用户名: 密码: 验证码:
贝叶斯网建模技术及其在决策中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
决策问题往往具有一定的不确定性,其根源主要来自问题本身的模糊性、随机性,决策信息的不完备性、不精确性,人类认知能力的有限性以及主观认识和客观实际之间存在的差异性。这些不确定性使得决策的难度大大增加,因此,不确定环境下的决策理论与决策方法成为决策科学研究的重要内容之一。
     近年来,随着数学理论与人工智能技术的发展,出现了多种不确定性问题的处理方法,如证据理论、贝叶斯网、模糊集和粗糙集等。在这些方法中,贝叶斯网络是以概率论为数学基础的图形模式,具有直观的表达能力和强大的知识推理能力等诸多优越性,在不确定推理方面具有较强的优势,因此成为不确定理论研究的热点。
     本文针对贝叶斯网络存在学习效率不高、建模困难的缺陷,重点研究了贝叶斯网建模技术及其在管理决策中的应用,具体内容如下:
     (1) 综述了不确定性问题的分类,贝叶斯网的诞生发展过程和研究现状,贝叶斯网在管理决策及智能决策支持系统中的应用前景。阐述了贝叶斯网的结构和特点,常用的推理方法,以及贝叶斯网的各种扩展模型。
     (2) 研究了贝叶斯网的结构学习,提出了一种知识和数据融合的贝叶斯网结构学习方法。首先由专家给出对网络结构的信度分配,采用证据理论进行证据合成,合成后具有最高信度的结构被认为是正确的,然后再使用机器学习算法从专家选出的结构中求出最优的一个。这种方法利用专家知识剔除了大量无意义的网络结构,避免了学习算法的穷举搜索,加快了学习速度。
     (3) 研究了基于知识的建模理论,提出了基于案例和规则推理的贝叶斯网建模方法。将历史贝叶斯网模型作为案例保存到案例库中,设计了相似度和偏离度两个指标,当面临新的问题时,利用案例推理进行模型匹配,得到相同或相似的案例,并进行案例修正。如果案例推理没有结果,系统转向规则推理继续建模过程。这种方法将贝叶斯网作为整体进行复用,提高了贝叶斯网的建模效率。
     (4) 阐述了贝叶斯网的建模原则,建立了面向复杂问题的贝叶斯网建模流程。分为问题分析、模型设计和模型测试三个阶段。问题分析阶段通过对问题的分析,选择领域专家,对复杂的问题进行任务分解。模型设计阶段首先确定相关的变量,然后分别建模网络结构,确定节点的概率分布。最后用测试方法测试模型,修正错误,直到模型较为准确为止。同时还讨论了简化模型的方法。
     (5) 研究了定性贝叶斯网的特点,针对其推理过程不精确的缺点,提出了带权重的定性贝叶斯网,使用一个数值权重描述节点之间影响力的强弱,在推理时可以通过权重之间的运
Decision problems are always uncertain due to their ambiguity and randomicity, imperfection and nonproficiency of decision information, finity of human's cognitive abilities and otherness of subjective cognizance from objective realities. The existence of uncertainty raises the difficulty in making decisions. Therefore, decision theories and methods in uncertain circumstances is the frontier area in decision-science.
    In recent years, many of resolvents to uncertain problems have appeared such as evidence theory, Bayesian Network, fuzzy set and rough set with the development of mathematical theory and artificial intelligence. Among these methods, Bayesian Network has a good many advantages such as intuitionistic expression abilities and strong knowledge reasoning especially at uncertain reasoning which make it a hot topic in uncertain theory.
    Aiming at Bayesian Network's shortage of low study efficiency and difficult to be constructed, this dissertation mainly discusses Bayesian Network modeling techniques and its application in decision-making, including:
    (1) The dissertation summarizes the categories of uncertain problems, the development of Bayesian Network and research has been made on it, its prospect of being applied in management decision and intelligent decision support system. It also expatiates on Bayesian Network's structure and characteristics, reasoning methods and all kinds of expanding models of Bayesian Networks.
    (2) The structural learning methods of Bayesian Network are discussed. A constructing method of Bayesian Network combining knowledge with data is presented. Firstly, the experts assign belief of networks structure, which is combined by evidence theory. The structures with highest belief are considered as correct ones. Secondly, we select the best one from those structures given by the experts using a learning arithmetic. Eliminating insignificant structures of network by expert knowledge, this method can avoid mass blindly hunting and speed up study rate.
