用户名: 密码: 验证码:
中国汉族人房颤易感基因关联分析及朊蛋白相关疾病治疗药物的筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心房颤动(atrial fibrillation, AF)简称房颤,是一种最为常见的心律失常。中国目前约有一千万房颤患者,房颤已成为严重影响我国公众健康的疾病。对其发病机制的深入研究,一直是心律失常研究领域的热点。关于该病的发生机制,先后提出了“局灶驱动”、“多环折返”和“自旋波理论”等学说。近来还发现一些非离子通道基因突变与房颤的发生紧密关联,这不仅丰富了对房颤发生机制的认识,也为将来实现个体化治疗提供了理论基础。过去的研究主要依赖于房颤家系的基因连锁分析。但这些病例只占到所有房颤患者的很少一部分,更多的是普通房颤,为多基因疾病,其发病机制可能是由多个基因或者基因-环境相互作用引起。以往,传统的多基因疾病的研究模式,是以假说为导向,即首先假设某基因为致病候选基因,再对其进行深入研究,无异于大海捞针,即使成功也存在很多偶然性。随着人类基因组计划的完成和后续工作的展开,生命科学研究已经进入了快速、准确、低耗地分析遗传和表达的信息时代,新一代测序技术和生物信息分析平台的诞生使多基因疾病的研究手段逐渐加强。目前方兴未艾的全基因组关联分析(Genome-Wide Association Studies,GWAS)正是基于人类基因组计划(Human Genome Project, HGP)和人类基因组单体型图计划(The International HapMap Project, HapMap)的研究成果发展起来的一种研究手段。该技术能快速、简便地在覆盖全基因组的范围内提供与疾病表现型(Phenotype)相关联的遗传差异(Genotype),为易感基因的寻找提供了准确的定位信息。
     2007年,冰岛人大规模的房颤“病例-对照”全基因组关联分析发现位于4号染色体长臂2区5带(4q25)的单核苷酸多态性(single nucleotide polymorphism, SNP)rs2200733与心房颤动高度关联,随后在多个种族人群包括我们所报道的中国汉族人群中,证实与房颤紧密关联。然而在rs2200733所处的连锁不平衡区域内并无已知功能基因的存在。因此,正如大部分报道所认为,位于rs2200733上游约150 kb处PITX2基因可能是潜在的易感基因,因为已知PITX2是指导机体多个器官包括心脏发育的一种重要信号分子。但到目前为止,无论是从基因水平或是基因表达水平,仍然缺乏直接证据可证实PITX2参与影响房颤发生。"PITX2基因是否参与房颤的发生?”这留给我们一个亟待证实的问题。
     在本研究中,我们选择了PITX2基因上3个SNPsrs976568、rs994978和rs2595104,运用“病例-对照”方法,在中国汉族人群中进行了与房颤之间的关联分析,首次从遗传学角度上考证PITX2是否为中国汉族人群房颤的易感基因。
     目的:探讨PITX2基因上的3个SNPs:rs976568、rs994978和rs2595104与中国汉族人群心房颤动的相关性。
     方法:从中国汉族人群基因ID库中随机挑选371例房颤患者基因组DNA和620例非房颤患者对照基因组DNA,利用高分辨率溶解曲线(high resolution melting, HRM)基因分型方法,同时对rs976568,rs994978 and rs2595104进行基因分型,利用PLINKv1.05软件进行哈迪-温伯格(Hardy-Weinberg, HW)平衡检验。3个SNPs的基因频率及基因型频率与房颤的关联用Pearson 2x2以及2x3列联表分析,显著程度用卡方检验计算(SPSS, version 13.0)。相对危险度(odd ratio, OR)以及95%置信区间(confidence intervals, CIs)用卡方检验计算(SPSS, version 13.0)。回归性p值用Logistic多因素回归分析(SPSS, version 13.0),以性别、年龄、2型糖尿病、高血压等指标作为协变量。当“病例-对照”群体进行分层后,p值将会使用Bonferroni's correction来进行矫正。利用PLINK v 1.05软件进行100,000次Monte Carlo模拟以衡量经验性p值。利用Haploview v4.2构建单倍体型和连锁不平衡(linkage disequilibrium, LD)模型。单倍体型频率与房颤的关联用Pearson 2×2列联表分析,显著程度用卡方检验计算(SPSS, version 13.0)。OR以及95%置信区间用卡方检验计算(SPSS, version 13.0).统计效力的分析使用nQuery Advisor 6.0软件。
     结果:统计效力分析显示该研究的样本数能提供足够的统计效率。3个SNPs的对照组基因型均符合HW平衡。其中,rs2595104与房颤的关联具有极显著统计学意义,观察P值为4.88×10-4,风险等位基因为T等位基因,OR值是1.39,OR的95%置信区间为1.15到1.66。rs976568与房颤的关联接近统计学显著意义,观察P值为0.054。rs994978与房颤不具有统计学显著意义,观察P值分别为0.078。3个SNPs的基因型均显示与房颤的关联。在隐性遗传模式下,rs976568、rs994978及rs2595104的基因型均获得极显著关联,观察P值分别为0.003、0.004及0.002。通过构建rs976568-rs994978-rs2595104单倍体,发现可观察到5种单倍体形式,G-T-T为50.0%,T-C-G为41.1%,G-C-G为3.5%,G-T-G为2.8%,T-C-T为1.2%。其中只有G-T-T和G-T-G单倍型与房颤的关联显著,具有统计学意义。观察P值分别为0.005和0.003。
     结论:PITX2:基因为房颤的易感基因
