用户名: 密码: 验证码:
纳米材料表面电子结构的修饰及其在催化等领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近三十年来,固体材料的制备工艺和表征技术的不断进步使得纳米科技得到了空前飞速的发展。随着尺度的减小,固体材料的比表面积不断增大,当其尺度减小到纳米范围内时,表面结构和电子特性将严重影响材料的性能和应用。随着以石墨烯为代表的二维材料的出现和深入研究,固体纳米材料表面的卓越性质已经被广泛应用于催化化学、表面光谱检测、储能等热门领域。另一方面,在一定的认知基础上,研究人员已经开始尝试通过表面修饰来调控材料的表面特性,改进其电子结构等特点来提高其固有价值,以期达到更理想的应用效果。因此无论是从基础研究角度,还是从潜在的应用价值来说,开展纳米材料表面修饰的研究都具有重要而且深远的意义。
     本论文旨在通过掺杂等表面修饰手段来调控石墨烯等材料的表面电子结构和几何构型,并探索它们在表面催化、表面增强拉曼散射(SERS)以及储能等应用中的表现,进而理解和掌握表面修饰对材料电子结构的影响规律及其影响机制。详细内容归纳如下:
     1.以改进的Hummer方法首先制备得到石墨烯氧化物,以氨水为氮源通过后处理的方法在180摄氏度条件下于反应釜中制备得到了氮掺杂的石墨烯,包括石墨型、吡啶型、吡咯型和胺连接型四种氮掺杂方式。我们选择化学还原对硝基苯酚反应来测试所合成样品的催化活性。通过对实验数据的分析,发现当以硼氢化钠为还原剂时,氮掺杂的石墨烯可以起到催化剂的作用并可以把硝基苯酚百分之百地催化还原成氨基苯酚,其反应速率为7.34×10-8mol*L-1s-1。这是第一例在无光照温和条件下非金属基催化剂用于此催化反应的报道。通过原位红外的表征以及密度泛函理论的模拟,我们推测出硝基苯酚是以羟基氧原子与石墨烯基底相吸附的,并且其吸附位点是所掺杂氮原子邻位上的碳原子。另一方面,通过理论模拟我们还研究了硼掺杂的石墨烯以及氢修饰的石墨烯在氧化还原反应中的应用,结果发现这些表面修饰了的石墨烯材料都具有良好的催化活性。通过杂原子掺杂等表面修饰手段可以在石墨烯表面上形成局域的高自旋和高电荷密度,这些特殊区域可以作为活性位点对反应物分子进行吸附,进而促进催化反应的持续进行。
     2.氧化石墨烯的表面含有丰富的含氧官能团,这些官能团与石墨烯平面的结合方式不一样,所带来的电子结构等的变化也不尽相同。通过改进的Hummer方法我们首先制备得到了氧化石墨烯,发现在120摄氏度条件下水热反应得到的产物具有对硝基苯酚催化还原的活性,其反应速率为0.147min-1。然而,样品经氢氧化钠溶液热处理后催化活性会大大降低。通过红外表征和X射线光电子能谱的测试表明氢氧化钠的处理会降低石墨烯表面羟基的相对含量。结合密度泛函理论模拟,发现羟基和烷氧基有利于硝基苯酚的吸附作用,而羧基和环氧基不利于硝基苯酚的吸附。这与实验上观测到的结果相一致,综上所述,羟基和烷氧基对样品的催化活性有促进作用,而环氧基和羧基对于此反应应该尽量避免。另一方面,我们把氧化石墨烯做成薄膜电极,测量发现石墨烯氧化物具有弱的铁电性能。这是第一例关于铁电性在石墨烯材料上的报道,其铁电性能可能来源于表面上大量的羟基官能团。表面和边缘上的羟基之间会形成氢键,这些氢键容易形成一维有序链状结构,这些一维有序的氢键链会产生自发极化,在电场的调控下发生翻转,进而对铁电性能产生贡献。
     3.以制备得到的银纳米粒子为基底,分别选择吡啶和罗丹明6G作为探针分子,经过多次实验发现磁场对SERS有削弱作用。这是第一例关于磁场对拉曼光谱的研究。结合密度泛函理论模拟,我们发现在磁场的作用下银纳米粒子表面的自由电子会向体内转移,这会导致其表面的电子数减小,使表面等离子体共振减弱,从而削弱了SERS的电磁场增强机制。同时,银的5s轨道在磁场作用下会向低能端移动,吡啶分子的π反键轨道会向高能端移动,这会造成电子受激发跃迁的带隙增宽,降低了电子跃迁的几率并且减少了可发生转移的电子的数量,进一步从化学增强方面削弱了SERS的增加能力。另一方面,基于有关实验上的报道,我们开展了对硼掺杂石墨烯的理论模拟,发现这种新型基底也可以对吡啶分子产生拉曼信号增强,这是因为硼是带正电的,吡啶的氮原子是带负电的,通过掺杂增加了界面上的静电相互作用力,使得毗啶分子更好地吸附在石墨烯基底上,从而可以通过电子转移的化学机制增强拉曼信号。
     4.通过对不同类型的氮掺杂石墨烯进行研究,我们发现吡啶型的氮掺杂有利于其在锂离子电池方面的应用。此外,当所掺杂的原子数达到四个,并且它们能够形成一个孔洞结构时,这种材料的锂存储容量、结构的稳定性以及锂在负极材料表面的迁移等评价参数将达到一个良好的平衡。因为氮掺杂使得石墨烯对锂原子有更强的吸附能力,在充放电过程中会有更多的锂残留在石墨烯表面上,所以在相应的实验中可以观察到锂的放电容量对比于完美石墨烯发生了快速的下降。另一方面,氮的掺杂会增加各种碳材料(包括石墨烯、富勒烯和小的碳团簇)与过渡金属钯的轨道交叠杂化程度,使得其对钯的吸附能力增强。通过模拟研究发现这会有利于其在储氢方面的应用,同时强的吸附能力能够防止钯在使用过程中脱落和聚集,有利于其以小粒子状态均匀的分布在石墨烯基底上,提高其储氢和催化等性能。
The improvement of preparation methods and characterization technologies during the past thirty years has driven the nano technology to achieve an unprecedented rapid development. The surface area of one solid material increases as its size decreases. When the size is reduced to the nanometer range, its surface structure and electronic property will play an important role in the practical applications. With the development of two dimensional materials, such as graphene, their excellent properties have been used widely in the catalytic chemistry, surface spectroscopy, energy storage and other hot fields. On the other hand, based on the existing knowledge, researchers have begun to control the surface properties through various surfacial modifications, to change their original electronic structures and achieve better performance in the practical applications. Therefore, it is significant to carry out different investigations on the modifications on the surface of nanomaterials not only for the basic research, but also for their potential values of applications.
     This article aims to control the electronic structure and surface configuration of graphene (also and other materials) via doping and other surfacial modification methods, exploring their potential applications in surface catalysis, surface enhanced Raman scattering (SERS) and energy storage. This will help us understand and grasp the mechanism and value of the influence of surfacial modification on the electronic structure of various functional materials. The details are summarized as follow:
     1. First, graphene oxides were prepared using an improved Hummer method. Then, the nitrogen atoms were doped into graphene as "graphitic","pyridinic","pyrrolic" and "amine" forms by the post treatment of graphene oxides in a solution of ammonia in an autoclave at180degree celsius. The reduction of4-nitrophenol is employed to test the catalytic ability of the obtained sample. It is found that when the sodium borohydride is taken as the reducing reagent, the prepared nitrogen doped graphene could take the catalytic role in reducing4-nitrophenol, with the reaction rate of7.34×10-8mol*L-1s-1, and conversion rate and selectivity both almost100%. This is the first report of metal free catalysts employed in this reaction under mild conditions without light radiation. Based on the in situ FTIR characterization and density functional theory calculations, we find the4-nitrophenol will adsorb on the carbon atom next to the doped nitrogen atom on graphene surface, via the oxygen atom of its hydroxyl group. In addition, we also have studied the application of boron doped graphene and hydrogen decorated graphene in the oxygen reduction reactions based on simulations. It is found both of these two midified graphene have good catalytic activities. There will be local high spin and high charge areas on the graphene surface induced by the doped foreign elements, and these special areas could be taken as high active sites for the adsorption of reactant molecules, further promoting the catalytic reaction to be carried out continuously.
     2. There are plentiful oxygenated chemical groups on the surface of graphene oxides. They combine with graphene in different formats, leading to different modifications on the original electronic structure of graphene sheets. Via the improved Hummer method, we obtain graphene oxides. Through the hydrothermal treatment at120degree celsius, we find the obtained sample have good catalytic ability for the reduction of4-nitrophenol, with the reaction rate of0.147min-1. However, after the sodium hydroxide treatment at high temperature, its catalytic performance will be greatly reduced. Through the FTIR and X ray photoelectron spectroscopy characterizations, we find the relative content of surfacial hydroxyl groups will decrease after the sodium hydroxide treatment. Combined with the density functional theory simulations, it is found that hydroxyl and alkoxyl groups could contribute to the adsorption of4-nitrophenol, but carboxyl and epoxy groups are not conducive to its adsorption. This is in line with the experimental results. Therefore, hydroxyl and alkoxyl groups are beneficial for the catalytic ability of the obtained sample while carboxyl and epoxy groups should be avoided in this reaction. Apart from this, we have prepared a film electrode using the prepared graphene oxides and found that it has weak ferroelectricity. This is the first case about ferroelectricity found on graphene based materials, which may be due to the abundant hydroxyl groups. The hydroxyl groups on the surface and at the edge of graphene sheets tend to form hydrogen bonds, which will form one dimensional hydrogen bond chains further and produce spontaneous polarizations. They will transfer following the applied electric field, contributing to its ferroelectric property.