    (3) The knowledge-based modeling method of Bayesian Network is discussed. A modeling method based on case and rule reasoning is presented. By saving historical Bayesian models to case-base and designing two indexes: degree of similarity and degree of irrelevance, we can match models with case-based reasoning when encounter with a new problem, and get a same or similar case. If the cased-based reasoning proved to be resultless , the system will continue modeling procedure by rule-based reasoning .This method reuses Bayesian Network as a whole, thus to improve the modeling efficiency .
    (4) The Bayesian Network modeling principles are summarized, and the modeling course for
引文
[1] 李德毅,刘常昱,杜鹚等.不确定性人工智能.软件学报,2004,15(11):1583-1594.
    [2] 朱卫东.面向互联网基于证据理论的智能决策支持系统研究.合肥工业大学博士学位论文,2003.
    [3] 张少中.基于贝叶斯网的知识发现与决策应用研究.大连理工大学博士学位论文,2003.
    [4] Joseph Giarratano,Gary Riley著.印鉴,刘星成,汤庸译.专家系统原理与编程.北京:机械工业出版社.2000,5.
    [5] Zadeh L, A., Fuzzy sets. Information and Control, 1965(8): 338-353.
    [6] Zadeh L. A., Fuzzy sets as a basis for atheory ofpossibility. Fuzzy Sets and Systems, 1978, 1(1): 3-28.
    [7] 薛万欣.Bayesian网推理及应用研究.吉林大学博士学位论文,2002.
    [8] 王飞.Bayesian网学习算法的研究.吉林大学博士学位论文,2001.
    [9] Judea Pearl. Graphical Models for Probabilistic and Causal Reasoning. The Computer Science and Engineering Handbook, 1997.
    [10] Cooper. Probabilistic inference using belief networks is NP-hard. Artificial Intelligence. 1990(42): 393-405.
    [11] D. Paul and L. Michael. Approximating Probabilistic Inference in Bayesian Belief Networks is NP-hard. Artificial Intelligence, 1993, 60(1): 141-153.
    [12] M. P. Wellman, J. S. Breese, and R. P. Goldman. From knowledge bases to decision models. The Knowledge Engineering Review, 1992, 7(1): 35-53.
    [13] T. L. Dean, K. Kanazawa. A model for reasoning about persistence and causation. Computational Intelligence,(5): 142—150, 1989.
    [14] Yang Xiang, David Poole, and Michael P. Beddoes. Multiply sectioned Bayesian networks and junction forests for large knowledge-based systems. Computational Intelligence, 1993, 9(2): 171-220.
    [15] M. P. Wellman. Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence, 1990, 44: 257-303.
    [16] D. Koller, A. Pfeffer, Object-oriented Bayesian networks, in: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, 1997: 302-313.
    [17] D. Heckerman. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1997, 1(1): 79-119.
    [18] 林士敏,田凤占,陆玉昌.贝叶斯网的建造及其在数据采掘中的应用.清华大学学报(自然科学版),2001,41(1):49-52.
    [19] Heckerman D, Breese J, Rommelse K. Decision-theoretic troubleshooting. Communication of the ACM, 1995, 38(3): 49-57.
    [20] Skaanning C, Jensen F V. Printer Troubleshooting Using Bayesian Networks. Industrial and Engineering Application of Artificial Intelligence and Expert Systems. 2000, New Orleans, USA.
    [21] Deng R H, Lazar A A, Wang W G. A probabilistic Approach to Fault Diagnosis in Liinear Lightwave Networks. IEEE Journal on Selected Areas in Communications. 1993, 11(9): 1438-1448.
    [22] 张宏辉,唐锡宽.贝叶斯推理网络在大型旋转机械故障诊断中的应用.机械科学与技术,1996,25(2):43~46
    [23] Cristina C, Abigail G, Kurt V. Using Bayesian Networks to Manage Uncertainty in Student Modeling. User Modeling and User-Adapted Interaction. 2002, 12: 371-417.