     目的建立蛋白质错误折叠循环扩增(protein misfolding.cyclic amplification, PMCA)技术,体外筛选能抑制细胞型朊蛋白(cellular prion protein, PrPc)向感染性朊蛋白(scrapie prion protein, PrPsc)转化的药物。
     方法将感染羊瘙痒因子H22#发病仓鼠脑组织匀浆与正常仓鼠脑组织匀浆混合,经反复超声-孵育后,Western Blot检测扩增产物中PrPsc的含量,优化最佳扩增条件,用于体外抑制药物筛选;利用针对人PrPc不同结构域的抗体研究抑制药物对PrPc空间构象的影响。
     结果氮芥(Mechlorethamine, MCT)联合二硫苏糖醇(Dithiothreitol, DTT)能体外抑制PrPc向PrPsc的转化,抑制作用具有明显量效关系;MCT联用DTT可使抗体6H4的抗原表位位点隐蔽。
     结论PMCA技术可成功用于TSE治疗药物的体外筛选;MCT联用DTT能体外抑制PrPc向PrPsc的转化,对其机制的深入探讨,有助于新一类TSE治疗药物的研发。
Atrial fibrillation (AF) is the most common arrhythmia. In mainland China, approximately 10 million people are affected with AF, threatening the public health. The researches on the pathogenesis of AF benifit the correct and effective prevention and treatment of it, being the focus in the rearch fields of arrhythmia. Up to date, three crucial arrhythmia mechanisms have been held to be involved in AF:1) focal ectopic activity,2) multiple-circuit reentry and 3) single-circuit reentry with fibrillatory conduction. But the researches on AF are still gonging on, especially the finding of some un-ionic channels gene with gene mutation related with AF indicated that much unknown factors beside ionic channels participate in the development of AF. These researches will not only rich the knowledge of the pathogenesis of AF, but also afford the theoretic instruction for the individal treatment in the future. It has been certain that heredity is the important correlated factor of AF. In the past years, great achievement has been obtained in the fundamental Genetics researches in AF, most of which denpened on the researches in the family AF, but account for only a small proportion of all AF cases. Most of AF are common AF which are multigenic disease, caused by gene-gene interaction or gene-enviroment interaction. Thus, identification of common AF susceptive genes becomes the most favoured direct methods to understand the mechanisms.
     It is interested that although the association of single nucleotide polymorphism (SNP) rs2200733 on 4q25 with AF has been replicated in many study cohorts, including our previously reported in Chinese GeneID population, there's no gene in the linkage disequilibrium block containing this SNP. In the AF GWA reports, PITX2 was taken as a candidate gene in this 4q25 locus because it is the nearest gene to rs2200733 and lies 150 kb upstream. But so far, there's no evidence to support the direct association between PITX and atrial fibrillation, whatever through genomic association or expression level association. This leaves us a question on the role of PITX2 gene into the development of AF.
