用户名: 密码: 验证码:
快速产前诊断13、X和Y染色体非整倍体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1筛选出天津汉族群体13、X和Y染色体上遗传信息含量高的短串联重复序列(short tandem repeat, STR)基因座,建立快速诊断13、X和Y染色体非整倍体的技术,为用STR基因座产前诊断13、X和Y染色体非整倍体提供实验依据。
     2建立快速产前诊断13、X和Y染色体非整倍体的技术,探讨定量荧光聚合酶链反应(quantitative fluorescence polymerase chain reaction, QF-PCR)扩增STR基因座在快速产前诊断中的临床应用价值。
     方法
     1根据文献报道选择13、X和Y染色体上30个基因座作为候选基因座,应用QF-PCR、毛细管电泳研究其在350例无亲缘关系天津汉族个体中的遗传多态性。ABI Prism GeneMapper v3.0软件分析数据,得出片段大小、峰面积、峰图等相关数据。直接计数法观察各基因座的等位基因频率和基因型频率,基因型频率的观察值和理论值用x2检验,验证是否符合Hardy-Weinberg平衡定律(P>0.05)。采用PowerStatsV12软件分析STR基因座的期望杂合度(expected heterozygosity, He)、观察杂合度(observed heterozygosity, Ho)、多态信息量(polymorphic information content, PIC)、个体识别率(power of discrimination, PD)、非父排除率(power of exclusion, PE)等群体遗传学数据。用SPSS17.0软件统计杂合子峰面积比值范围、峰面积比值均数±标准差(x±s)和95%可信区间(confidence interval, CI)。每个STR基因座测序2个纯合子样本,对比分析后确定其重复序列及重复次数。
     2QF-PCR扩增筛选出的高遗传信息量STR基因座,对362例外周血样本和452例产前诊断样本(包括373例羊水、79例绒毛)进行检测,并将结果与染色体核型分析结果比较。
     结果
     113、X和Y染色体STR基因座遗传多态性结果
     1.1根据易于扩增、结果稳定、重复性好、高信息量等标准,最终确定13号染色体D13S305、D13S631和D13S634基因座、X染色体HPRTB、DXS6803和DXS6809基因座、Y染色体DYS19、DYS390和DYS393基因座为本研究的基因座。
     1.2350例天津汉族人群中13号染色体D13S305、D13S631和D13S634基因座的重复序列为CTTT、ATCT和AAGA,分别发现11、7和11个等位基因,42、22和29种基因型。基因型分布经x2检验,符合Hardy-Weinberg平衡定律(P>0.05)。3个基因座的He分别为0.833、0.754、0.796,Ho为0.809、0.714、0.757,PIC为0.810、0.714、0.765,PD为0.948、0.893、0.927,PE为0.615、0.451、0.522。
     1.3150例天津汉族女性中X染色体HPRTB、DXS6803和DXS6809基因座的重复序列为TCTA、GATA和ATCT,分别发现10、6和10个等位基因,22、12和29种基因型。基因型分布经x2检验,符合Hardy-Weinberg平衡定律(P>0.05)。3个基因座的He分别为0.748、0.649、0.806,Ho为0.607、0.700、0.713,PIC为0.706、0.599、0.775,PD为0.894、0.814、0.931,PE为0.299、0.428、0.449。
     1.4200例天津汉族男性中Y染色体DYS19、DYS390和DYS393基因座的重复序列为TAGA、TCTA和TATC,分别发现5、6和6个等位基因,基因多样性(gene diversity, GD)为0.743、0.731、0.634。
     1.513号染色体D13S305、D13S631、D13S634基因座和X染色体HPRTB、 DXS6803、DXS6809基因座杂合子峰面积比值范围介于0.68~1.49之间,峰面积比值x±s为1.09±0.18,95%CI为1.08~1.10。
     2基因诊断和产前基因诊断染色体非整倍体结果
     2.1基因诊断结果
     362例外周血样本QF-PCR均扩增成功。352例样本未见异常,3例47,XXY、4例45,X、1例47,XYY、1例46,XY女性和1例45,X/47,XYY (嵌合比例60%)得到诊断。与染色体核型分析结果相比,360例样本结果一致,2例嵌合体因为嵌合比例较低,分别为6%和5%,未能检出。
     2.2产前基因诊断结果
     2.2.1452例产前诊断样本,均成功检测出胎儿性别,包括219例男性胎儿和233例女性胎儿,与染色体核型分析结果相符。
     2.2.2D13S305、D13S631、D13S634、HPRTB、DXS6803、DXS6809、DYS19、DYS390和DYS393基因座分别有20、12、12、37、13、35、35、19和18例样本扩增失败。统计数据发现共有415例样本9个基因座均扩增成功,扩增的成功率为91.81%(415/452)。
     2.2.3D13S305、D13S631、D13S634、HPRTB、DXS6803和DXS6809基因座正常杂合子峰面积比值范围介于0.70-1.48之间,峰面积比值x±s为1.12±0.18,95%CI为1.10~1.14。
     2.2.4扩增成功的样本中发现3例QF-PCR结果异常,包括1例13-三体、1例47,XXY和1例45,X,其余412例未见异常,QF-PCR结果与染色体核型分析相符。
     2.3QF-PCR扩增STR基因座诊断13、X和Y染色体非整倍体的灵敏度为86.67%(13/15),特异度为100%(762/762)。
     结论
     1本研究显示D13S305、D13S631、D13S634、HPRTB、DXS6803、DXS6809、 DYS19、DYS390和DYS393基因座在天津汉族群体具有较高的杂合度和多态信息量,是13、X和Y染色体良好的遗传标记。
     2应用QF-PCR扩增13、X和Y染色体上9个STR基因座基因诊断和产前基因诊断13、X和Y染色体非整倍体结果准确,方法简便、快速,在临床上有广阔的应用前景。
Objective
     1To screen out polymorphic short tandem repeat (STR) loci on chromosome13, X and Y in Tianjin Han population of China and set up a method to diagnose chromosome aneuploidies and provide basic data for using STR loci in prenatal diagnosis of aneuploidies accurately and rapidly.
