用户名: 密码: 验证码:
新型电化学传感器对于生理活性物质的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生理活性物质与人类的健康息息相关,例如活性氧,它涉及到衰老、癌症、以及神经系统相关疾病的病理过程,因此,寻找可靠且灵敏的分析方法来定性评估与定量检测生理活性物质非常重要。由于具有灵敏度高、响应快、操作简便、样品用量少、可微型化等特点,生物传感器在临床医学、食品工业、发酵工业、环境监测等领域已得到广泛应用。蓬勃发展的纳米技术,特别是各种具有特殊性质的纳米材料的出现及应用,又为生物传感器的发展打开了一片新天地。本论文结合了分析化学、电化学、材料科学等领域的研究,致力于利用新型的纳米材料来构建电化学生物传感器,将其应用于生理活性物质的电化学分析中,主要分为以下六章:
     第一章,首先对电化学生物传感器和纳米材料的基本原理、研究现状、应用领域和发展前景进行了综述,阐述了生理活性物质,尤其是活性氧的研究意义,然后在此基础上提出本论文的研究设想,即利用新型的纳米材料来构建电化学生物传感器,将其应用于生理活性物质的电化学分析中。
     第二章,基于二氧化钛纳米粒子光催化体系的快速准确评估抗氧化药物的电化学传感器研究:为检测活性氧中毒性最强的·OH自由基,以及筛选能够有效清除-OH自由基的抗氧化药物,我们以二氧化钛纳米粒子的光催化反应作为实验中·OH自由基的发生体系,以4-羟基苯甲酸(4-hydroxybenzoic acid,4-HBA)与·OH自由基的羟基化反应作为研究模型,利用羟基化后的专一产物3,4-二羟基苯甲酸(3,4-dihydroxybenzoic acid,3,4-DHBA)的电化学响应来间接表征体系中·OH自由基的生成量。向反应体系中添加抗氧化药物后,再利用3,4-DHBA的电化学信号的抑制程度成功实现了抗氧化药物性能的精确评估。同时,我们也利用传统的荧光检测法验证了该电化学方法的准确性。荧光法的反应机理是对苯二酸(terephthalic acid, TA)捕获.OH生成具有荧光效应的2-羟基对苯二酸(2-hydroxyterephthalic acid,2-TA),利用添加抗氧化药物后所导致2-TA的荧光信号的抑制程度来反映抗氧化药物的抗氧化能力。两种方法结果的一致性表明了电化学方法的准确性与可靠性,最后,利用该电化学传感器成功评估了从6种天然抗氧化植物萃取出的生理活性物质的抗氧化性能,为将来进一步的实际应用奠定了良好的基础。
     第三章,基于大孔有序的泡沫氧化硅材料的过氧化氢电化学生物传感器研究:基于大孔材料优异的传质性能、良好的蛋白分子吸附固定特性等,我们以大孔材料(MOSF)作为生物载体,通过静电作用力吸附细胞色素c,并利用细胞色素c对过氧化氢的电催化作用,构建了一个基于细胞色素c直接电子传递的过氧化氢生物传感器。该传感器针对过氧化氢检测的线性范围以及检测限方面均取得了令人满意的结果,为进一步的实际应用提供了一个良好的平台。随后,为进一步研究材料表面环境对所吸附的蛋白的影响,我们利用后修饰法在MOSF表面分别修饰了-CN,-SH,-NH2官能团,并运用同样的组装方法,将细胞色素c固定在材料的孔径中,研究了该氧化还原蛋白的直接电化学行为,并与未修饰官能团的MOSF材料做了比较。
     第四章,基于介孔碳纳米球层层组装技术的过氧化氢电化学生物传感器研究:通过层层组装的方法,利用介孔碳小球与阳离子聚电解质构建了一种基于Cytc的H202生物传感器。由于静电吸引作用,修饰于ITO电极上的介孔碳纳米球对于Cytc显示了很好的吸附特性。峰形良好的氧化还原峰证实了在没有任何外加电子媒介体的存在下,吸附于介孔碳纳米球中的Cytc与电极成功发生了直接电子转移。该传感器对H202具有良好的电催化作用,并且可以通过控制修饰电极的组装层数来调变传感性能,从而达到合理设计传感器的目的。
     第五章,基于介孔碳材料的烟酰胺腺嘌呤二核苷酸(NADH)的电催化氧化研究:NADH在固体电极上通常具有较高的氧化过电位,极易引起电极表面的污染与钝化。本章利用碳介孔材料(CMM)修饰的玻碳电极来研究NADH的电化学氧化。CMM所具有的大比表面积、高电子传递能力以及丰富的边片状缺陷位和表面含氧官能团,对NADH的氧化表现出了较高的电催化性能,将NADH的氧化过电位降低了595mV(与未修饰的裸玻碳电极相比),成功实现了NADH在低电位条件下(0.1Vvs. SCE,pH7.2)稳定灵敏的响应,检测下限为1.0μM,线性响应范围为10~600μM。这为基于以NADH为辅酶的脱氢酶的电流型生物传感器的发展提供了新的研究途径。
     第六章,二维平面上单分散金原子阵列修饰的石墨烯材料的制备及其电化学性质的初步研究:石墨烯是继富勒烯和碳纳米管之后科学界的又一重大发现,石墨烯的发现,充实了碳材料家族,形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。目前已有一些关于石墨烯以及纳米粒子/石墨烯复合材料(NPs/graphene)的合成报道与应用研究。在这部分工作中,我们发展了一种基于石墨烯的二维平面,快速可控的溅射方法来形成金团簇纳米阵列。通过调整溅射电流的大小、角度和时间,得到了一系列不同尺寸的金团簇纳米颗粒阵列,最小可达1.05nm且无团聚现象发生,形成的纳米颗粒形貌均一,分散性良好,并且这种复合膜表现出良好的热力学稳定性、优良的导电性以及极高的金负载量,这些性能为生物传感器的研制和电化学研究提供了一个广阔的研究平台。
     第七章,对全文进行了总结,总结了研究中存在的一些不足,并提出了后续工作的目标和研究思路。