     In this study, we selected three high minor allele frequency SNPs in PITX2 gene locus and test the association between AF and PITX2 in the GeneID Chinese Han population by the"case-controll" association study, anticipating in providing direct evidence in the relation of PITX2 with AF in heredity level.
     Aim:To study the association between single nucleotide polymorphism PITX2 gene polymorphism including rs976568, rs994978 and rs2595104 with Atrial Fibrillation in the Chinese Han Population.
     Method:Genomic DNA of 371 AF patients and 620 non-AF controls were collected randomly from the GeneID Chinese mainland Han population.3 SNPs in PITX2 including rs976568, rs994978 and rs2595104 were genotyped by High Resolution Melt (HRM) methods. The 3 SNPs were tested for Hardy Weinberg equilibrium among controls using PLINK v1.05. Haplotypes construction and frequencies were estimated by softwawre Haploview v4.2. Allelic and genotypic associations of SNPs with AF were assessed using Pearson's 2×2 and 2×3 contingency tableχ2 test (PLINK v1.05). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by theχ2 test (PLINK vl.05). Multivariate analysis was performed by incorporating age, sex, hypertension (HT), and CAD as covariates by using multivariate logistic regression (PLINK v1.05). Empirical P values were determined using the PLINK v1.05 program with 100,000 Monte-Carlo simulations. linkage disequilibrium (LD) pattern constructions were done by Haploview v4.2.
     Result:Power analysis suggested that our sample size provides sufficient power to identify the association between these three SNPs and AF in this study.
     There was no deviation from Hardy-Weinberg Equilibrium of the 3 SNPs genotype distributions in the control group. rs2595104 T allele gained most significant association with AF, observed P value was 4.88×10-4 and odds ratio was 1.39 (95% confidence interval 1.15 to 1.66). rs976568 and rs994978 were in nearly significant with AF,χ2 test P values were 0.054 and 0.078 respectively. In lone AF patients, only rs2595104 reached statistical significant association with the P value of 0.011 and OR was 1.48 (95% CI 1.09-1.99). rs976568 and rs994978 were not statistical significant any more (P value were 0.158 and 0.082 respectively).
     For genotypic association, all 3 SNPs showed significant association with AF in Chinese GeneID population. The most significant P values were acquired under recessive model for these 3 variants at the same time,0.003 for rs976568,0.004 for rs994978 and 0.002 for rs2595104.
     There were in total five detectable haplotypes, accounted for 50.0%(in rs976568-rs994978-rs2595104 order G-T-T),41.1%(T-C-G),3.5%(G-C-G),2.8%(G-T-G) and 1.2%(T-C-T) of all haplotype alleles. Among these, only G-T-T and G-T-G haplotypes were significantly associated with AF. T-C-G, G-C-G and T-C-T were negative significant, with P values of 0.063,0.221 and 0.791 respectively.
     Conclusion:PITX2 is the susceptive gene of Atrial Fibrillation
     Aim To establish protein misfolding cyclic amplification (PMCA) technology and screen the drug which can inhibit the conversion of PrPc to PrPsc in vitro. Method The brain homogenate of hamster infected with sheep scrapie factor H22# was incubated with normal hamster brain homogenate. After different cycles consisted by sonication followed by incubation, amplified PK-resistant PrPsc was detected by western blotting, to determine the optimal cycle times. Optimal PMCA system was used for drug screen in vitro. By antibodies binding with different domains of PrPc, the effect of Mechlorethamine (MCT) with Dithiothreitol (DTT) on the conformation of PrPc was investigated. Result Established PMCA system has high specificity. Optimal amplification time was 42h, ensuring the best amplification efficiency. By drug screen system, MCT with DTT was found to inhibit the conversion of PrPc to PrPsc in vitro and showed significant dose-effect relationship. Epitope of antibody 6H4 was concealed after treatment by MCT with DTT, which might play a role in the mechanism of inhibition. Conclusion: PMCA technology was successfully established and can be used for the drug screening for TSE. MCT with DTT can inhibit the conversion of PrPc to PrPsc in vitro. Further research on the mechanism will benefit the development for new drug for TSE.