     2To establish a method for prenatal diagnosis of aneuploidies involving chromosome13, X and Y and discuss the clinical value of quantitative fluorescence polymerase chain reaction (QF-PCR) in rapid prenatal diagnosis.
     Methods
     1According to the literature we chose30loci on chromosome13, X and Y as candidate loci. QF-PCR and capillary electrophoresis was applied to350unrelated individuals of Tianjin Han population of China. The relevant data were analyzed by ABI Prism GeneMapper v3.0software. Allelic frequencies and genotype frequencies were calculated by direct counting. The frequencies of the genotypes were checked using Chi-square test to verify Hardy-Weinberg Equilibrium (P>0.05). Genetic polymorphisms data were calculated by PowerStatsV12software. The ratio scopes of heterozygote peak areas, the average peak areas ratio and95%confidence interval (CI) were calculated using SPSS17.0software. Two alleles of each locus were sequenced for confirmation of repeat sequence and repeat number.
     2Polymorphic loci located on chromosome13, X and Y were used to examine362peripheral blood samples and452prenatal diagnosis samples (including373cases of amniotic fluid and79cases of villi) by QF-PCR. The results were compared with karyotype analysis.
     Results
     1The polymorphisms of STR loci on chromosome13, X and Y
     1.1Based on preliminary experiments we finally chose D13S305, D13S631and D13S634markers on chromosome13, HPRTB, DXS6803and DXS6809markers on chromosome X, DYS19, DYS390and DYS393markers on chromosome Y for the loci of the present study.
     1.2The repeat sequence of D13S305, D13S631and D13S634locus was CTTT, ATCT and AAGA.11,7and11alleles were found for each locus. No significant deviations from the Hardy-Weinberg equilibrium were observed in these three STR markers (P>0.05). The He of these three STR loci was0.833,0.754,0.796. The Ho was0.809,0.714,0.757. The PIC was0.810,0.714,0.765. The PD was0.948,0.893,0.927. The PE was0.615,0.451,0.522.
     1.3The repeat sequence of HPRTB, DXS6803and DXS6809locus was TCTA, GATA and ATCT.10,6and10alleles were found for each locus. No significant deviations from the Hardy-Weinberg equilibrium were observed in these three STR markers (P>0.05). The He of these three STR loci was0.748,0.649,0.806. The Ho was0.607,0.700,0.713. The PIC was0.706,0.599,0.775. The PD was0.894,0.814,0.931. The PE was0.299,0.428,0.449.
     1.4The repeat sequence of DYS19, DYS390and DYS393locus was TAGA, TCTA and TATC.5,6and6alleles were found for each locus. The gene diversity (GD) values for each locus were0.743,0.731,0.634.
     1.5Combined six markers on chromosome13and X, the ratio scope of heterozygote peak areas was0.68~1.49. The average peak area ratio was1.09±0.18. The95%CI was1.08-1.10.
     2Genetic diagnosis and prenatal gene diagnosis of chromosome aneuploidy
     2.1The genetic diagnosis results
     362peripheral blood samples were successfully amplified.352samples gave a normal QF-PCR results and3cases of47,XXY,4cases of45,X,1case of47,XYY,1female with karyotype46,XY and1mosaic case were diagnosed correctly. Two mosaic cases failed to diagnose because of the low percentage of mosaicism.
     2.2The prenatal gene diagnosis results
     2.2.1Fetal sexing was successfully achieved in all cases and the results were in consistent with the chromosome karyotype. There were219male fetuses and233female fetuses.
