用户名: 密码: 验证码:
粘性液体气体两相流模型解的存在性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了一维空间中粘性液体-气体两相流简化模型
     其中n=αgρg,m=αlρl分别代表气体和液体的质量;ρl,ρg,ull和ug分别代表液体、气体的密度和速度;P表示流体的公共压力;q代表外力,像重力、摩擦力等;μ表示粘性系数。未知量αg,αl分别代表气体与液体所占的体积比例,满足以下的关系式:ag+αl=1.
     模型(0.0.1)是一种“漂流”模型,用于模拟管道中不稳定的可压缩液体-气体流。这里我们假设两种流体的速度是一样的,有公共的压强,同时考虑了粘性效应,忽略气体在混合动量方程中的效应和外力的作用。
     本文主要研究模型(0.0.1)在适当条件下弱解的存在性,唯一性和经典解的存在性和唯一性等问题,分为以下两个方面:
     ·模型(0.0.1)在1维空间中的自由边界问题,其中粘性依赖于液体和气体的质量,即μ=Cnβ/(ρl-m)β+1,在自由边界处流体连续连接到真空,得到了当0<β<1时弱解的存在性和唯一性。
     ·模型(0.0.1)在1维空间中的固定边界问题(初始可含真空),即在边界处u=0,粘性依赖液体的质量,满足μ∈C2[0,∞),μ(m)≥M1>0,得到了经典解的存在唯一性。
We study the existence of the solutions to a viscous liquid-gas two-phase flow model in1dimensional space:
     where n=αgρg, m=αlρl denote gas mass and liquid mass respectively; ρl-,ρg, ul and ug denote density and velocity of liquid and gas respectively; P is common pressure for both phases; q represents external forces like gravity and friction;μ is viscosity coefficient。The unknown vari-ables αg,αl∈[0,1] denote gas and liquid volume fractions, satisfying the fundamental relation: αg+αl=1.
     The model (0.0.2) can be viewed to be a kind of drifting model, which are widely used to describe unstable compressible liquid-gas stream in pipeline, and where we assumed the fluids velocities are equal and have the common pressure, considered the viscous effect, neglected the effect of gas in the mixture momentum equation and the external force.
     For the model (0.0.2), we study the existence and uniqueness of the weak solution, as well as the existence and uniqueness of the classical solution, under approximate conditions, which have be divided into the following areas:
     · The free boundary problem about model (0.0.2) in one dimensional space has been in-vestigated, where the viscosity coefficient depends on the masses of fluid and gas, i.e. and both the two fluids connect to vacuum state continuously at the free boundaries. We get the existence and uniqueness of the weak solution, as0<β<1.
     · The fixed boundary problem (i.e. u=0) about model (0.0.2) in one dimensional space has been investigated, where the initial condition contains vacuum, and the viscosity co-efficient depends on the mass of liquid and satisfies μ∈C2[0,∞),μ(m)≥Mi>0. We obtain the existence and uniqueness of the classical solution.
引文
[1]C.E. Brennen. Fundamentals of Multiphase Flow [M]. New York:Cambridge University Press,2005.
    [2]D. Bresch, B. Desjardins, J.M. Ghidaglia, E. Grenier. Global weak solutions to a generic two-fluid model [J]. Arch. Rational Mech. Anal.,2010,196:599-629.
    [3]D. Bresch, B. Desjardins, J.M. Ghidaglia, E. Grenier. The low mach number limit and the generic two-phase model [EB/01]. Preprint,2007.
    [4]C.H. Chang, M.S. Liou. A robust and accurate approach to compressible multiphase flow:Stratified flow model and AUSM+-up scheme [J]. J. Comput. Phys.,2007,225:840-873.
    [5]P. Chen, D.Y. Fang, T. Zhang. Free boundary problem for compressible flows with density dependent viscosity coefficients [J]. Communications on Pure and Applied Analysis,2011,10:459-478.
    [6]H.J. Choe, H. Kim. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids [J]. J. Differential Equations,2003,190:504-523.
    [7]Y. Cho, H.J. Choe, H. Kim. Unique solvability of the initial boundary value problems for compressible viscous fluids [J]. J. Math. Pures Appl.,2004,83:243-275.
    [8]Y. Cho, B.J. Jin. Blow-up of viscous heat-conducting compressible flows [J]. J. Math. Anal. Appl.,2006, 320:819-826.
    [9]Y. Cho, H. Kim. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities [J]. Manuscripta Math.,2006,120:91-129.
    [10]J.Cortes. On the construction of upwind schemes for non-equilibrium transient two-phase flow [J]. Com-put. Fluids,2002,31:159-182.