    [24] 冀俊忠,刘椿年,江川等.贝叶斯网及其概率推理在智能教学中的应用.北京工业大学学报.2002,28(3):353-357.
    [25] Howard R T. Inference network for document retrieval. PhD dissertation. University of Massachusetts, Department of Computer and Information Science, 1991.
    [26] 阮彤,冯东雷,李京.基于贝叶斯网的信息过滤模型研究.计算机研究与发展.2002,39(12):1565-1571.
    [27] Fabio Crestani, Luis M. de Campos, Juan M. Fernádez-Luna, Juan F. Huete. A Multi-layered Bayesian Network Model for Structured Document Retrieval. ECSQARU 2003: 74-86.
    [28] S A Musman, L W Chang, L B Booker. Application of a Real-Time Control Strategy for Bayesian Belief Networks to Ship Classification Problem Solving. INTI. J. Pattern Recongnition and Artificial Intelligence. 1993, 7(3): 513-526.
    [29] 岳超源.决策理论与方法.北京:科学出版社.2003.
    [30] 马士华,林勇.供应链管理(第二版).北京:机械工业出版社.
    [31] 杨善林.智能决策方法与智能决策支持系统.北京:科学出版社.2005.
    [32] 史忠植.知识发现.北京.清华大学出版社,2002.169-193.
    [33] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Inc., San Mateo, CA. 1988.
    [34] 胡玉胜,涂序彦,崔晓瑜等.基于贝叶斯网的不确定性知识的推理方法.计算机集成制造系统-CIMS.2001,7(12):65-68.
    [35] R Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 1999, 113(1/2): 41-85.
    [36] N. L. Zhang, D. Poole. Exploiting causal independence in Bayesian network inference. Journal of Artificial Intelligence Research, pages 301-328, 1996.
    [37] F. G. Cozman. Generalizing variable elimination in Bayesian networks. Proceedings of the BERAMIA/SBIA Workshops, 2000, pages 21-26.
    [38] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, second edition, 2002.
    [39] Lauritzen, S. L., and Spiegelhalter, D. J., Local computations with probabilities on graphical structures and their application to expert systems, Journal of the Royal Statistical Society B, 50: 157—224, 1988.
    [40] Jensen, EV., Madsen, A.L., LAZY propagation: A junction tree inference algorithm based on lazy evaluation. Articial Intelligence 113, pages 203-245, 1999.
    [41] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide. International Journal of Approximate Reasoning, pages 225—263, 1996.
    [42] 田凤占,张宏伟,陆玉昌,石纯一.多模块贝叶斯网中推理的简化.计算机研究与发展,2003,40(8):1230-1237.
    [43] 刘启元,张聪,沈一栋.信度网近似推理算法(上).计算机科学,2001,28(1):70-73.
    [44] 刘启元,张聪,沈一栋.信度网近似推理算法(下).计算机科学,2001,28(2):111-114.
    [45] Neal R M. Probabilistic inference using Markov chain Monte Carlo methods.[Technical Report CRGTR-93-1]. Department of Computer Science, University of Toronto, 1993.
    [46] Pearl J. Addendum: Evidential Reasoning using stochastic simulation of causal models. Artificial Intelligence, 1987, 33.
    [47] C. Jensen, A. Kong, and U. Kjaerul. Blocking gibbs sampling in very large probabilistic expert systems. International Journal of Human Computer Studies. Special Issue on Real-World Applications of Uncertain Reasoning., pages 647-666, 1995.
    [48] Dagum P, Luby M. An Optimal Approximation for Bayesian Inference. Artificial Intelligence. 1993, 60: 141-153.
    [49] Fung R, Chang K-C. Weighting and integration evidence for stochastic simulation in Bayesian networks. In: Uncertainty in Artificial Intelligence 5,Elsevier, Amsterdam, The Netherlands, 1990:209-219.
    