     2.2.2There were20,12,12,13,35,35,37,19and18cases failed to amplify for each nine locus. The overall success rate was91.81%(415/452).
     2.2.3Combined six markers on chromosome13and X, the ratio scope of heterozygote peak areas was0.70~1.48. The average peak area ratio was1.12±0.18. The95%CI was1.10-1.14.
     2.2.41cases of trisomy13,1case of47,XXY and1case of45.X were detected by QF-PCR. Other412samples were normal and the results were in accordance with karyotype analysis.
     2.3The sensitivity and specificity of QF-PCR were86.67%(13/15) and100%(762/762).
     Conelusions
     1This research showed that D13S305, D13S631and D13S634markers on chromosome13, HPRTB, DXS6803and DXS6809markers on chromosome X, DYS19, DYS390and DYS393markers on chromosome Y were highly polymorphic in Tianjin Han population of China. They are good genetic markers on chromosome13,X and Y.
     2QF-PCR amplifying STR loci is a sensitive, specific, simple and rapid method for prenatal diagnosis of chromosome aneuploidies. It has a broad application prospect in clinic.
引文
[1]中华人民共和国卫生部.中国出生缺陷防治报告(2012)[R].北京:中华人民共和国卫生部,2012:
    [2]Diego-Alvarez D, Garcia-Hoyos M, Trujillo MJ, et al. Application of quantitative fluorescent PCR with short tandem repeat markers to the study of aneuploidies in spontaneous miscarriages [J]. Hum Reprod,2005,20(5):1235-1243.
    [3]Boormans EM, Birnie E, Bilardo CM, et al. Karyotyping or rapid aneuploidy detection in prenatal diagnosis? The different views of users and providers of prenatal care [J]. BJOG,2009,116(10):1396-1399.
    [4]Faas BH, Cirigliano V, Bui TH. Rapid methods for targeted prenatal diagnosis of common chromosome aneuploidies [J]. Semin Fetal Neonatal Med,2011,16(2): 81-87.
    [5]Iliopoulos D, Sekerli E, Vassiliou G, et al. Patau syndrome with a long survival (146 months):a clinical report and review of literature [J]. Am J Med Genet A,2006, 140(1):92-93.
    [6]Aiassa D, Bosch B, Castellano M. Turner's syndrome 45,X/46Xdel(X)(q21):a case report [J]. Arch Argent Pediatr,2013,111(1):e21-e23.
    [7]Aksglaede L, Juul A. Testicular function and fertility in men with Klinefelter syndrome:a review [J]. Eur J Endocrinol,2013,168(4):R67-R76.
    [8]Cirigliano V, Voglino G, Ordonez E, et al. Rapid prenatal diagnosis of common chromosome aneuploidies by QF-PCR, results of 9 years of clinical experience [J]. Prenat Diagn,2009,29(1):40-49.
    [9]Papoulidis I, Siomou E, Sotiriadis A, et al. Dual testing with QF-PCR and karyotype analysis for prenatal diagnosis of chromosomal abnormalities. Evaluation of 13,500 cases with consideration of using QF-PCR as a stand-alone test according to referral indications[J]. Prenat Diagn,2012,32(7):680-685.
    [10]Tariq MA, Ullah O, Riazuddin SA, et al. Allele frequency distribution of 13 X-chromosomal STR loci in Pakistani population [J]. Int J Legal Med,2008,122(6): 525-528.
    [11]Nadeem A, Babar ME, Hussain M, et al. Development of pentaplex PCR and genetic analysis of X chromosomal STRs in Punjabi population of Pakistan[J]. Mol Biol Rep,2009,36(7):1671-1675.
    [12]Mansfield ES. Diagnosis of Down syndrome and other aneuploidies using quantitative polymerase chain reaction and small tandem repeat polymorphisms[J]. Hum Mol Genet,1993,2(1):43-50.
    [13]Hills A, Donaghue C, Waters J, et al. QF-PCR as a stand-alone test for prenatal samples:the first 2 years'experience in the London region[J]. Prenat Diagn,2010, 30(6):509-517.
    [14]Cirigliano V, Voglino G, Canadas MP, et al. Rapid prenatal diagnosis of common chromosome aneuploidies by QF-PCR. Assessment on 18,000 consecutive clinical samples[J]. Mol Hum Reprod,2004,10(11):839-846.
    [15]Quaife R, Wong LF, Tan SY, et al. QF-PCR-based prenatal detection of aneuploidy in a southeast Asian population [J]. Prenat Diagn,2004,24(6):407-413.
    [16]Andonova S, Vazharova R, Dimitrova V, et al. Introduction of the QF-PCR analysis for the purposes of prenatal diagnosis in Bulgaria--estimation of applicability of 6 STR markers on chromosomes 21 and 18 [J]. Prenat Diagn,2004,24(3): 202-208.