引文
1. Fuster V, Ryden LE, Cannom DS et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation):developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006; 114:257-354.
    2. Havranek EP, Masoudi FA, Westfall KA, et al. Spectrum of heart failure in older patients:results from the National Heart Failure project. Am Heart J. 2002,143:412-417.
    3. Swedberg K, Kjekshus J. Effects of enalapril on mortality in severe congestive heart failure:results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). Am J Cardiol.1988,62:60-66.
    4.Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics-2007 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation,2007, 115:169-171.
    5.Chien KL, Su TC, Hsu HC et al. Atrial fibrillation prevalence, incidence and risk of stroke and all-cause death among Chinese. Int J Cardiol.2010 Mar 4;139(2):173-180.
    6. 周志强,胡大一,陈捷,等.中国心房颤动现状的流行病学研究.中华内科杂志.2004;43(7):491-494.
    7. Hu D, Sun Y. Epidemiology, risk factors for stroke, and management of atrial fibrillation in China. J Am Coll Cardiol.2008 Sep 2;52(10):865-868.
    8.Zhou Z, Hu D. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. J Epidemiol 2008;18:209-216.
    9.Denice M Hodgson-Zingman. Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial FibrillationN Engl J Med,2008,359:158-165.
    10.Arnar DO, Thorvaldsson S, Manolio TA et al. Familial aggregation of atrial fibrillation in Iceland. Eur Heart J 2006;27:708-712.
    11.Ellinor PT, Yoerger DM, Ruskin JN et al. Familial aggregation in lone atrial fibrillation. Hum Genet 2005;118:179-184.
    12.Wang QK. Atrial fibrillation:genetic consideration. In:Natale A and Jalife J (ed) Atrial Fibrillation From Bench to Bedside. Humana Press 2008, New Jersey, pp 133-144.
    13.Chen YH, Xu SJ, Bendahhou S et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 2003;299:251-254.
    14.Sebillon P, Bouchier C, Bidot LD et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet 2003;40:560-567.
    15.Yang Y, Xia M, Jin Q et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet 2004;75:899-905.
    16. Hong K, Bjerregaard P, Gussak I et al. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol 2005; 16:394-396.
    17.Olson TM, Alekseev AE, Liu XK et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 2006;15:2185-2191.
    18.Olson TM, Michels VV, Ballew JD. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 2005;293:447-454.
    19.Xia M, Jin Q, Bendahhou S, He Y et al. A Kir2.1 gain-of-function mutation causes human atrial fibrillation. Biochem biophys Res Commun 2005;332:1012-1019.
    20.Zhang X, Chen S, Wang QK, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell.2008 Dec 12;135(6):1017-1027.
    21.Ren X, Xu C, Wang QK, et al. Identification of NPPA variants associated with atrial fibrillation in a Chinese GeneID population. Clin Chim Acta.2010 Apr 2;411(7-8):481-485.
    22.Campione M, Steinbeisser H, Schweickert A,et al. The homeobox gene PITX2:mediator of asymmetric left-right signaling in vertebrate heart and gut looping [J]. Dev,1999,126 (6):1224-1234.
    23. Viviani Anselmi C, Novelli V, Roncarati R, et al. Association of rs2200733 at 4q25with atrial flutter/fibrillation diseases in an Italian population. Heart. 2008 Nov;94(11):1394-1396.
    24.Gretarsdottir S, Thorleifsson G, Manolescu A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008 Oct;64(4):402-409.
    25. Kaab S, Darbar D, van Noord C, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eut Heart J.2009 Apr;30(7):813-819.