     3. Taking the prepared silver nanoparticles as the substrate and selecting pyridine and Rhodamine6G as the probe molecules, respectively, we find the applied magnetic field has a negative influence on SERS. This is the first report about the influence of magnetic field on the Raman spectra. By virtue of calculations, it is found the free electrons on surface of silver nanoparticles tend to transfer into their body center regions, decreasing the surface electrons and weakening the surface plasmon resonance. This will reduce the electromagnetic mechanism of SERS. Simutaneously, the5s orbital of silver tend to decrease and the π anti bond orbital will increase under the applied magnetic field, broadening the energy gap for electron transfer and reducing the probability of charge transferring at the interface, which will weaken the chemical enhancement of SERS. In addition, based on the existing experimental reports and our simulatiaons, we have found boron doped graphene could also enhance the SERS signals with pyridine taken as the probe molecule. The doped boron atom is positive charged and the nitrogen atom of pyridine is negative charged, so the combined interaction at the interface will be strengthened after boron doping, facilitating the adsorption of pyridine molecule on graphene substrates and contributing to the electron transferring from the substrate to the probe molecule under excitation, and this is benefical for the chemical enhancement mechanism.
     4. We have found the pyridinic like nitrogen doping within graphene lattice could improve its performance in Li ion batteries. When the doped atoms are four and they form a hole structure, this new material will have high Li storage capacity, good stable structure and high mobility for the adsorbed Li atoms. Because of the stronger catch force for Li caused by the doped nitrogen element, More Li atoms will remain on the doped graphene surface during the charge and discharge process. Therefore, compared with the pristine graphene, the discharge capacity of nitrogen doped graphene will decrease faster, as seen in the related experimental result. Moreover, the nitrogen doping can increase the orbital hybrid degree between various carbon materials and the transition metal Pd, strengthening its adsorption for Pd. This is beneficial for its use in hydrogen storage. The stronger catch force induced by doping could prevent the leaching and aggregation of the supported Pd, facilitating their uniform distribution on the carbon materials and contributing to their performance in hydrogen storage and catalysis.
引文
[1]张立德,牟季美,纳米材料和纳米结构,科学出版,2001.
    [2]颜晓红,严辉,纳米物理学,哈尔滨工程大学出版社,2010.
    [3]陈冬,氢吸附硅表面稳定性及氢钝化对In吸附Si(100)面影响的第一性原理研究,河南师范大学硕士学位论文,2006.
    [4]石德珂,材料科学基础,机械工业出版社,1999.
    [5]欧阳钢,纳米材料与纳米结构的表面与界面以及相关尺度效应,中山大学博士学位论文,2007.
    [6]Orowan, E. Zeits. F. Physik 1933,82,235.
    [7]Alexander, B. H.; Dawson, M. H.; Kling, H. P. J. Appl. Phys.1951,22,439.
    [8]吴锵,王雄,石晓琴,刘和义,谈华平,材料物理化学,国防工业出版社,2012.
    [9]戴达煌,周克崧,袁镇海,现代材料表面技术科学,冶金工业出版社,2004.
    [10]徐恒钧,刘国勋,材料科学基础,北京工业大学出版社,2009.
    [11]石德珂,材料科学基础,机械工业出版社,1999.
    [12]Sun, Y. G.; Xia, Y. N. Science 2002,298,2176.
    [13]Kong, X. K.; Chen, C. L.; Chen, Q. W. Chem. Soc. Rev.2014,43,2841.
    [14]Hua, Q.; Cao, T.; Bao, Z. H.; Jiang, Z. Q.; Huang, W. X. ChemSusChem 2013,6,1966.
    [15]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science,2004,306,666.
    [16]薛增泉,碳电子学,科学出版社,2010.
    [17]Dreyer, D. R.; Jia, H. P.; Bielawski, C. W.Angew. Chem. Int. Ed. 2010,49,6813.
    [18]Boukhvalov, D. W.; Dreyer, D. R.; Bielawski, C. W.; Son, Y. W. ChemCatChem 2012,4, 1844.
    [19]Gao, Y.; Hu, G.; Zhong, J.; Shi, Z.; Zhu, Y.; Su, D. S.; Wang, J.; Bao, X. H.; Ma, D. Angew. Chem. Int. Ed. 2013, 52,2109.