    [17]Nasiri H, Noori-Dalooi MR, Dastan J, et al. Investigation of QF-PCR application for rapid prenatal diagnosis of chromosomal aneuploidies in Iranian population [J]. Iran J Pediatr,2011,21(1):15-20.
    [18]Jain S, Panigrahi I, Sheth J, et al. STR markers for detecting heterogeneity in Indian population [J]. Mol Biol Rep,2012,39(1):461-465.
    [19]史云芳,李晓洲,李岩,等.应用D21S11、D21S1440和Penta D短串联重复序列诊断唐氏综合征[J].中华医学遗传学杂志,2012,29(4):443-446.
    [20]孙立娟.QF-PCR扩增D18S53、D18S59及D18S4883个STR基因座产前诊断ES[D].天津:天津医科大学,2011:
    [21]郑秀芬.法医DNA分析[M].北京:中国人民公安大学出版社,2002:383.
    [22]Bar W, Brinkmann B, Budowle B, et al. DN A recommendations. Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. International Society for Forensic Haemogenetics[J]. Int J Legal Med,1997, 110(4):175-176.
    [23]Edwards A, Civitello A, Hammond HA, et al. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats[J]. Am J Hum Genet,1991, 49(4):746-756.
    [24]Alford RL, Hammond HA, Coto I, et al. Rapid and efficient resolution of parentage by amplification of short tandem repeats[J]. Am J Hum Genet,1994,55(1): 190-195.
    [25]Pupko T, Graur D. Evolution of microsatellites in the yeast Saccharomyces cerevisiae:role of length and number of repeated units [J]. J Mol Evol,1999,48(3): 313-316.
    [26]Levinson G, Gutman GA. Slipped-strand mispairing:a major mechanism for DNA sequence evolution [J]. Mol Biol Evol,1987,4(3):203-221.
    [27]Darvasi A, Kerem B. Deletion an d insertion mutation in short tandem repeats in the coding regions of hunmn genes[J]. Eur J Hum Genet,1995,3(1):14-20.
    [28]高雅,李生斌.STR遗传多态性研究中样本数量对等位基因检出数量的影响[J].遗传,2008,30(3):313-320.
    [29]张永吉,李松花,段洪瑞.中国朝鲜族六个Y染色体短串联重复基因座遗传多态性的研究[J].中华医学遗传学杂志,2012,29(1):82-86.
    [30]高树辉,乔可,李生斌.云南怒族X染色体5个STR基因座遗传多态性[J].法医学杂志,2006,22(4):277-280.
    [31]陈艳炯,陈峰,辛娜等.中国甘肃裕固族X-STR遗传多态性及其应用研究[J].遗传,2008,30(9):1143-1152.
    [32]Gill P, Urquhart A, Millican E, et al. A new method of STR interpretation using inferential logic--development of a criminal intelligence database[J]. Int J Legal Med, 1996,109(1):14-22.
    [33]Putzova M, Pecnova L, Dvorakova L,et al. OmniPlex--a new QF-PCR assay for prenatal diagnosis of common aneuploidies based on evaluation of the heterozygosity of short tandem repeat loci in the Czech population[J]. Prenat Diagn, 2008,28(13):1214-1220.
    [34]张秀华,范雪晖,吴登俊.ABI310遗传分析仪自动检测多重聚合酶链反应扩增短串联重复序列产物及数据分析的应用特征[J].中国组织工程研究与临 床康复,2008,12(35):6859-6862.
    [35]Hill CR, Kline MC, Mulero JJ, et al. Concordance study between the AmpFlSTR MiniFiler PCR amplification kit and conventional STR typing kits[J]. J Forensic Sci,2007,52(4):870-873.
    [36]Cho EH, Park BY, Kang YS, et al. Validation of QF-PCR in a Korean population [J]. Prenat Diagn,2009,29(3):213-216.
    [37]Onay H, Ugurlu T, Aykut A, et al. Rapid prenatal diagnosis of common aneuploidies in amniotic fluid using quantitative fluorescent polymerase chain reaction [J]. Gynecol Obstet Invest,2008,66(2):104-110.
    [38]Baig S, Ho SS, Ng BL, et al. Development of quantitative-fluorescence polymerase chain reaction for the rapid prenatal diagnosis of common chromosomal aneuploidies in 1,000 samples in Singapore [J]. Singpore Med J,2010,51(4): 343-348.
    [39]童大跃,伍新尧,高飞,等.中国南方汉族人群D13S631等四个STR基因座遗传多态性[J].法医学杂志,2008,24(1):47-48.
    [40]Szibor R, Edelmann J, Hering S, et al. Cell line DNA typing in forensic genetics--the necessity of reliable standards [J]. Forensic Sci Int,2003,138(1-3): 37-43.
    [41]李莉,赵书民,张素华,等.X染色体上16个STR基因座的分型检测和多态性分析[J].法医学杂志,2012,28(1):36-40.