    26.Shi L, Li C, Wang C, et al. Assessment of association of rs2200733 on chromosome 4q25 with atrialfibrillation and ischemic stroke in a Chinese Han population. Hum Genet.2009 Aug26. [Epub ahead of print]
    27. Mommersteeg MT, Brown NA, Christoffels VM. et al. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res.2007 Oct 26;101(9):902-909. 28.Hinds DA, Stuve LL, Nilsen GB, et al. Whole-genome patterns of common DNA variation in three human populations. Science,2005,307:1072-1079. 29.Judson R, Salisbury B, Schneider J, et al. How many SNPs does a genome-wide haplotype map require? Pharmacogenomics,2002,3:379-391. 30.Carlson CS, Eberle MA, Rieder MJ, et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet.2003,33:518-521. 31. Carlson CS, Eberle MA, Kruglyak L, et al. Mapping complex disease loci in whole-genome association studies. Nature,2004,429:446-452. 32.Breakthrough of the year:Areas to watch in 2007. Science,2006,314: 1854-1855.
    1. Foncin JF, Gaches J, Le Beau J. Spongiform encephalopathy (connected to Creutzfeld-Jacob disease):biopsy studied by means of the electron microscope,confirmation by autopsy. Rev Neurol (Paris).1964 Dec; 111(6):507-515.
    2. WARICK LH, BAROWS HS. The Creutzfeldt-Jakob syndrome. Bull Los Angel Neuro Soc.1963 Jun;28:56-69.
    3. MYRIANTHOPOULOS NC, SMITH JK. Amyotrophic lateral sclerosis with progressivedementia and with pathologic findigs of the Creutzfeldt-Jakob syndrome. Neurology.1962 Sep; 12:603-610.
    4. Prusiner SB, Hadlow WJ, Eklund CM, et al. Sedimentation properties of the scrapie agent. Proc Natl Acad Sci U S A.1977 Oct;74(10):4656-4660.
    5. Prusiner SB, Garfin DE, Cochran SP, Baringer JR, Hadlow WJ, Eklund CM, Race RE. Evidence for hydrophobic domains on the surface of the scrapie agent. Trans Am Neurol Assoc.1978;103:62-64.
    6. Borchelt DR, Scott M, Taraboulos A, et al. Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol. 1990 Mar; 110(3):743-752.
    7. Prusiner SB, Gabizon R, McKinley MP. On the biology of prions. Acta Neuropathol. 1987;72(4):299-314.
    8. Stahl N, Prusiner SB. Prions and prion proteins. FASEB J.1991 Oct;5(13):2799-2807.
    9. Haukenes G. "Slow virus infection". Nord Med.1969 Mar 6;81(10):297-303.
    10. Markovits P, Dormont D, Delpech B, et al.Trials of in vitro propagation of the scrapie agent in mouse nerve cells. C R Seances Acad Sci Ⅲ.1981 Nov 2;293(8):413-417.
    11. Hurst LD, Haig D. Prion infection. Nature.1991 May 2;351(6321):21.
    12. Scott JR. Scrapie pathogenesis. Br Med Bull.1993 Oct;49(4):778-791.
    13. PRUSINER S B, SCOTT M R, DEARMOND S J, et al. Prionp rotein biology
    [J]1 Cell,1998,93 (3):337-348. 14. Hawkins K, Chohan G, Kipps C, et al. Variant Creutzfeldt-Jakob disease: neuropsychological profile in an extended series of cases. J Int Neuropsychol Soc.2009 Sep;15(5):807-810. 15. Brandel JP, Heath CA, Head MW, et al. Variant Creutzfeldt-Jakob disease in France and the United Kingdom:Evidence for the same agent strain. Ann Neurol.2009 Mar;65(3):249-256. 16. Wills PR. Induced frameshifting mechanism of replication for an information-carrying scrapie prion. Microb Pathog.1989 Apr;6(4):235-249. 17. Goldfarb LG, Brown P, Goldgaber D, et al. Identical mutation in unrelated patients with Creutzfeldt-Jakob disease. Lancet.1990 Jul 21;336(8708):174-175. 18. Goldfarb LG, Mitrova E, Brown P, et al. Mutation in codon 200 of scrapie amyloid protein gene in two clusters of Creutzfeldt-Jakob disease in Slovakia. Lancet.1990 Aug 25;336(8713):514-515. 19. Ludewigs H, Zuber C, Vana K, et al. Therapeutic approaches for prion disorders. Expert Rev Anti Infect Ther.2007 Aug;5(4):613-630. 20. Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain.2006 Sep;129(Pt 9):2241-2265. 21. Whittle IR, Knight RS, Will RG. Unsuccessful intraventricular pentosan polysulphate treatment of variant Creutzfeldt-Jakob disease. Acta Neurochir(Wien).2006 Jun;148(6):677-679. 22. Doh-ura K. Prion diseases:disease diversity and therapeutics. Rinsho Shinkeigaku.2004 Nov;44(11):855-856. 23. Saa P, Castilla J, Soto C. Cyclic amplification of protein misfolding and aggregation. Methods Mol Biol.2005;299:53-65. 24. Castilla J, Saa P, Morales R, et al. Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol.2006;412:3-21. 25. Atarashi R, Moore RA, Sim VL, et al. Ultrasensitive detection of scrapie prion protein using seededconversion of recombinant prion protein. Nat Methods.2007 Aug;4(8):645-650.