    [20]丁松原,吴德印,杨志林,任斌,徐昕,田中群高等学校化学学报2008,29,2569.
    [21]Nie, S. M.; Emory, S. R. Science 1997,275, 1102.
    [22]Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 392.
    [23]Jackson, J. B.; Halas, N. J. P. Natl. Acad. Sci.USA 2004,101, 17930.
    [24]Zhu, Z.; Zhu, T.; Liu, Z. J. Nanotechnology 2004,15, 357.
    [25]Dong, B.; Fang, Y. R.; Xia, L. X.; Xu, H. X.; Sun, M. T. J. Raman Spectrosc. 2011, 42, 1205.
    [26]Sun, M. T.; Zhang, Z. L.; Zheng, H. R.; Xu, H. X. Scientific Reports 2012,2, 647.
    [27]Fang, Y.; Li, Y.; Xu, H. X.; Sun, M. T. Langmuir 2010,26,1131.
    [28]Nagaura, T.; Tozawa, K. Prog. Batteries Sol. Cells, 1990,9,209.
    [29]Wu, Z.; Huang, X. L.; Wang, Z. L.; Xu, J. J.; Wang, H. G.; Zhang, X. B. Scientific Reports 2014,4, 3669.
    [30]Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. Nat. Commun. 2013, 4, 2922.
    [31]Li, L.; Raji, A. O.; Tour, J. M.Adv. Mater. 2013,25,6298.
    [32]Li, Y. F.; Zhou, Z.; Wang, L. B. J. Chem. Phys. 2008,129, 104703.
    [33]赵曦,固体催化剂表面结构的表征,北京化工大学博士学位论文,2009.
    [34]Bao, C. L.; Song, L.; Xing, W. Y.; Yuan, B. H.; Wilkie, C. A.; Huang, J. L.; Guo, Y. Q.; Hu, Y. J. Mater. Chem. 2012, 22, 6088.
    [35]曹立礼,纳米材料表面电子结构分析,清华大学出版社,2010.
    [36]Ferrari, A. C.; Basko, D. M. Nat. Nanotechnol. 2013,8,235.
    [37]汪明晟,外磁场对四氧化三钴纳米粒子生长的影响的理论和实验研究,中国科学技术大学硕士学位论文,2010.
    [38]戴军,一些新型材料物性的理论研究,中国科学技术大学博士学位论文,2010.
    [39]Bao, H. Z.; Zhang, W. H.; Hua, Q.; Jiang, Z. Q.; Yang, J. L.; Huang, W. X. Angew. Chem. Int. Ed. 2011, 50, 12294.
    [40]Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Brink, J. V. D.; Kelly, P. J. Physical Review Letters 2008,101, 026803.
    [I]Zhang, S.; Metin, O.; Su, D.; Sun, S. H.Angew. Chem. Int. Ed.2013,52,3681.
    [2]Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. Angew. Chem. Int. Ed.2013,52,3465.
    [3]Wang, W. J.; Zhang, J.; Yang, S. C.; Ding, B. J.; Song, X. P. ChemSusChem 2013,6,1945.
    [4]Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q. J. Am. Chem. Soc.2013,135, 5588.
    [5]Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nat. Mater.2013,12,765.
    [6]Zhang, C. X.; Li, S. R.; Wang, T.; Wu, G. W.; Ma, X. B.; Gong, J. L. Chem. Commun.2013,49, 10647.
    [7]Cheng, C.; Amini, A.; Zhu, C.; Xu, Z. L.; Song, H. S.; Wang, N. J. Scientific Reports 2014,4, 4181.
    [8]Machado, B. F.; Serp, P. Catal. Sci. Technol.2012,2,54.
    [9]Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009,323,760.
    [10]Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Z. Small 2012,8,3550.
    [11]Wang, S.; Iyyamperumal, E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Angew. Chem. Int. Ed.2011, 50,11756.
    [12]Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z.; Angew. Chem. Int. Ed.2011,50,7132.
    [13]Rao, C. V.; Ishikawa, Y. J. Phys. Chem. C 2012,116,4340.
    [14]Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schloegl, R.; Su, D. S. Science,2008,322,73.
    [15]Frank, B.; Morassutto, M.; Schomaecker, R.; Schloegl, R.; Su, D. S. ChemCatChem 2010,2, 644.
    [16]Rinaldi, A.; Zhang, J.; Frank, B.; Su, D. S.; Hamid, S. B. A.; Schloegl, R. ChemSusChem. 2010,3,254.
    [17]Zhang, J.; Wang, X.; Su, Q.; Zhi, L.; Thomas, A.; Feng, X.; Su, D. S.; Schloegl, R.; Muellen, K. J. Am. Chem. Soc.2009,131,11296.