    [50] U.N.Lerner. Hybrid Bayesian Networks for Reasoning about Complex Systems. PhD dissertation, Stanford University, 2002:168-172.
    
    [51 ] O. Bangs0 and P.-H. Wuillemin, Top-down construction and repetitive structures representation in Bayesian networks, in: Proceedings of the 13th International Florida Artificial Intelligence Research Society Conference, 2000: 282-286.
    
    [52] O. Bangs(?) and P.-H. Wuillemin, Object oriented Bayesian networks. A framework for top-down specification of large Bayesian networks with repetitive structures, Technical Report CIT-87.2-00-obphwl, Department of Computer Science, Aalborg University (2000).
    
    [53] S. Renooij. Qualitative Approaches to Quantifying Probabilistic Networks. Ph.D. Thesis, Institute for Information and Computing Sciences, Utrecht University, The Netherlands. 2001.
    
    [54] M.P. Wellman. Graphical inference in qualitative probabilistic networks. Networks, 1990. 20: 687-701.
    
    [55] Jensen, F., Jensen, F, V., Dittmer, S. From influence diagrams to junction trees. Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers, San Francisco, California, pp.367-373.
    
    [56] de Campos, L. M. and Huete, J. F. On the use of independence relationships for learning simplified belief networks. International Journal of Intelligent Systems, 1997,12, 495-522.
    
    [57] de Campos, L. M. and Huete, J. F. A new approach for learning belief networks using independence criteria. International Journal of Approximate Reasoning, 2000, 24,11-37.
    
    [58] Meek, C. Causal inference and causal explanation with background knowledge. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995,403-410.
    
    [59] Cooper, G. F. and Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9, 309-348.
    
    [60] Heckerman, D., Geiger, D, Chickering, D. M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995, 20, 197-243.
    
    [61] Geiger, D. and Heckerman, D. A characterisation of the Dirichlet distribution with application to learning Bayesian networks. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995, 196-207.
    
    [62] Ramoni, M. and Sebastiani, P. Learning Bayesian networks from incomplete databases. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, 1997, 401-408.
    [63] David, M, C. Learning Bayesian Networks from Data. PhD thesis. University of Califomia, 1996.
    [64] Bouckaert, R. R. Belief networks construction using the minimum description length principle. Lecture Notes in Computer Science, 747, 41-48.
    [65] Lam, W. and Bacchus, F. Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 1994, 10, 269-293.
    [66] Suzuki, J. A construction of Bayesian networks from databases based on the MDL principle. In Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, 1993, 266-273.
    [67] R. D. Robinson. Counting unlabeled acyclic digraphs[C]. In Proceedings of the fifth Australian Conference on Combinatorial Mathematics, 1976, 28-43.
    [68] Chickering, D. M., Geiger, D, Heckerman, D. Learning Bayesian networks: Search methods and experimental results[C]. In Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics, 1995, 112-128.
    [69] Larranaga, P, Poza, M, Yurramendi, Y, Murga, R., Kuijpers, C. Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996(18): 912-926.
    [70] 王君圣,李敏强.基于数据库信息构建贝叶斯网的G A方法[J].系统工程与电子技术.2000,22(9):55-57.
    [71] 刘大有,王飞,卢奕南等.基于遗传算法的Bayesian网结构学习研究[J].计算机研究与发展.2001,38(8):916-922.
    [72] de Campos, L. M., Fernández-Luna, J. M., Gánez, J. A., & Puerta, J. M. Ant colony optimization for learning Bayesian networks. International Journal of Approximate Reasoning, 2002, 31, 291-311.
    [73] 汪荣贵,张佑生,王浩等.改进学习贝叶斯网结构的MDL准则.计算机工程与应用.2002,8:207-208.
    [74] P. Spirtes, G. Glymour, and R. Seheines. Causation, Prediction, and Search. Springer-Verlag, New York, 1993.
    [75] J. Pearl and T. S. Verma. A theory of inferred causation. In KR'91: Principles of Knowledge Representation and Reasoning, pages 441-452, San Mateo, California, 1991. Morgan Kaufmann.
    [76] 薛万欣,刘大有,张弘.Bayesian网中概率参数学习方法.电子学报,2003,31(11):1686-1689.
    [77] 陆汝钤.世纪之交的知识工程与知识科学.北京:清华大学出版社.2001:420-437.
    [78] Shafer G. A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey, 1976.35-57.
    [79] 孙怀江、胡钟山、杨静宇,基于证据理论的多分类器融合方法研究,计算机学报,2001.3:231-235.
    [80] 杜文吉,谢维信,基于证据理论的模式识别算法,西安电子科技大学学报,1999.8:533-536.
    [81] 杨春,李怀祖,一个证据推理模型及其在专家意见综合中的应用,系统工程理论与实践,2001.4:43-48.
    [82] Mathew Richardson, Pedro Domingos. Building large knowledge bases by mass collaboration[R]. Technical Report 03-02-04, Department of CSE, University of Washington, Seattle, WA, 2003.
    [83] J.S.Breese. Construction of belief and decision networks. Computational Intelligence, 1992,8(4):624-647.
    [84] Haddawy, P. Generating Bayesian networks from probability logic knowledge bases. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI-94). 1994, 262-269.
    [85] Halpern J Y. An analysis of First-Order Logics of Probability. Artificial Intelligence. 1991, 46:311-350.
    [86] Daphne Koller, Avi Pfeffer. Learning probabilities for noisy first-order rules. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya, Japan, August 1997.
    [87] Fahiem B. Using First-Order Probability Logic for the Construction of Bayesian Networks. In Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, 1993:219-226.
    [88] Peter H, Robert A K. Principled Construction of Minimal Bayesian Networks form Probability Logic Knowledge Bases. http://citeseer.ist.psu.edu/72597.html.
    [89] D.Poole. Representing Bayesian networks within probabilistic horn abduction. In Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, 1991, 7:271-278.
    [90] 杨善林、倪志伟.机器学习与智能决策知识系统.北京:科学出版社.2004,5.
    [91] M.Baker and T. E.Boult, Pruning Bayesian networks for efficient computation, In: Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, July, Cambridge, Mass, pp: 257-264.
    [92] S. L. Lauritzen, A. P. Dawid, B. N. Larsen and H. G. Leimer. Independence Properties of Directed Markov Fields, Networks, 1990, 20: 491-506.
    [93] D. Geiger, T. Verma and J. Pearl. D-separation: From theorems to algorithms, In: Porceedings of the Fifth Annual Uncertainty in Artificial Intelligence, pp: 139-148.
    