    [42]Gole L, Adrianne F, Ee AM, et al. Refining quantitative fluorescent polymerase chain reaction for prenatal detection of X chromosomal anomalies in the major Southeast Asian populations[J]. Singapore Med J,2008,49(12):1025-1028.
    [43]Lim EJ, Lee HY, Sim JE, et al. Genetic polymorphism and haplotype analysis of 4 tightly linked X-STR duos in Koreans[J]. Croat Med J,2009,50(3):305-312.
    [44]Gomes I, Prinz M, Pereira R, et al. Genetic analysis of three US population groups using an X-chromosomal STR decaplex [J]. Int J Legal Med,2007,121(3): 198-203.
    [45]王新杰,许欣,吴洪浦,等.潍坊汉族男性27个X-STR基因座遗传多态性[J].法医学杂志,2010,26(4):301-303.
    [46]刘秋玲,吕德坚,赵虎等.用荧光复合扩增体系检测5个X染色体短串联 重复序列基因座的多态性[J].中山大学学报(医学科学版),2009,30(4):404-407.
    [47]李虹,蒋朴,黄海,等.重庆地区汉族人群X染色体4个STR基因座的遗传多态性及其法医学意义[J].重庆医科大学学报,2010,35(4):553-556.
    [48]Kayser M, Caglia A, Corach D, et al. Evaluation of Y-chromosomal STRs:a multicenter study[J]. Int J Legal Med,1997,110(3):125-133,141-149.
    [49]White PS, Tatum OL, Deaven LL, et al. New, male-specific microsatellite markers from the human Y chromosome [J]. Genomics,1999,57(3):433-437.
    [50]Roewer L, Krawczak M, Willuweit S, et al. Online reference database of European Y-chromosomal short tandem repeat (STR) haplotypes [J]. Forensic Sci Int, 2001,118(2-3):106-113.
    [51]李长征,刘伟伟,崔文,等.济宁地区汉族人群16个Y-STR基因座遗传多态性调查分析[J].济宁医学院学报,2010,33(5):362-364.
    [52]石美森,百茹峰,傅博.山西汉族17个Y-STR基因座遗传多态性及遗传关系[J].遗传,2011,33(3):228-238.
    [53]鲁涤,袁丽,杨雪.北京汉族群体17个Y-STR基因座遗传多态性[J].中国法医学杂志,2010,25(6):432-433.
    [54]张玉红,贾东涛,韩海军,等.南通汉族群体16个Y-STR基因座遗传多态性[J].中国法医学杂志,2008,23(3):197-198.
    [55]宋兴勃,范红,应斌武,等.成都地区汉族人群17个Y短串联重复序列基因座遗传多态性分析[J].南方医科大学学报,2009,29(10):1973-1976.
    [56]王克杰,武红艳,杨卫红.河南汉族人群16个Y-STR基因座遗传多态性[J].中国法医学杂志,2010,25(2):112-113.
    [57]于卫建,叶萍,孟庆丽,等。辽宁汉族人群11个Y-STR基因座遗传多态性[J].中国法医学杂志,2009,24(2):119-120.
    [58]王永在,王勇,黄太宇,等.内蒙古汉族人群17个Y-STR基因座遗传多态性[J].中国法医学杂志,2009,24(2):117-118.
    [59]孙大成,孙善永,唐华巍,等.青岛地区汉族人群11个Y-STR基因座遗传多态性[J].法医学杂志,2009,25(5):384-385.
    [60]Adinolfi M, Pertl B, Sherlock J. Rapid detection of aneuploidies by microsatellite and the quantitative fluorescent polymerase chain reaction[J]. Prenat Diagn,1997,17(13):1299-1311.
    [61]Mann K, Fox SP, Abbs SJ, et al. Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis[J]. Lancet,2001,358(9287): 1057-1061.
    [62]Shaffer LG, Bui TH. Molecular cytogenetic and rapid aneuploidy detection methods in prenatal diagnosis[J]. Am J Med Genet C Semin Med Genet,2007, 145C(1):87-98.
    [63]Lim AS, Lim TH, Hess MM, et al. Rapid aneuploidy screening with fluorescence in-situ hybridisation:is it a sufficiently robust stand-alone test for prenatal diagnosis? [J]. Hong Kong Med J,2010,16(6):427-433.
    [64]Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification [J]. Nucleic Acids Res,2002,30(12):e57.
    [65]Van Opstal D, Boter M, de Jong D, et al. Rapid aneuploidy detecction with multiplex ligation-dependent probe amplification:a prospective study of 4000 amniotic fluid samples[J]. Eur J Hum Genet,2009,17(1):112-121.
    [66]Gerdes T, Kirchhoff M, Lind AM, et al. Multiplex ligation-dependent probe amplification (MLPA) in prenatal diagnosis-experience of a large series of rapid testing for aneuploidy of chromosomes 13,18,21, X, and Y [J]. Prenat Diagn,2008, 28(12):1119-1125.