    [18]Dreyer, D. R.; Jia, H. P.; Bielawski, C. W. Angew. Chem. Int. Ed.2010,49,6813.
    [19]Li, B.; Xu, Z. J. Am. Chem. Soc.2009,131,16380.
    [20]Dreyer, D. R.; Jia, H. P.; Todd, A. D.; Geng, J.; Bielawski, C. W. Org. Biomol. Chem.2011,9, 7292.
    [21]Liu, H.; Liu, Y.; Zhu, D. J. Mater. Chem.2011,21,3335.
    [22]Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; Heer, W. A. D. Science,2006,312,1196.
    [23]Biswas, C.; Lee, Y. H.; Adv. Funct. Mater.2011,21,3806.
    [24]Huang, C.; Li, C.; Shi, G. Energy Environ. Sci.2012,5,8848.
    [25]Pumera, M.; Wong, C. H. A. Chem. Soc. Rev.2013,42,5987.
    [26]Kong, X. K.; Chen, C. L.; Chen, Q. W. Chem. Soc. Rev.2014,43,2841.
    [27]Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACSNano.2010,4,1321.
    [28]Long, J. L.; Xie, X. Q.; Xu, J.; Gu, Q.; Chen, L. M.; Wang, X. X. ACS Catal.2012,2,622.
    [29]Kurak, K. A.; Anderson, A. B.; J. Phys. Chem. C.2009,113,6730.
    [30]Okamoto, Y. Appl. Surf. Sci.2009,256,335.
    [31]Boukhvalov, D. W.; Son, Y. W. Nanoscale 2012,4,417.
    [32]Zhang, L. P.; Xia, Z. H. J. Phys. Chem. C 2011,115,11170.
    [33]Zhang, L. P.; Niu, J. B.; Dai, L. M.; Xia, Z. H. Langmuir 2012,28,7542.
    [34]Nemanashi, M.; Meijboom, R. J. Colloid Interface Sci.2013,389,260.
    [35]Fenger, R.; Fertitta, E.; Kirmse, H.; Thunemann, A. F.; Bademann, K. Phys. Chem. Chem. Phys.2012,14,9343.
    [36]Pradhan, N.; Pal, A.; Pal, T. Colloids Surf. A 2002,196,247.
    [37]Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. J. Phys. Chem. B 2006,110,1787.
    [38]Xu, Y.; Wu, M.; Liu, Y.; Feng, X. Z.; Yin, X. B.; He, X. W.; Zhang, Y. K. Chem. Eur. J. 2013,19,2276.
    [39]Arrigo, R.; Haevecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A.; Schloegl, R.; Su, D. S. J. Am. Chem. Soc.2010, 132,9616.
    [40]Jing, L.; Huang, P.; Zhu, H.; Gao, X. Small 2013,9,306.
    [41]Li, H.; Liao, J.; Du, Y.; You, T.; Liao, W.; Chen, L. Chem. Commun.2013,49,1768.
    [42]Kamiya, K.; Hashimoto, K.; Nakanishi, S. Chem. Commun.2012,48,10213.
    [43]Steele, B. C. H.; Heinzel, A. Nature 2001,414,345.
    [44]Sun, Y.; Li, C.; Shi, G. J. Mater. Chem.2012,22,12810.
    [45]Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Muellen, K. Adv. Funct. Mater.2012,22, 3634.
    [46]Jin, Z.; Nie, H.; Yang, Z.; Zhang, J.; Liu, Z.; Xu, X.; Huang, S. Nanoscale 2012,4,6455.
    [47]Boukhvalov, D. W.; Katsnelson, M. I.Acs Nano 2011,5,2440.
    [48]Boukhvalov, D. W.; Katsnelson, M. I.; Lichtenstein, A. I. Phys. Rev. B 2011,83,233408.
    [49]Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. J. Am. Chem. Soc.2012,134, 161
    [50]Sheng, Z. H.; Gao, H. L.; Bao, W. J.; Wang, F. B.; Xia, X. H. J. Mater. Chem.2012,22,390
    [1]Chen, D.; Feng, H. B.; Li, J. H. Chem. Rev.2012,112,6027.
    [2]Ruoff, R. S.Nat. Nanotechnol.2008,3,10.
    [3]Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev.2010,39,228.
    [4]Szabo, T.; Berkesi, O.; Forgo, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dekany, I. Chem. Mater.2006,18,2740.
    [5]Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. J. Phys. Chem. C 1998,102,4477.
    [6]Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S. J.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y. J.; Loh, K. P. Nat. Commun.2012,3,1298.
    [7]Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014,343,752.