    26. Castilla J, Gonzalez-Romero D, Saa P, Morales R, De Castro J, Soto C. Crossing the species barrier by PrP(Sc) replication in vitro generates unique infectious prions. Cell.2008 Sep 5;134(5):757-768.
    27. Stohr J, Weinmann N, Wille H, et al. Mechanisms of prion protein assembly into amyloid. Proc Natl Acad Sci U S A.2008 Feb 19;105(7):2409-2414.
    28. Singh N, Gu Y, Bose S, et al. Prion peptide 106-126 as a model for prion replication and neurotoxicity. Front Biosci.2002 Aprl;7:60-71.
    29. Mehlhorn I, Groth D, Stockel J, et, al. High-levelexpression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry.1996 Apr 30;35(17):5528-5537.
    30. Zhang H, Stockel J, Mehlhorn I, et, al. Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry.1997 Mar 25;36(12):3543-3553.
    1. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659-666.
    2. Mommersteeg MT, Brown NA, Prall OW, et al. Pitx2c and Nkx2.5 are required for the formation and identity of the pulmonary myocardium. Circ Res. 2007; 101:902-909.
    3. Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring riskof atrial fibrillation on chromosome 4q25. Nature.2007;448:353-357.
    4. Jones WK, Sanchez A, Robbins J. Murine pulmonary myocardium: developmental analysis of cardiac gene expression. Dev Dyn.1994;200: 117-128.
    5. Liu C, Liu W, Palie J, et al. Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development.2002;129:5081-5091.
    6. Schneitz K, Spielmann P, Noll M. Molecular genetics of aristaless, a prd-type homeo box gene involved in the morphogenesis of proximal and distal pattern elements in a subset of appendages in Drosophila. Genes Dev.1993;7:114-129.
    7 Gage PJ, Suh H, Camper SA. The bicoid-related Pitx gene family in development. Mamm Genome.1999; 10:197-200.
    8. Semina EV, Ferrell RE, Mintz-Hittner HA, et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet. 1998;19:167-170.
    9. Semina EV, Ferrell RE, Mintz-Hittner HA, et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet. 1998; 19:167-170.
    10. Shapiro MD, Marks ME, Peichel CL, et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature. 2004;428:717-723.
    11. COHEN S, GOLDSTEIN JD, HAMILL J. The Kartagener syndrome. J Med Soc N J.1950 Dec;47(12):557-560.
    12. KAYE J, MEYER RM. Kartagener's syndrome with an anomalous left subclavian artery. Br J Radiol.1951 Jan; 24(277):27-30.
    13. Ryan A K, Blumberg B, Rodriguez-Esteban C, et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature,1998,394(6693):545-551.
    14. Meno C, Shimono A, Saijoh Y, et al. Lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell,1998,94(3):287-297.
    15. Yoshioka H, Meno C, Koshiba K, et al. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell,1998,94(3):299-305.
    16. Logan M, Pagan-Westphal S M, Smith D M, et al. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell,1998,94(3):307-317.
    17. Piedra M E, Icardo J M, Albajar M, et al. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell,1998,94(3):319-324.
    18. Amendt B A, Sutherland L B, Semina E V, et al. The molecular basis of Rieger syndrome:analysis of Pitx2 homeodomain protein activities. J Biol Chem,1998, 273(32):20066-20072.
    19 Gage P, Camper S. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet,1998,6:457-464.
    20. Gretarsdottir S, Thorleifsson G, Manolescu A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008 Oct;64(4):402-409.