    [67]Rius M, Obradors A, Daina G, et al. Reliability of short comparative genomic hybridization in fibroblasts and blastomeres for a comprehensive aneuploidy screening:first clinical application [J]. Hum Reprod,2010,25(7):1824-1835.
    [68]Darilek S, Ward P, Pursley A, et al. Pre- and postnatal genetic testing by array-comparative genomic hybridization:genetic counseling perspectives [J]. Genet Med,2008,10(1):13-18.
    [69]Vialard F, Molina Gomes D, Leroy B, et al. Array comparative genomic hybridization in prenatal diagnosis:another experience [J]. Fetal Diagn Ther,2009, 25(2):277-284.
    [70]Gross SJ, Bajaj K, Garry D, et al. Rapid and novel prenatal molecular assay for detecting aneuploidies and microdeletion syndromes [J]. Prenat Diagn,2011,31(3): 259-266.
    [71]Shaffer LG, Bejjani BA. Medical applications of array CGH and the transformation of clinical cytogenetics [J]. Cytogenet Genome Res,2006,115(3-4): 303-309.
    [72]ACOG Committee Opinion No.446:array comparative genomic hybridization in prenatal diagnosis[J]. Obstet Gynecol,2009,114(5):1161-1163.
    [73]Nicolini U, Lalatta F, Natacci F, et al. The introduction of QF-PCR in prenatal diagnosis of fetal aneuploidies:time for reconsideration [J]. Hum Reprod Update, 2004,10(6):541-548.
    [74]许涓涓,杜娟,郑陈光,等.单管多重荧光定量PCR技术用于染色体非整倍体异常的产前诊断[J].中华妇产科杂志,2010,45(11):865-867.
    [75]梁丽,廖灿,潘敏,等.荧光定量聚合酶链反应技术快速产前诊断常见染色体非整倍体的临床应用[J].中华围产医学杂志,2012,15(2):106-112.
    [76]杜娟,许涓涓,郑陈光,等.STR新位点产前诊断21、18、13三体综合征[J].中国优生与遗传杂志,2010,18(6):31-34.
    [77]邓玉清,肖晓素,刘晓翌,等.多重定量荧光PCR快速产前诊断常见染色体非整倍体疾病[J].华中科技大学学报(医学版),2009,38(3):347-350.
    [78]江帆,丁渭,王霞,等.多重定量荧光PCR快速检测染色体非整倍体疾病[J].检验医学与临床,2012,9(15):1846-1847.
    [79]Mann K, Donaghue C, Fox SP, et al. Strategies for the rapid prenatal diagnosis of chromosome aneuploidy [J]. Eur J Hum Genet,2004,12(11):907-915.
    [80]Mann K, Ogilvie CM. QF-PCR:application, overview and review of the literature [J]. Prenat Diagn,2012,32(4):309-314.
    [81]Ogilvie CM, Donaghue C, Fox SP, et al. Rapid prenatal diagnosis of aneuploidy using quantitative fluorescence-PCR (QF-PCR) [J]. J Histochem Cytochem,2005,53(3):285-288.
    [82]唐宁,蔡稔,梁听,等.多重定量荧光PCR在21-三体及性染色体多倍体畸变诊断中的应用[J].广西医学,2007,29(11):1666-1668.
    [83]Stojilkovic-Mikic T, Mann K, Docherty Z, et al. Maternal cell contamination of prenatal samples assessed by QF-PCR genotyping [J]. Prenat Diagn,2005,25(1): 79-83.
    [84]Donaghue C, Mann K, Docherty Z, et al. Detection of mosaicism for primary trisomies in prenatal samples by QF-PCR and karyotype analysis[J]. Prenat Diagn, 2005,25(1):65-72.
    [85]张慧敏,孙筱放,孔舒,等.短串联重复序列聚合酶链反应技术快速诊断常见染色体三体的价值[J].中国实用妇科与产科杂志,2008,24(8):611-613.
    [86]Cirigliano V, Ejarque M, Fuster C, et al. X chromosome dosage by quantitative fluorescent PCR and rapid prenatal diagnosis of sex chromosome aneuploidies[J]. Mol Hum Reprod,2002,8(11):1042-1045.
    [87]Cirigliano V, Sherlock J, Conway G, et al. Rapid detection of chromosomes X and Y aneuploidies by quantitative fluorescent PCR [J]. Prenat Diagn,1999,19(12): 1099-1103.
    [88]Deutsch S, Choudhury U, Merla G, et al. Detection of aneuploidies by paralogous sequence quantification [J]. J Med Genet,2004,41(12):908-915.
    [89]Sparkes R, Johnson JA, Langlois S, et al. New molecular techniques for the prenatal detection of chromosomal aneuploidy [J]. J Obstet Gynaecol Can,2008, 30(7):617-621,622-627.