    [11]H.B. Cui, H.Y. Wen, H.Y. Yin. Global classical solutions of viscous liquid-gas two-phase flow model 2012, arXiv:1201.1560v1.
    [12]B. Desjardins. Regularity results for two-dimensional flows of multiphase viscous fluids [J]. Arch. Rational Mech. Anal.,1997,137:135-158.
    [13]S.J. Ding, H.Y. Wen, C.J. Zhu. Global classical solution of 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum [EB/01]. Preprint,2011.
    [14]S.J. Ding, H.Y. Wen, L. Yao, C.J. Zhu. Global classical spherically symmetric solution to compressible Navier-Stokes equations with large initial data and vacuum [EB/01].2011, arXiv:1103.1421vl.
    [15]B. Ducomet, A. Zlotnik. Viscous compressible barotropic symmetric flows with free boundary under gen-eral mass force Part Ⅰ:Uniform-in-time bounds and stabilization [J]. Math. Meth. Appl. Sci.,2005,28: 827-863.
    [16]L.C. Evans. Partial Differential Equations [M]. Rhode Island:Amercain Mathematical Society Providence, 1998.
    [17]S. Evje, K.K. Fjelde. Hybrid flux-splitting schemes for a two-phase flow model [J]. J. Comput. Phys., 2002,175:674-701.
    [18]S. Evje, K.K. Fjelde. Relaxation schemes for the calculation of two-phase flow in pipe [J]. Math. Comput. Modelling,2002,36:535-567.
    [19]S. Evje, K.K. Fjelde. On a rough AUSM scheme for a one dimensional two-phase model [J]. Comput. Fluids, 2003,32:1497-1530.
    [20]S. Evje,T.Flatten. Hybrid flux-splitting schemes for a common two-fluid model [J]. J. comput. Phys., 2003,192:175-210.
    [21]S. Evje, T. Flatten. On the wave structure of two-phase flow models [J]. SIAM J. Appl. Math.,2006/07, 67:487-511.
    [22]S. Evje, K.H. Karlsen. Global existence of weak solutions for a viscous two-phase model [J]. J. Differ. Equations,2008,245:2660-2703.
    [23]S. Evje, K.H. Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law [J]. Commun. Pure Appl. Anal.,2009,8:1867-1894.
    [24]S. Evje, T. Flatten, H.A. Friis. Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum [J]. Nonlinear Anal.,2009,70:3864-3886.
    [25]S. Faille, E. Heintze. A rough finite volume scheme for modeling two-phase flow in a pipeline [J]. Comput. Fluids,1999,28:213-241.
    [26]J. Fan, S. Jiang. Zero shear viscosity limit for the Navier-Stokes equations of compressible isentropic fluids with cylindric symmetry [J]. Rend. Semin. Mat. Univ. Politec. Torino,2007,65:35-52.
    [27]D.Y. Fang, T. Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension [J]. Comm. Pure Appl. Anal.,2004,3:675-694.
    [28]D.Y. Fang, T. Zhang. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law [J]. Math. Meth. Appl. Sci.,2006,29:1081-1106.
    [29]D.Y. Fang, T. Zhang. Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data [J]. J. Differential Equations,2006,222:63-94.
    [30]E. Feireisl, A. Novotny, H. Petzeltova. On the existence of globally defined weak solutions to the Navier-Stokes equations [J]. J. math. fluid mech.,2001,3:358-392.
    [31]K.K. Fjelde, K.H. Karlsen. High-resolution hybrid primitive-conservative upwind schemes for the drift flux model [J]. Comput. Fluids,2002,31:335-367.
    [32]J. Frehse, S. Goj, J. Malek. On a Stokes-like system for mixtures of fluids [J]. SIAM J. Math. Anal.,2005, 36:1259-1281.
    [33]H.A. Friis, S. Evje, T. Flatten. A numerical study of characteristic slow-transient behavior of a compressible 2D gas-liquid two-fluid model [J]. Adv. Appl. Math. Mech.,2009,1:166-200.
    [34]Y. Giga, S. Takahashi. On global weak solutions of the nonstationary two-phase Stokes flow [J]. SIAM J. Math. Anal.,1994,25:876-893.
    [35]Z.H. Guo, S. Jiang, F. Xie. Global existence and asymptotic behavior of weak solutions to the 1D com-pressible Navier-Stokes equations with degenerate viscosity coefficient [J]. Asymptotic Analysis,2008, 60:101-123.
    [36]Z.H. Guo, Q.S. Jiu, Z.P. Xin. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients [J]. SIAM J. Math. Anal.,2008,39:1402-1427.
    [37]Z.H. Guo, J. Yang, L. Yao. Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum [J]. Journal of Mathematical Physics,2011, doi:10.1063/1.3638039.
