papillomavirus types 6 and 11 have antigenically distinct strongly immunogenic conformationally dependent neutralizing epitopes[J]. Virology, 1994, 205(1):329-35.
    [97]Breitburd F, Kirnbauer R, Hubbert NL, et al. Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection[J].J Virol, 1995, 69(6):3959-63.
    [98]Suzich JA, Ghim SJ, Palmer-Hill FJ, et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas[J]. Proc Natl Acad Sci U S A, 1995, 92(25): 11553-7.
    [99]Pastrana DV, Vass WC, Lowy DR, et al. NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16[J]. Virology, 2001, 279(1):361-9.
    [100]Joura EA, Leodolter S, Hernandez-Avila M, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials[J]. Lancet, 2007, 369(9574): 1693-702.
    [101]Ault KA. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials[J]. Lancet, 2007,369(9576): 1861-8.
    [102]Frederick PJ, Huh WK. Interim analysis from the PATRICIA study group: efficacy of a vaccine against HPV 16 and 18[J]. Expert Rev Anticancer Ther, 2008, 8(5):701-5.
    [103]Kawana tani Y, et al. Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6[J]. J Virol, 1999, 73(7):6188-90.
    [104]Embers ME, Budgeon LR, Pickel M, et al. Protective immunity to rabbit oral and cutaneous papillomaviruses by immunization with short peptides of L2, the minor capsid protein[J]. J Virol, 2002, 76(19):9798-805.
    [105]Kawana K, Yasugi T, Kanda T, et al. Safety and immunogenicity of a peptide containing the cross-neutralization epitope of HPV16 L2 administered nasally in healthy volunteers[J]. Vaccine, 2003,21(27-30):4256-60.
    [106]Gambhira R, Karanam B, Jagu S, et al. A protective and broadly cross-neutralizing epitope of human papillomavirus L2[J]. J Virol, 2007,81(24): 13927-31.
    [107]Kondo K, Ishii Y, Ochi H, et al. Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region[J]. Virology, 2007, 358(2):266-72.
    [108]Slupetzky K, Gambhira R, Culp TD, et al. A papillomavirus-like particle (VLP) vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11[J]. Vaccine,2007, 25(11):2001-10.
    [109]Kondo K, Ochi H, Matsumoto T, et al. Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes[J]. J Med Virol, 2008,80(5):841-6.
    [110]Bedell MA, Hudson JB, Golub TR, et al. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation[J]. J Virol, 1991,65(5):2254-60.
    [111]Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse[J]. Nature, 1983, 301(5900):527-30.
    [112]Kreider JW, Howett MK, Lill NL, et al. In vivo transformation of human skin with human papillomavirus type 11 from condylomata acuminata[J]. J Virol, 1986, 59(2):369-76.
    [113]Kreider JW, Howett MK, Leure-Dupree AE, et al. Laboratory production in vivo of infectious human papillomavirus type 11[J]. J Virol, 1987,61(2):590-3.
    [114]Christensen ND, Kreider JW, Shah KV, et al. Detection of human serum antibodies that neutralize infectious human papillomavirus type 11 virions[J]. J Gen Virol, 1992, 73 ( Pt 5)(1261-7.
    [115]Christensen ND, Kreider JW, Cladel NM, et al. Monoclonal antibody-mediated neutralization of infectious human papillomavirus type 11[J]. J Virol, 1990,64(11):5678-81.
    [116]Bonnez W, DaRin C, Borkhuis C, et al. Isolation and propagation of human papillomavirus type 16 in human xenografts implanted in the severe combined immunodeficiency mouse[J]. J Virol, 1998, 72(6):5256-61.
    [117] White WI, Wilson SD, Bonnez W, et al. In vitro infection and type-restricted antibody-mediated neutralization of authentic human papillomavirus type 16[J]. J Virol, 1998,72(2):959-64.
    [118]Yeager MD, Aste-Amezaga M, Brown DR, et al. Neutralization of human papillomavirus (HPV) pseudovirions: a novel and efficient approach to detect and characterize HPV neutralizing antibodies[J]. Virology, 2000,278(2):570-7.
    [119]Bedell MA, Hudson JB, Golub TR, et al. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation[J]. J Virol, 1991,65(5):2254-60.
    [120]Dollard SC, Wilson JL, Demeter LM, et al. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures[J]. Genes Dev, 1992,6(7): 1131-42.
    [121]Chow LT, Broker TR. In vitro experimental systems for HPV: epithelial raft cultures for investigations of viral reproduction and pathogenesis and for genetic analyses of viral proteins and regulatory sequences[J]. Clin Dermatol, 1997, 15(2):217-27.
    [122]Meyers C, Frattini MG, Hudson JB, et al. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation[J]. Science, 1992,257(5072):971-3.
    [123]Pray TR, Laimins LA. Differentiation-dependent expression of E1--E4 proteins in cell lines maintaining episomes of human papillomavirus type 31b[J]. Virology, 1995,206(1 ):679-85.
    [124]Grassmann K, Rapp B, Maschek H, et al. Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA[J]. J Virol,1996,70(4):2339-49.
    [125]Kyo S, Klumpp DJ, Inoue M, et al. Expression of AP1 during cellular differentiation determines human papillomavirus E6/E7 expression in stratified epithelial cells[J]. J Gen Virol, 1997,78 (Pt 2)(401-11.
    [126]Jian Y, Schmidt-Grimminger DC, Chien WM, et al. Post-transcriptional induction of p21cip1 protein by human papillomavirus E7 inhibits unscheduled DNA synthesis reactivated in differentiated keratinocytes[J]. Oncogene, 1998, 17(16):2027-38.