Physiologically active substances, such as reactive oxygen species (ROS), are related to human health. The ROS plays an important role in many pathological processes, such as aging, cancer and neurological diseases. Therefore, it is necessary to establish new reliable and sensitive method to make a qualitative and quantitative assessment of physiological active substances. Due to the high sensitivity, fast response, simple operation, and small consumption of sample, biosensors have been widely used in clinical medicine, food industry, fermentation industry, environmental monitoring and other fields. The vigorous development of nanotechnology, in particular, the appearance of a variety of nanomaterials with special properties, has opened a new world for bio-sensors. Combining the analytical chemistry, electrochemistry, material science and other areas of research, this thesis committed to use new nanomaterials for construction of biosensors which are applied to the electroanalysis of physiologically active substances. This dissertation includes six chapters as follows:
     In Chapter One, we introduced the research and development of nanomaterials and biosensors, respectively. Then we proposed a scheme of nanomaterials-based electrochemical sensors for electroanalysis of physiologically active substances. Finally we outlined the experimental ideas and the research purposes of this thesis.
     In Chapter Two, we studied a simple and sensitive electrochemical method for the determination of antioxidant capacity.4-hydroxybenzoic acid (4-HBA) was used as a trapping agent for TiO2photogenerated-OH radicals, leading to3,4-dihydroxybenzoic acid (3,4-DHBA). Square-wave voltammetry was used to quantify the amount of3,4-DHBA formed from the reaction between4-HBA and·OH. Addition of antioxidants induced the competition between4-HBA and antioxidants toward-OH elimination, resulting in a decrease of the measured current. The IC50for different standard antioxidants was calculated and expressed in Trolox equivalent antioxidant capacity (TEAC). The validation of the proposed electrochemical method was also performed using an alternative detection method based on fluorimetry. In this method, the·OH radicals generated through the photocatalytic oxidation of water ware trapped by terephthalic acid (TA), producing fluorescent2-hydroxy-terephthalic acid (2-HTA). And similar trends were observed when comparing the antioxidant capacity calculated using the two methods. The applicability of this method has been shown by analyzing the antioxidant capacity of six plant extracts. Therefore, it can be concluded that the proposed electrochemical method is a good alternative strategy for antioxidant assessment due to its fast response, accuracy and inexpensive apparatus.