    [8]Kumar, P. V.; Bardhan, N. M.; Tongay, S.; Wu, J.; Belcher, A. M.; Grossman, J. C. Nat. Chem. 2014,5,151.
    [9]Dreyer, D. R.; Jia, H. P.; Bielawski, C. W.Angew. Chem. Int. Ed. 2010,49,6813.
    [10]Yeh, T. F.; Syu, J. M.; Cheng, C.; Chang, T. H.; Teng, H. Adv. Funct. Mater.2010,20,2255.
    [11]Hsu, H. C.; Shown, I.; Wei, H. Y.; Chang, Y. C.; Du,.H. Y.; Lin, Y G.; Tseng, C. A.; Wang, C. H.; Chen, L. C.; Lin, Y. C.; Chen, K. H. Nanoscale 2013,5,262.
    [12]Yang, S.; Feng, X.; Ivanovici, S.; Muellen, K. Angew. Chem. Int. Ed.2010,49,8408.
    [13]Fasolino, A.; Los, J. H.; Katsnelson, M. I. Nat. Mater.2007,6,858.
    [14]Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett.2008,8,902.
    [15]Ran, X.; Sun, H.; Pu, F.; Ren, J.; Qu, X. Chem. Commun.2013,49,109.
    [16]Li, H.; Liao, J.; Du, Y.; You, T.; Liao, W.; Chen, L. Chem. Commun.2013,49,1768.
    [17]Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Chem. Mater.2007,19,1062.
    [18]Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Adv. Mater.2008,20,4490.
    [19]Kong, X. K.; Chen, Q. W.; Li, R.; Cheng, K.; Yan, N.; Yu, B. X. Chem. Commun.2011,47, 11237.
    [20]Kong, X. K.; Chen, Q. W. J. Mater. Chem.2012,22,15336.
    [21]Kong, X. K.; Chen, Q. W.; Sun, Z. Y. ChemPhysChem 2013,14,514.
    [22]Boukhvalov, D. W.; Katsnelson, M. I.; Licchtenstein, A. I. Phys. Rev. B:Condens. Matter Mater. Phys.2008,77,035427.
    [23]Boukhvalov, D. W.; Katsnelson, M. I. ACS Nano 2011,5,2440.
    [24]曹丹,若干铁电体的磁学性质和极化特性的第一性原理研究,湖南大学硕士学位论文,2009.
    [25]孙慷,张福学压电学(上册),国防工业出版社,1984.
    [26]钟维烈铁电物理学,科学出版社,1998.
    [27]Scott, J. F.; Pazde Araujo, C. A. Science 1989,246,1400.
    [28]Chen, Q. W.; Li, X. G; Zhang, Y. H.; Qian, Y. T. Adv. Mater.2002,14,134.
    [29]Horiuchi, S.; Kumai, R.; Tokura, Y. Angew. Chem. Int. Ed.2007,46,3497.
    [30]Wu, M. H.; Wu, X. J.; Zeng, X. C. J. Phys. Chem. C 2010,114,3937.
    [31]Kumai, R.; Horiuchi, S.; Okimoto, Y. J. Chem. Phys.2006,125,084715.
    [32]Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Nature 2010,463,789.
    [33]Horiuchi, S.; Kumai, R.; Tokura, Y. Angew. Chem. Int. Ed.2007,46,3497.
    [34]Kumai, R.; Horiuchi, S.; Okimoto, Y.; Tokura, Y. J. Chem. Phys.2006,125,084715.
    [1]Raman, C. V. Nature 1928,121,501.
    [2]Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun.2007,3514.
    [3]Hochleitner, R.; Tarcea, N.; Simon, G.; Kiefer, W.; Popp, J. Raman Spectrosc.2004,35,515.
    [4]Grow, A. E.; Wood, L. L.; Claycomb, J. L.; Thompson, P. A. J. Microbial. Methods 2003,53, 221.
    [5]Thomas, G J. Annu. Rev. Biophys. Biochem.1999,28,1.
    [6]Choo-Smith, L. P.; Edwards, H. G M.; Endtz, H. P.; Kros, J. M.; Heule, F.; Barr, H.; Robinson, J. S.; Bruining, H. A.; Puppels, G. J. Biopolymers 2002,67,1.
    [7]Nie, S. M.; Emory, S. R. Science 1997,275,1102.
    [8]Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. J Phys. Chem. C 2009,113, 18212.
    [9]Fang, Y. R.; Li, Y. Z.; Xu, H. X.; Sun, M. T. Langmuir 2010,26,7737.
    [10]Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Langmuir 2011,27,10677.
    [11]Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem.1977,84,1.
    [12]Albrecht, M. G.; Creighton, J. A. J. Am. Chem. Soc.1977,99,5215.