    [38]D. Hoff. Construction of solutions for compressible, isentropic Navier-Stokes equations in one space di-mension with nonsmooth initial data [J]. Proc. Roy. Soc. Edinburgh,1986,103:301-315.
    [39]D. Hoff. Spherically symmetric solutions of the Navier-Stokes equations for compressible, isother-mal flow with large discontinuous initial data [J]. Indiana Univ. Math. J.,1992,41:1225-1302.
    [40]D. Hoff. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data [J]. J. Differential Equations,1995,120:215-254.
    [41]D. Hoff. Strong convergence to global solutions for multidimensional flows of compressible viscous fluids with polytropic equations of state and discontinuous initial data [J]. Arch. Rational Mech. Anal.,1995,132: 1-14.
    [42]D. Hoff. Global solutions of the equations of one-dimensional compressible flow with large data and forces and with differing end states [J]. Z. angew. Math. Phys.,1998,49:774-785.
    [43]D. Hoff. Compressible flow in a half-space with navier boundary conditions [J]. J. math, fluid mech.,2005, 7:315-338.
    [44]D. Hoff, M.M. Santos. Lagrangean Structure and Propagation of Singularities in Multidimensional Com-pressible Flow [J]. Arch. Rational Mech. Anal.,2008,188:509-543.
    [45]X.D. Huang, Z.P. Xin.A blow-up criterion for the compressible Navier-Stokes equations [EB/01].2009, arXiv:0902.2606vl.
    [46]X.D. Huang, Z.P. Xin. A blow-up criterion for classical solutions to the compressible Navier-Stokes equa-tions [J]. Sci. China Mathematics,2010,53:671-686.
    [47]X.D. Huang, J. Li, Z.P. Xin. Global well-posedness of classical solutions with large oscillations and vac-uum to the three-dimensional isentropic compressible Navier-Stokes equations [EB/01]. arXiv:1004.4749
    [48]M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow [M]. Paris:Eyrolles,1975.
    [49]S. Jiang, P. Zhang. On spherically symmetric solutions of the compressible isentropic Navier-Stokes equa-tions [J]. Commun. Math. Phys.,2001,215:559-581.
    [50]S. Jiang, P. Zhang. Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data [J]. Indiana University mathematics journal,2002, 51:345-355.
    [51]S. Jiang, P. Zhang. Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids [J]. J. Math. Pures Appl.,2003,82:949-973.
    [52]S. Jiang, Z.P. Xin, P. Zhang. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity [J]. Methods Appl. Anal.,2005,12:239-251.
    [53]S. Jiang, J. Zhang. Boundary layers for the Navier-Stokes equations of compressible heat-conducting flows with cylindrical symmetry [J]. SIAM J. Math. Anal.,2009,41:237-268.
    [54]Q.S. Jiu, Z.P. Xin. The cauchy problem for 1D compressible flows with density-dependent viscosity coef-ficients [J]. Kinet. Relat. Models,2008,1:313-330.
    [55]H.L. Li, J. Li, Z.P. Xin. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations [J]. Commun. Math. Phys.,2008,281:401-444.
    [56]P.L. Lions. Mathematical Topic in Fluid Mechanics(Vol.2)[M]. New York:Oxford University Press, 1998.
    [57]T.P. Liu, Z.P. Xin, T. Yang. Vacuum states for compressible flow [J]. Discrete Contin. Dynam. Systems, 1998,4:1-32.
    [58]Q.Q. Liu, C.J. Zhu. Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum [J]. Journal of Differential Equations,2012,252:2492-2519.
    [59]T. Luo, Z.P. Xin, T. Yang. Interface behavior of compressible Navier-Stokes equations with vaccum [J]. SIAM J. Math. Anal.,2000,31:1175-1191.
    [60]A. Mellet, A. Vasseur. On the isentropic compressible Navier-Stokes equation [EB/01].2005, arXiv:math/0511210v1.
    [61]A. Mellet, A. Vasseur. On the barotropic compressible Navier-Stokes equations [J]. Communications in Partial Differential Equations,2007,32:431-452.
    [62]A. Nouri, F. Poupaud. An existence theorem for multifluid Navier-Stokes problem [J]. J. Differential Equations,1995,122:71-88.
    [63]A. Nouri, F. Poupaud, Y. Demay. An existence theorem for the multi-fluid Stokes problem [J]. Quart. Appl. Math.,1997,55:421-435.
    [64]M. Okada. Free boundary value problems for the equation of one-dimensional motion of viscous gas [J]. Japan J. Appl. Math.,1989,6:161-177.
    [65]M. Okada, S. Matusu-Necasova, T. Makino. Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity [J]. Ann. Univ. Ferrara-Sez.,2002,48:1-20.