    21. Kaab S, Darbar D, van Noord C, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009 Apr;30(7):813-819.
    22. Shi L, Li C, Wang C, et al. Assessment of association of rs2200733 on chromosome 4q25 with atrialfibrillation and ischemic stroke in a Chinese Han population. Hum Genet.2009 Aug26.
    23. Datson NA, Semina E, van Staalduinen AA, et al. Closing in on the Rieger syndrome gene on 4q25:mapping translocation breakpoints within a 50-kb region. Am J Hum Genet.1996 Dec;59(6):1297-1305.
    24. lamonerie T, Tremblay JJ, LanctEt C, et al. Ptxl, a bi-coid-related homeo box transcription factor involved in transcription of the pro2opiomelanocortin gene [J]. Genes Dev,1996,10 (10):1284-1295.
    25. Gage PJ, Camper SA. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet.1997 Mar;6(3):457-464.
    26. Cox CJ, Espinoza HM, Mc Williams B, et al. Deffential regulation of gene expression by PITX2 isoforms[J]. J Bio Chem,2002,277 (28):25001-25010.
    27. Gehring WJ. Guidebook to the homebox genes [M]PP Duboule D, Ed. Oxford: Oxford University Press,1994:pp25-42.
    28. Buerglin TR, Duboule D, Ed. Guidebook to the homebox genes. Oxford:Oxford Univer sity Press,1994:pp43-72.
    29. Gehring WJ, Hiromi Y. Homeotic genes and the homeobox[J]. Annu Rev Genet, 1986,20:147-173.
    30. Hanes SD, Brent R. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9[J]. Cell,1989,57 (7):1275-1283.
    31. Jin Y, Hoskins R, Horvitz HR. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature.1994 Dec 22-29;372(6508):780-783.
    32. Simeone A, Acampora D, Mallamaci A, et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo [J]. EMBOJ, 1993,12(7):2735-2747.
    33. Semina EV, Reiter R, Leysens NJ, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome [J]. Nat Genet,1996,14 (4):392-399.
    34. Furukawa T, Kozak CA, Cepko CL. Rax, a novel paired type homeobox gene, shows expression in the anterior neural fold and developing retina [J]. Proc Natl Acad Sci USA,1997,94 (7):3088-3093.
    35. Amendt BA, Sutherland LB, Russo AF. Mutifuntional role of the PITX2 homeodomain protein C-terminal tail [J]. Mol Cell Bio,1999,19(10):7001-7010.
    36. Kozlowski K, Walter MA. Variation in residual PITX2 activity underlies the phenotypic spectrumof anterior segment developmental disorders [J]. Hum Mol Genet,2000,9(14):2131-2139
    37. Saadi I, Kuburas A, Engle JJ, et al. Dominant negative dimerizationg of a mutant homeodomain protein in Axenfeld2Rieger syndrome [J]. Mol Cell Bio, 2003,23 (6):1968-198
    38. Semina EV, Reiter R, Leysens NJ, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome [J]. Nat Genet,1996,14 (4):392-399.
    39. Gage PJ, Camper SA. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation [J]. Hum Mol Genet,1997,6 (3):457-464.
    40. St. Amand TR, Ra J, Zhang Y, et al. Cloning and expression pattern of chicken PITX2:a new component in the shh signaling pathway controlling embryonic heart looping [J]. Biochem Biophys Res Commun,1998,247 (1):100-105.
    41. Ryan A K, Blumberg B, Rodriguez-Esteban C, et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature,1998,394(6693):545-551.
    42. Meno C, Shimono A, Saijoh Y, et al. Lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell,1998,94(3):287-297
    43. Yoshioka H, Meno C, Koshiba K, et al. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell,1998,94(3):299-305.
    44. Logan M, Pagan-Westphal S M, Smith D M, et al. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell,1998,94(3):307-317
    45. Piedra M E, Icardo J M, Albajar M, et al. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell,1998,94(3):319-324
    46. Pearce WG, Wyatt HT, Boyd TA, et al. Autosomal dominant iridogoniodysgenesis. A genetic and clinical study [J]. Birth Defects Orig Artic Ser,1982,18 (6):561-569
    47. CHEN S A, TAI C T, YU W C, et al. Right atrial focal atrial fibrillation: electrophysiologic characteristics and radio-frequency catheter ablation [J]. J Cardiovasc Electrophysiol,1999,10:328-335.