    [13]Moskovits, M. Rev. Mod. Phys.1985,57,783.
    [14]Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev.1999,99,2957.
    [15]Xu, H. X.; Bjerneld, E. J.; Kall, M.; Borjesson, L. Phys. Rev. Lett.1999,83,4357.
    [16]Metiu, H.; Das, P. Annu. Rev. Phys. Chem.1984,35,507.
    [17]Mayer, A. B. Chem. Rev.1996,96,911.
    [18]Arenas, J. F.; Lopez-Tocon, I.; Castro, J. L.; Centeno, S. P.; Lopez-Ramirez, M. R.; Otero, J. C. J. Raman Spectrosc.2005,36,515.
    [19]Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A. J. Chem. Phys.1998,108,5013.
    [20]Liu, S. S.; Wan, S. B.; Chen, M. D.; Sun, M. T. J. Raman Spectrosc.2008,39,1170.
    [21]Sun, M. T.; Liu, S. S.; Chen, M. D.; Xu, H. X. J. Raman Spectrosc.2009,40,137.
    [22]Wu, D. Y.; Hayashi, M.; Lin, S. H.; Tian, Z. Q. Spectrochim. Acta. Part A 2004,60,137.
    [23]段赛,表面增强拉曼光谱和界面电化学的理论研究,厦门大学博士学位论文,2010.
    [24]Geshev, P. I.; Fischer, U.; Fuchs, H. Phys. Rev. B:Condens. Matter Mater. Phys.2010,81, 125441.
    [25]Li, K. R.; Stockman, M. I.; Bergman, D. J. Phys. Rev. Lett.2003,91,227402.
    [26]Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett.1997,78,1667.
    [27]Li, R.; Zhang, H.; Chen, Q. W.; Yan, N.; Wang, H. Analyst 2011,136,2527.
    [28]Cintra, S.; Abdelsalam, M. E.; Bartlett, P. N.; Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Russell, E. Faraday Discuss.2006,132,191.
    [29]Kneipp, J.; Kneipp, H.; Mclaughlin, M.; Brown, D.; Kneipp, K. Nano Lett.2006,6,2225.
    [30]Zhao, L. L.; Jensen, L.; Schatz, G. C. J. Am. Chem. Soc.2006,128,2911.
    [31]Zhao, L. L.; Jensen, L.; Schatz, G. C. Nano Lett.2006,6,1229.
    [32]Jensen, L.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. C 2007,111,4756.
    [33]Wang, H.; Chen, Q. W.; Sun, L. X.; Qi, H. P.; Yang, X.; Zhou, S.; Xiong, J. Langmuir 2009, 25,7135.
    [34]Wang, H.; Chen, Q. W.; Sun, Y. B.; Wang, M. S.; Sun, L. X.; Yan, W. S. Langmuir 2010, 26,5957.
    [35]Wang, H.; Sun, Y. B.; Chen, Q. W.; Yu, Y. F.; Cheng, K. Dalton Transactions 2010,39, 9565.
    [36]Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010,464,392..
    [37]Wang, M. S.; Chen, Q. W. Chem. Eur. J.2010,16,12088.
    [38]Greene, R. L.; Bajaj, K. K. Phys. Rev. B1985,31,913.
    [39]Liu, Y. P.; Goolaup, S.; Murapaka, C.; Lew, W. S.; Wong, S. K. ACS Nano 2010,4,7087.
    [40]Yang, Z. L.; Li, Y.; Li, Z. P.; Wu, D. Y.; Kang, J. Y.; Xu, H. X.; Sun, M. T. J. Chem. Phys. 2009,130,234705.
    [41]Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin S. H.; Tian, Z. Q. J. Phys. Chem. C 2008,112,4195.
    [42]Arenas, J. F.; Tocon, I. L.; Otero, J. C.; Marcos, J. I. J. Phys. Chem.1996,100,9254.
    [43]Wu, D. Y.; Hayashi, M.; Chang, C. H.; Liang, K. K.; Lin, S. H. J. Chem. Phys.2003,118, 4073.
    [44]Cui, Y.; Wu, D. Y.; Wang, A.; Ren, B.; Tian, Z. Q. J. Phys. Chem. C 2010,114,16588.
    [45]Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Nano Lett.2010,10,553.
    [46]Wang, X. T.; Shi, W. S.; She, G. W.; Mu, L. X. J. Am. Chem. Soc.2011,133,16518.
    [47]Kozlov, S. M.; Gorling, F. V. A. J. Phys. Chem. C 2012,116,7360.
    [48]Zhou, X. H.; Huang, Y.; Chen, X. S.; Li, W. J. Phys. Chem. C 2012,116,7393.
    [49]Sun, M. T.; Li, Z. P.; Liu, Y. J.; Xu, H. X. J. Raman Spectrosc.2009,40,1942.