    [127]Shindoh M, Sun Q, Pater A, et al. Prevention of carcinoma in situ of human papillomavirus type 16-immortalized human endocervical cells by retinoic acid in organotypic raft culture[J].Obstet Gynecol, 1995, 85(5 Pt 1):721-8.
    [128]Meyers C, Mayer TJ, Ozbun MA. Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA[J]. J Virol, 1997, 71(10):7381-6.
    [129]Agrawal N, You H, Liu Y, et al. Generation of recombinant skin in vitro by adeno-associated virus type 2 vector transduction[J]. Tissue Eng, 2004, 10(11-12): 1707-15.
    [130]Banerjee NS, Chow LT, Broker TR. Retrovirus-mediated gene transfer to analyze HPV gene regulation and protein functions in organotypic "raft" cultures[J]. Methods Mol Med, 2005,119(187-202.
    [131]Hagensee ME, Olson NH, Baker TS, et al. Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids[J]. J Virol, 1994,68(7):4503-5.
    [132]Roden RB, Hubbert NL, Kirnbauer R, et al. Papillomavirus LI capsids agglutinate mouse erythrocytes through a proteinaceous receptor[J]. J Virol, 1995,69(8):5147-51.
    [133]Roden RB, Hubbert NL, Kirnbauer R, et al. Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition[J]. J Virol, 1996,70(5):3298-301.
    [134] Touze A, Coursaget P. In vitro gene transfer using human papillomavirus-like particles[J].Nucleic Acids Res, 1998,26(5): 1317-23.
    [135]Kawana K, Yoshikawa H, Taketani Y, et al. In vitro construction of pseudovirions of human papillomavirus type 16: incorporation of plasmid DNA into reassembled L1/L2 capsids[J]. J Virol, 1998, 72(12): 10298-300.
    [136]Bousarghin L, Combita-Rojas AL, Touze A, et al. Detection of neutralizing antibodies against human papillomaviruses (HPV) by inhibition of gene transfer mediated by HPV pseudovirions[J]. J Clin Microbiol, 2002,40(3):926-32.
    [l37]Unckell F, Streeck RE, and Sapp M. Generation and neutralization of pseudovirions of human papillomavirus type 33[J]. J Virol, 1997, 71(4):2934-9.
    [138]Stauffer Y, Raj K, Masternak K, et al. Infectious human papillomavirus type 18 pseudovirions[J]. J Mol Biol, 1998,283(3):529-36.
    [139]Roden RB, Greenstone HL, Kirnbauer R, et al. In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype[J]. J Virol, 1996, 70(9):5875-83.
    [140]Janda M, Ahlquist P. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae[J]. Cell, 1993,72(6):961-70.
    [141]Panavas T, Nagy PD. Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus[J]. Virology, 2003, 314(1):315-25.
    [142]Zhao KN, Frazer IH. Saccharomyces cerevisiae is permissive for replication of bovine papillomavirus type 1[J]. J Virol, 2002, 76(23): 12265-73.
    [143]Rossi JL, Gissmann L, Jansen K, et al. Assembly of human papillomavirus type 16 pseudovirions in Saccharomyces cerevisiae[J]. Hum Gene Ther, 2000,11 (8): 1165-76.
    [144]Angeletti PC, Kim K, Fernandes FJ, et al. Stable replication of papillomavirus genomes in Saccharomyces cerevisiae[J]. J Virol, 2002,76(7):3350-8.
    [145]Zhao KN, Frazer IH. Replication of bovine papillomavirus type 1 (BPV-1) DNA in Saccharomyces cerevisiae following infection with BPV-1 virions[J]. J Virol, 2002, 76(7):3359-64.
    [146]Leder C, Kleinschmidt JA, Wiethe C, et al. Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes[J]. J Virol, 2001,75(19):9201-9.
    [147]Mossadegh N, Gissmann L, Muller M, et al. Codon optimization of the human papillomavirus 11 (HPV 11) L1 gene leads to increased gene expression and formation of virus-like particles in mammalian epithelial cells[J]. Virology, 2004, 326(1):57-66.
    [148]Buck CB, Pastrana DV, Lowy DR, et al. Efficient intracellular assembly of papillomaviral vectors[J]. J Virol, 2004, 78(2):751-7.
    [149]Pastrana DV, Buck CB, Pang YY, et al. Reactivity of human sera in a sensitive,high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18[J].Virology,2004,321(2):205-16.
    [150]J萨and DW拉.分子克隆试验指南(第三版)[M].3 ed.2003:科学出版社.
    [151]Jordan M,Wurm F.Transfection of adherent and suspended cells by calcium phosphate[J].Methods,2004,33(2):136-43.
    [152]Fay A,Yutzy WHt,Roden RB,et al.The positively charged termini of L2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and DNA binding[J].J Virol,2004,78(24):13447-54.
    [153]Hoimgren SC,Patterson NA,Ozbun MA,et al.The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle[J].J Virol,2005,79(7):3938-48.
    [154]Jordan M,Schalihorn A,Wurm FM.Transfecting mammalian cells:optimization of critical parameters affecting calcium-phosphate precipitate formation[J].Nucleic Acids Res,1996,24(4):596-601.
    [155]Collier B,Oberg D,Zhao X,et al.Specific inactivation of inhibitory sequences in the 5' end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells[J].J Virol,2002,76(6):2739-52.
    [156]Chen XS,Garcea RL,Goldberg I,et al.Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16[J].Mol Cell,2000,5(3):557-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700