     In Chapter Three, an amperometric biosensor for hydrogen peroxide (H2O2) has been constructed by immobilizing cytochrome c (Cyt c) on a macroporous material modified indium/tin oxide (ITO) electrode. Cyclic voltammetry showed that the direct and quasi-reversible electron transfer of Cyt c was achieved without the aid of an electron mediator. A surface-controlled electrode process was observed with the apparent heterogeneous electron-transfer rate constant (ks) of29.2s-1. The prepared biosensor exhibited an excellent electrocatalytic response to the reduction of H2O2. The amperometric responses increased steadily with the concentration of H2O2in the range from5μM to2mM, with a detection limit of0.5μM at pH7.4. This investigation not only provided a method for the direct electron transfer of Cyt c on macroporous materials, but also established a feasible approach for durable and reliable detection of H2O2. Furthermore, in view of the adjustable surface of MOSF, we also investigated the electrochemical behavior of Cyt c immobilized on MOSF substrates which were modified with different organic functionalities, including-CN,-SH, and-NH2.
     In Chapter Four, a Cytochrome c-based biosensor for hydrogen peroxide (H2O2) has been constructed via layer-by-layer (LBL) assembly of mesoporous carbon nanospheres and polydiallyldimethylammonium (PDDA). Cyclic voltammetry showed that the direct and quasi-reversible electron transfer of Cyt c was achieved without the aid of an electron mediator. The prepared biosensor exhibited good electrocatalytic responses to the reduction of H2O2. In addition, assembling carbon nanospheres on the electrode by means of LBL technology could control the amount of Cyt c immobilized on the electrode, and thus control its biosensor properties by regulating the thickness of the mesoporous carbon nanospheres-assembled layers.this makes the rational design of enzyme electrodes possible.
     In Chapter Five, the electrochemical oxidation of β-nicotinamine adenine dinucleotide (NADH) was investigated at a glassy carbon electrode modified with carbon mesoporous materials (CMM). Due to the large surface area and electro-catalytic properties of CMM, the overpotential of the electrodes toward the oxidation of NADH is decreased by595mV in aqueous solution at neutral pH. The anodic peak currents increase steadily with the concentration of NADH in the range from2μM to1.1mM, the detection limit being1.0μM at pH7.2and a potential of +0.3V vs. SCE. The results enable NADH to be sensed at a low potential and are promising with respect to the design of dehydrogenasebased amperometric biosensors.
     In Chapter Six, we developed a rapid, solventless sputtering method to generate the2D bulk gold NPs/graphene hybrid superstructures in10seconds. The size and morphology of gold NPs are fine controlled in a wide range down to1.05nm by adjusting the sputtering current, sputtering angle, and sputtering time. The hybrids achieve ultra-high gold carriage and high thermal stability. We also investigate the properties of the hybrids via electrochemical methods. This composite structure enables a new class of electrode materials and offers an excellent platform for electrochemical applications.
     In Chapter Seven, we summarized and proposed the objects and schemes for further research.
引文
[1]汪少芸,电分析化学在生命科学中的应用[J],福建分析测试,2005,14,2106-2111.
    [2]刘春菊,刘春泉,李大婧,生物传感器及其在食品检测中的应用进展[J],江苏农业科学,2009,4,353-356.
    [3]樊占春,张静,生物传感器在环境监测领域的应用[J],四川环境,2010,29,133-137.
    [4]刘蓉,薛文通,张惠,尹淑涛,浅析生物传感器在食品分析中的应用[J],食品工业科技,2009,11.
    [5]马莉评,毛斌,刘斌,李工农,韩根亮,刘国汉,生物传感器的应用现状与发展趋势[J],传感器与微系统,2009,28,1-4.
    [6]M.U. Ahmed, M.M. Hossain, E. Tamiya, Electrochemical biosensors for medical and food applications [J], Electroanal,2008,20,616-626.
    [7]J. Castillo, S. Gaspar, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, E. Csoregi, Biosensors for life quality Design, development and applications [J], Sensor Actuat B-Chem,2004,102, 179-194.
    [8]K. Kerman, M. Saito, S. Yamamura, Y. Takamura, E. Tamiya, Nanomaterial-based electrochemical biosensors for medical applications [J], Trac-Trend Anal Chem,2008,27,585-592.
    [9]J. Wang, Nanomaterial-based electrochemical biosensors [J], Analyst,2005,130, 421-426.