    [50]Gao, J. F.; Yuan, Q. H.; Hu, H.; Zhao, J. J.; Ding, F. J. Phys. Chem. C 2011,115,17695.
    [51]Sun, Y. P; Zhou, B.; Li, Y.; Wang, W.; Shiral Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S. Y. J. Am. Chem. Soc.2006,128,7756.
    [51]Sanerjee, S.; Bhattacharyya, D. Comput. Mater. Sci.2008,44,41.
    [1]Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M.H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Chem. Mater. 2009,27,3136.
    [2]Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Adv. Mater.2009,21,4593.
    [3]Liang, M. H.; Zhi, L. J. J. Mater. Chem.2009,19,5871.
    [4]Gao, B.; Kleinhammes, A.; Tang, X. P.; Bower, C.; Fleming, L.; Wu, Y.; Zhou, O. Chem. Phys.Lett.1999,307,153.
    [5]Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. J. Am. Chem. Soc.2010,132, 12556.
    [6]Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Nano Lett.2008,8,2277.
    [7]Yang, C. K. Applied Physics Letters 2009,94,163115.
    [8]Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; ajayan, P. M. ACS Nano 2010,4,6337.
    [9]Li, Y. L.; Wang, J. J.; Li, X. F.; Geng, D. S.; Banis, M. N.; Li, R. Y.; Sun, X. L. Electrochem. Commun.2012,18,12.
    [10]Tachikawa, H.; Nagoya, Y.; Fukuzumi, T. J. Power Sources 2010,195,6148.
    [11]Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997,386,377.
    [12]Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science 1999, 286,1127.
    [13]Froudakis, G. E. Nano Lett.2001, J,531.
    [14]Seenithurai, S.; Pandyan, R. K.; Kumar, S. V.; Mahendran, M. Int. J. Hydrogen Energy 2013, 38,7376.
    [15]Nagaura, T.; Tozawa, K. Prog. Batteries Sol. Cells 1990,9,209.
    [16]Tarascon, J. M.; Armand, M. Nature 2001,414,359.
    [17]Miller, J. R.; Simon, P. Science 2008,321,651.
    [18]Stournara, M. E.; Shenoy, V. B. J. Power Sources 2011,196,5697.
    [19]Li, X.; Geng, D.; Zhang, Y.; Meng, X.; Li, R.; Sun, X. Electrochem. Commun.2011,13,822.
    [20]Khantha, M.; Cordero, N. A.; Molina, L. M.; Alonso, J. A.; Girifalco, L. A. Phys. Rev. B: Condens. Matter Mater. Phys.2004,70,125422.
    [21]Wu, D. H.; Li, Y. F.; Zhou, Z. Theor. Chem. Ace.2011,130,209.
    [22]Ma, C. C.; Shao, X. H.; Cao, D. P. J. Mater. Chem.2012,22,8911.
    [23]Fan, X.; Zheng, W. T.; Kuo, J. L. ACSAppl. Mater. Interfaces 2012,4,2432.
    [24]Zhao, Y. F.; Kim, Y. H.; Dillon, A. C.; Heben, M. J.; Zhang, S. B. Phys. Rev. Lett.2005,94, 155504.
    [25]Yoon, M.; Yang, S. Y.; Wang, E.; Zhang, Z. Y. Nano Lett.2007,7,2578.
    [26]Dag, S.; Ozturk, Y.; Ciraci, S.; Yildirim, T. Phys. Rev.B 2005,72,155404.
    [27]Sun, Q.; Wang, Q.; Jena, P.; Kawazoe, Y. J. Am. Chem. Soc.2005,127,14582.
    [28]Schmidt, P. K.; Christmann, K.; Kresse, G.; Hafner, J.; Lischka, M.; Gross, A. Phys. Rev. Lett. 2001,87,096103.
    [29]Lopez-Corral, I.; German, E.; Juan, A.; Volpe, M. A.; Brizuela, G. P. Int. J, Hydrogen Energy 2012,37,6653.
    [30]Xu, X.; Li, Y.; Gong, Y.; Zhang, P.; Li, H.; Wang, Y. J. Am. Chem. Soc.2012,134,16987.
    [31]Lopez-Corral, I.; German, E.; Juan, A.; Volpe, M. A.; Brizuela, G. P. J. Phys. Chem. C 2011, 115,4315.
    [32]Cabria, I.; Jopez, M. J.; Alonso, J. A. Phys. Rev. B 2010,81,035403.
    [33]Carrero-Sanchez, J. C.; Elias, A. L.; Mancilla, R.; Arrellin, G.; Terrones, H.; Laclette, J. P.; Terrones, M. Neno Lett.2006,6,160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700