    [90]Boormans EM, Birnie E, Oepkes D, et al. Individualized choice in prenatal diagnosis:the impact of karyotyping and standalone rapid aneuploidy detection on quality of life [J]. Prenat Diagn,2010,30(10):928-936.
    [91]Boormans EM, Birnie E, Oepkes D, et al. The impact of rapid aneuploidy detection (RAD) in addition to karyotyping versus karyotyping on maternal quality of life [J]. Prenat Diagn,2010,30(5):425-433.
    [92]Lo YM, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum:implications for noninvasive prenatal diagnosis [J]. Am J Hum Genet,1998,62(4):768-775.
    [93]Deng ZH, Li DC. Progress of research on biochemistry characteristics of cell-free fetal DNA in maternal plasma and its application[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2007,24(3):314-318.
    [94]Chan KC, Zhang J, Hui AB, et al. Size distributions of maternal and fetal DNA in maternal plasma[J]. Clin Chem,2004,50(1):88-92.
    [95]Lo YM, Zhang J, Leung TN, et al. Rapid clearance of fetal DNA from maternal plasma[J]. Am J Hum Genet,1999,64(1):218-224.
    [96]Lo YM. Recent developments in fetal nucleic acids in maternal plasma: implications to noninvasive prenatal fetal blood group genotyping[J]. Transfus Clin Biol,2006,13(1-2):50-52.
    [97]高慧双,苏恩本,陈子庆,等.10例孕妇血浆中胎儿游离DNA-STR位点检测分析[J].南京医科大学学报(自然科学版),2008,28(4):522-526.
    [98]Benn P, Borrell A, Cuckle H, et al. Prenatal Detection of Down Syndrome using Massively Parallel Sequencing (MPS):a rapid response statement from a committee on behalf of the Board of the International Society for Prenatal Diagnosis, 24 October 2011 [J]. Prenat Diagn,2012,32(1):1-2.
    [99]Fan HC, Blumenfeld YJ, Chitkara U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood [J]. Proc Natl Acad Sci USA,2008,105(42):16266-16271.
    [100]Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma [J]. Proc Natl Acad Sci U S A,2008,105(51):20458-20463.
    [101]Bianchi DW, Platt LD, Goldberg JD, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing [J]. Obstet Gynecol,2012,119(5): 890-901.
    [102]Palomaki GE, Deciu C, Kloza EM, et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome:an international collaborative study [J]. Genet Med,2012,14(3):296-305.
    [103]Lau TK, Chen F, Pan X, et al. Noninvasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing [J]. J Matern Fetal Neonatal Med,2012,25(8):1370-1374.
    [104]Fairbrother G, Johnson S, Musci TJ, et al. Clinical experience of noninvasive prenatal testing with cell-free DNA for fetal trisomies 21,18, and 13, in a general screening population[J]. Prenat Diagn,2013,15:1-5.
    [105]Jiang F, Ren J, Chen F, et al. Noninvasive Fetal Trisomy (NIFTY) test:an advanced noninvasive prenatal diagnosis methodology for fetal autosomal and sex chromosomal aneuploidies [J]. BMC Med Genomics,2012,5:57
    [106]李玉芝,任景慧,林琳华,等.大规模并行基因组测序技术应用于无创产前诊断染色体非整倍体的研究[J].华中科技大学学报(医学版),2012,41(4):475-480.
    [107]Sifakis S, Papantoniou N, Kappou D, et al. Noninvasive prenatal diagnosis of Down syndrome:current knowledge and novel insights. J Perinat Med,2012,40(4): 319-327.
    [1]Boormans EM, Birnie E, Bilardo CM, et al. Karyotyping or rapid aneuploidy detection in prenatal diagnosis? The different views of users and providers of prenatal care [J]. BJOG,2009,116(10):1396-1399.
    [2]Faas BH, Cirigliano V, Bui TH. Rapid methods for targeted prenatal diagnosis of common chromosome aneuploidies[J]. Semin Fetal Neonatal Med,2011,16(2): 81-87.
    [3]Shaffer LG, Bui TH. Molecular cytogenetic and rapid aneuploidy detection methods in prenatal diagnosis[J]. Am J Med Genet C Semin Med Genet,2007, 145C(1):87-98.
    [4]Jia CW, Wang SY, Ma YM, et al. Fluorescence in situ hybridization in uncultured amniocytes for detection of aneyploidy in 4 210 prenatal cases [J]. Chin Med J(Engl),2011,124(8):1164-1168.
    [5]Mir P, Rodrigo L, Mateu E, et al. Improving FISH diagnosis for preimplantation genetic aneuploidy screening [J]. Hum Reprod,2010,25(7):1812-1827.