    [94] N.L. Zhang and D. Poole. A simple approach to Bayesian network computations. Proceedings of the Tenth Biennial Canadian Artificial Intelligence Conference (AI-94), Banff, May 1994: 171-178
    
    [95] Chang, K., Fung, R. Refinement and coarsening of Bayesian networks. In Proceedings of Uncertainty in Artificial Intelligence 6, 1991, 435-445.
    
    [96] Wellman, M. P., Liu, C-L. State-space abstraction for anytime evaluation of probabilistic networks. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence, 1994, 567-574.
    
    [97] Ole J. Mengshoel, David C. Wilkins. Abstraction and Aggregation in Belief Networks. In AAAI97 Workshop on Abstractions, Decisions and Uncertainty, 1997.
    
    [98] Pradhan, M., Provan, G., Middleton, B. and Henrion, M. Knowledge Engineering for Large Belief Networks, In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence, pages 484-490, San Mateo, CA, 1994. Morgan Kaufmann Publishers, Inc.
    
    [99] Mahoney, S. and Laskey, K. Network Engineering for Complex Belief Networks, In: Proceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, 1996:389-396.
    
    [100] Kathryn Blackmond Laskey, Suzanne M. Mahoney. Network Fragments: Representing Knowledge for Construction Probabilistic Models. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, 1997: 334-341.
    
    [101] S. Renooij and C. Witteman. Talking probabilities: communicating probabilistic information with words and numbers. International Journal of Approximate Reasoning, 1999, 22:169 - 194.
    
    [102] L.C. Van der Gaag, S. Renooij, C.L.M. Witteman, etc. How to elicit many probabilities, in: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 1999: 647-654.
    
    [103] C. Witteman, S. Renooij. Evaluation of a verbal-numerical probability scale. International Journal of Approximate Reasoning. 2003, 33(2): 117-131.
    
    [104] Linda C.van der Gaaag, Silja Renooij. Probabilistic Networks as Probabilistic Forecasters. Proceedings of the Ninth Conference on Artificial Intelligence in Medicine in Europe, Springer Verlag, Berlin, LNAI 2780, pp. 294 - 298.
    
    [105] Kathryn Blackmond Laskey, Suzanne M. Mahoney. Network Engineering for Agile Belief Network Models. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(4):487-498.
    [106] 鄭景俗,廖述賢,張自立.基於模糊層級分析觀念及距離法模糊數排序評估武器系統.中華管理學報,2003,4(2):1-18.
    [107] 唐中君.个性化需求预测的基本原则研究.湖北经济学院学报.2005,3(4):101-105.
    [108] M.M.NAIM, P.Childerhouse, S.M.Disney, D.R.Towill. A supply chain diagnostic methodology: determining the vector of change. Computers & Industrial Engineering, 2002(43): 135-157.
    [109] Han-Ying Kao, Chia-Hui Huang, Han-Lin Li. Supply chain diagnostic with dynamic Bayesian networks. Computers & Industrial Engineering, 2005(49): 339-347.
    [110] 丁伟东,刘凯,贺国先.供应链风险研究.中国安全科学学报.2004,13(4):64-66.
    [111] 付玉,张存禄,黄培清,骆建文.基于案例推理的供应链风险估计方法.预测.2005,24(1):56-58.
    [112] Roshan R.Pai, Venkata R. Kallepalli, Reggie J. Caudill, MengChu Zhou. Methods Toward Supply Chain Risk Analysis. 2003 IEEE International Conference on Systems, Man and Cybernetics.2003, 5: 4560-4565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700