    [66]A. Prosperetti, G. Tryggvason(Editors). Computational Methods for Multiphase Flow [M]. New York: Cambridge Univ Press,2007.
    [67]X.L. Qin, Z.A. Yao. Global smooth solutions of the compressible Navier-Stokes equations with density-dependent viscosity [J]. J. Differential Equations,2008,244:2041-2061.
    [68]X.L. Qin, Z.A. Yao, H.X. Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries [J]. Commun. Pure Appl. Anal.,2008,7:373-381.
    [69]Y.M. Qin, L. Huang, Z.A. Yao. Regularity of 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity [J]. J. Differential Equations,2008,245:3956-3973.
    [70]W.J. Sun, S. Jiang, Z.H. Guo. Helically symmetric solutions to the 3-D Navier-Stokes equations for com-pressible isentropic fluids [J]. J. Differential Equations,2006,222:263-296.
    [71]V.A. Vaigant, A.V. Kazhikhov. On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid [J]. Siberian Math. Journal,1995,36:1108.-1141.
    [72]S.W. Vong, T. Yang, C.J. Zhu. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II) [J]. J. Differential Equations,2003,192:475-501.
    [73]M.J. Wei, T. Zhang, D.Y. Fang. Global behavior of spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients [J]. SIAM J. Math. Anal.,2008,40:869-904.
    [74]H.Y. Wen, L. Yao. Global existence of strong solutions of the Navier-Stokes equations for isentropic com-pressible fluids with density-dependent viscosity [J]. J. Math. Anal. Appl.,2009,349:503-515.
    [75]H.Y. Wen, L. Yao, C.J. Zhu. A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum [EB/01].2011, arXiv:1103.1421v1.
    [76]Z.G. Wu, C.J. Zhu. Vacuum problem for 1D compressible Navier-Stokes equations with gravity and gen-eral pressure law [J]. Z. Angew. Math. Phys.,2009,60:246-270.
    [77]Z.P. Xin. Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density [J]. Comm. Pure Appl. Anal.,1998,51:229-240.
    [78]T. Yang, Z.A. Yao, C.J. Zhu. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum [J]. Comm. Partial Diff. Equ.,2001,26:965-981.
    [79]T. Yang, H.J. Zhao. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity [J]. J. Differential Equations,2002,184:163-184.
    [80]T. Yang, C.J. Zhu. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vac- uum [J]. Commun. Math. Phys.,2002,230:329-363.
    [81]L. Yao, C.J. Zhu. Free boundary value problem for a viscous two-phase model with mass-dependent vis-cosity [J]. J. Differential Equations,2009,247:2705-2739.
    [82]L. Yao, T. Zhang, C.J. Zhu. Existence and asymptotic behavior of global weak solutions to a 2d viscous liquid-gas two-phase flow model [J]. SIAM J. MATH. ANAL.,2010,42:1874-1897.
    [83]L. Yao, T. Zhang, C.J. Zhu. A blow-up criterion for a 2D viscous liquid-gas two-phase flow model [J]. J. Differential Equations,2011,250:3362-3378.
    [84]L. Yao, C.J. Zhu. Existence and uniqueness of global weak solution to a two-phase flow model with vacuum [J]. Mathematische Annalen,2011,349:903-928.
    [85]T. Zhang. Compressible navier-stokes equations with density-dependent viscosity [J]. Appl. Math. J. Chi-nese Univ.,2006,21:165-178.
    [86]T. Zhang, D.Y. Fang. Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient [J]. Arch. Rational Mech. Anal,2006,182:223-253.
    [87]T. Zhang, D.Y. Fang. Global behavior of spherically symmetric Navier-Stokes equations with density-dependent viscosity [J]. J. Differential Equations,2007,236:293-341.
    [88]T. Zhang, D.Y. Fang. Global behavior of spherically symmetric Navier-Stokes-Poisson system with de-generate viscosity coefficients [J]. Arch. Rational Mech. Anal.,2009,191:195-243.
    [89]T. Zhang, D.Y. Fang. Compressible flows with a density-dependent viscosity coefficient [J]. SIAM J. Math. Anal.,2010,41:2453-2488.
    [90]T. Zhang. Global solutions of compressible barotropic Navier-Stokes equations with a density-dependent viscosity coefficient [J]. Journal of Mathematical Physics,2011,52.
    [91]C.J. Zhu. Asymptotic behavior of compressible Navier-Stokes equations with densitydependent viscosity and vacuum [J]. Comm. Math. Phys.,2010,293:279-299.
    [92]A. A. Zlotnik. Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equa-tions [J]. Partial Differential Equations.,2000,36:701-716.
    [93]A. A. Zlotnik, B. Ducomet. Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force [J]. Sb. Mathematics,2005,196:1745-1799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700