    [6]Lim AS, Lim TH, Hess MM, et al. Rapid aneuploidy screening with fluorescence in-situ hybridisation:is it a sufficiently robust stand-alone test for prenatal diagnosis? [J]. Hong Kong Med J,2010,16(6):427-433.
    [7]Bishop R. Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance [J]. Bioscience Horizons,2010,3(1): 85-95.
    [8]Diego-Alvarez D, Garcia-Hoyos M, Trujillo MJ, et al. Application of quantitative fluorescent PCR with short tandem repeat markers to the study of aneuploidies in spontaneous miscarriages [J]. Hum Reprod,2005,20(5):1235-1243.
    [9]Cirigliano V, Voglino G, Ordonez E, et al. Rapid prenatal diagnosis of common chromosome aneuploidies by QF-PCR, results of 9 years of clinical experience [J]. Prenat Diagn,2009,29(1):40-49.
    [10]Hills A, Donaghue C, Waters J, et al. QF-PCR as a stand-alone test for prenatal samples:the first 2 years'experience in the London region[J]. Prenat Diagn,2010, 30(6):509-517.
    [11]Donaghue C, Mann K, Docherty Z, et al. Detection of mosaicism for primary trisomies in prenatal samples by QF-PCR and karyotype analysis[J]. Prenat Diagn, 2005,25(1):65-72.
    [12]Zimmermann BG, Grill S, Holzgreve W, et al. Digital PCR:a powerful new tool for noninvasive prenatal diagnosis?[J]. Prenat Diagn,2008,28(12):1087-1093.
    [13]Van Opstal D, Boter M, de Jong D, et al. Rapid aneuploidy detecction with multiplex ligation-dependent probe amplification:a prospective study of 4 000 amniotic fluid samples[J]. Eur J Hum Genet,2009,17(1):112-121.
    [14]Gerdes T, Kirchhoff M, Lind AM, et al. Multiplex ligation-dependent probe amplification (MLPA) in prenatal diagnosis-experience of a large series of rapid testing for aneuploidy of chromosomes 13,18,21, X, and Y[J]. Prenat Diagn,2008, 28(12):1119-1125.
    [15]Kooper AJ, Faas BH, Feuth T, et al. Detection of chromosome aneuploidies in chorionic villus samples by multiplex ligation-dependent probe amplification[J]. J Mol Diagn,2009,11(1):17-24.
    [16]Rius M, Obradors A, Daina G, et al. Reliability of short comparative genomic hybridization in fibroblasts and blastomeres for a comprehensive aneuploidy screening:first clinical application[J]. Hum Reprod,2010,25(7):1824-1835.
    [17]Darilek S, Ward P, Pursley A, et al. Pre- and postnatal genetic testing by array-comparative genomic hybridization:genetic counseling perspectives [J]. Genet Med,2008,10(1):13-18.
    [18]Vialard F, Molina Gomes D, Leroy B, et al. Array comparative genomic hybridization in prenatal diagnosis:another experience [J]. Fetal Diagn Ther,2009, 25(2):277-284.
    [19]Gross SJ, Bajaj K, Garry D, et al. Rapid and novel prenatal molecular assay for detecting aneuploidies and microdeletion syndromes [J]. Prenat Diagn,2011,31(3): 259-266.
    [20]Hillman SC, Pretlove S, Coomarasamy A, et al. Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis:a systematic review and meta-analysis[J]. Ultrasound Obstet Gynecol,2011,37(1):6-14.
    [21]Shaffer LG, Bejjani BA. Medical applications of array CGH and the transformation of clinical cytogenetics[J]. Cytogenet Genome Res,2006,115(3-4): 303-309.
    [22]Vermeesch JR, Fiegler H, de Leeuw N, et al. Guidelines for molecular karyotyping in constitutional genetic diagnosis [J]. Eur J Hum Genet,2007,15(11): 1105-1114.
    [23]ACOG Committee Opinion No.446:array comparative genomic hybridization in prenatal diagnosis [J]. Obstet Gynecol,2009,114(5):1161-1163.
    [24]Sparkes R, Johnson JA, Langlois S, et al. New molecular techniques for the prenatal detection of chromosomal aneuploidy[J]. J Obstet Gynaecol Can,2008, 30(7):617-621,622-627.
    [25]Cho EH, Park BY, Kang YS, et al. Validation of QF-PCR in a Korean population [J]. Prenat Diagn,2009,29(3):213-216.
    [26]Boormans EM, Birnie E, Oepkes D, et al. Individualized choice in prenatal diagnosis:the impact of karyotyping and standalone rapid aneuploidy detection on quality of life [J]. Prenat Diagn,2010,30(10):928-936.
    [27]Boormans EM, Birnie E, Oepkes D, et al. The impact of rapid aneuploidy detection (RAD) in addition to karyotyping versus karyotyping on maternal quality of life[J]. Prenat Diagn,2010,30(5):425-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700