    48. HWANG C, KARAGUEUZIAN H S, CHEN P S. Idiopathic paroxysmal atrial fibrillation induced by a focal discharge mechanism in the left superior pulmonary vein:possible roles of the ligament of Marshall [J]. J Cardiovasc Electrophysiol,1999,10:636-648.
    49. Wale J. Epistola ad Casp:Bartholin de motu chili et sanguins[J].1641,39:83
    50. Tagawa M, Higuchi K, Chinushi M, et al. Myocardium extending from the left atriumonto the pulmonary veins:a comparison between subjects with and without atrial fibrillation[J]. PACE,2001,24(10):1459-1463.
    51. HAISSAGUERRE M, JAIS P, SHAH D C, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins[J]. J N Engl J Med,1998,339:659.
    52. 王日希,黄从新,江洪,等.兔肺静脉心肌袖组织学特性研究[J].中华心律失常学杂志,2003,7(4):241-243.
    53. Blom NA, Gittenbergerde Groot AC, Deruiter MC, et al. Development of the cardiac conduction tissue in human embryos using HNK21 antigen expression: possible relevance for understanding of abnormal atrial automaticity[J]. Circulation,1999,99(6):8002806.
    54. Blom NA, Gittenbergerde Groot AC, Jongeneel TH, et al. Normal development of the pulmonary veins in human embryos and formulation of a morphogenetic concept for sinus venosus defects [J]. Am J Cardiol,2001,87(3):305-309.
    55. Jones WK, Sanchez A, Robbins J. Murine pulmonary myocardium: developmental analysis of cardiac gene expression. Dev Dyn.1994;200:117-128.
    56. Millino C, Sarinella F, Tiveron C, et al. Cardiac and smooth muscle cell contribution to the formation of the murine pulmonary veins. Dev Dyn. 2000;218:414-425.
    57. Lyons GE, Schiaffino S, Sassoon D, et al. Developmental regulation of myosin expression in mouse cardiac muscle. J Cell Biol.1990;111:2427-2437.
    58. Nattel S. Basic electrophysiology of the pulmonary veins and their role in atrial fibrillation:precipitators, perpetuators, and perplexers. J Cardiovasc Electrophysiol.2003;14:1372-1375
    59. Masani F. Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J Anat.1986;145:133-142.
    60. Perez-Lugones A, McMahon JT, Ratliff NB, et al. Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. J Cardiovasc Electrophysiol.2003; 14:803-809.
    61. Kholova I, Niessen HW, Kautzner J. Expression of Leu-7 in myocardial sleeves around human pulmonary veins. Cardiovasc Pathol.2003;12:263-266
    62. deRuiter MC, Gittenberger-de Groot AC, Wenink ACG, et al. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat Rec.1995;243:84-92.
    63. Jongbloed MRM, Schalij MJ, Poelmann RE, et al. Embryonic conduction tissue: a spatial correlation with adult arrhythmogenic areas. J Cardiovasc Electrophysiol.2004;15:349-355.
    64. Bagwe S, Berenfeld O, Vaidya D, et al. Altered right atrial excitation and propagation in connexin40 knockout mice. Circulation.2005;112:2245-2253.
    65. Verheule S, Wilson EE, Arora R, et al. Tissue structure and connexin expression of canine pulmonary veins. Cardiovasc Res.2002;55:727-738
    66. eh HI, Lai YJ, Lee YN, et al. Differential expression of connexin43 gap junctions in cardiomyocytes isolated from canine thoracic veins. J Histochem Cytochem. 2003;51:259-266
    67. Alcolea S, Theveniau-Ruissy M, Jarry-Guichard T, et al. Downregulation of connexin45 gene products during mouse heart development. Circ Res. 1999;84:1365-1379.
    68. Lo CW. Role of gap junctions in cardiac conduction and development. Circ Res. 2000;87:346-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700