    [10]司士辉,生物传感器[M],北京,化学工业出版社,2003,1.
    [11]许文娟,焦晨旭,生物传感器的发展应用及前景[J],化工中间体,2010,11,15-19.
    [12]张先恩,生物传感器[M],北京,化学工业出版社,2005,6.
    [13]姚玉堂,电分析化学实验技术的应用和进展[J],赤峰学院学报(自然科学版),2005,21,26-27.
    [14]董绍俊,车广礼,谢远武,化学修饰电极(修订版)[M],北京,科学出版社,2003.
    [15]鞠熀先,电分析化学与生物传感技术[M],北京,科学出版社,2006.
    [16]S.A. Kumar, S.F. Wang, C.T. Yeh, H.C. Lu, J.C. Yang, Y.T. Chang, Direct electron transfer of cytochrome C and its electrocatalytic properties on multiwalled carbon nanotubes/ciprofloxacin films [J], J Solid State Electr,2010, 14,2129-2135.
    [17]Z.H. Dai, S.Q. Liu, H.X. Ju, Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing [J], Electrochim Acta,2004,49,2139-2144.
    [18]Y.J. Teng, X.B. Wu, Q. Zhou, C. Chen, H.L. Zhao, M.B. Lan, Direct electron transfer of myoglobin in mesoporous silica KIT-6 modified on screen-printed electrode [J], Sensor Actuat B-Chem,2009,142,267-272.
    [19]Q. Xu, X.J. Bian, L.L. Li, X.Y. Hu, M. Sun, C. Da, Y. Wang, Myoglobin immobilized on Fe3O4@SiO2 magnetic nanoparticles:Direct electron transfer, enhanced thermostability and electroactivity [J], Electrochem Commun,2008,10, 995-999.
    [20]Y. Liu, W.Z. Wei, X.Y. Liu, X.D. Zeng, Y.H. Li, S.L. Luo, Direct Electron Transfer Reactivity of Hemoglobin in Cationic Gemini Surfactant-Poly (Allylamine) Hydrochloride Composite Film on Glassy Carbon Electrode [J], Anal Lett,2011,44,585-594.
    [21]W.X. Cheng, G.Y. Jin, Y.Z. Zhang, Direct electron transfer of hemoglobin on PSS/SWNTs film modified Au electrode and its interaction with ribavirin [J], Sensor Actuat B-Chem,2006,114,40-46.
    [22]Q. Ran, R. Peng, C. Liang, S.Q. Ye, Y.Z. Xian, W.J. Zhang, L.T. Jin, Covalent immobilization of horseradish peroxidase via click chemistry and its direct electrochemistry [J], Talanta,2011,83,1381-1385.
    [23]F. Li, Y. Feng, Z. Wang, L.M. Yang, L.H. Zhuo, B. Tang, Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate-gold nanoparticles inorganic hybrid composite [J], Biosens Bioelectron,2010,25,2244-2248.
    [24]Y. Wang, X.L. Ma, Y. Wen, Y.Y. Xing, Z.R. Zhang, H.F. Yang, Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite [J], Biosens Bioelectron,2010,25, 2442-2446.
    [25]J. Xu, F.J. Shang, J.H.T. Luong, K.M. Razeeb, J.D. Glennon, Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode [J], Biosens Bioelectron,2010,25, 1313-1318.
    [26]Z.F. Deng, Q. Rui, X. Yin, H.Q. Liu, Y. Tian, In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase [J], Anal Chem,2008,80,5839-5846.
    [27]Z.F. Deng, Y. Tian, X. Yin, Q. Rui, H.Q. Liu, Y.P. Luo, Physical vapor deposited zinc oxide nanoparticles for direct electron transfer of superoxide dismutase [J], Electrochem Commun,2008,10,818-820.
    [28]H.Q. Liu, Y. Tian, P.P. Xia, Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase:Application to superoxide anion biosensors [J], Langmuir,2008,24,6359-6366.
    [29]Y.P. Luo, Y. Tian, A.W. Zhu, Q. Rui, H.Q. Liu, Direct electron transfer of superoxide dismutase promoted by high conductive TiO2 nanoneedles [J], Electrochem Commun,2009,11,174-176.
    [30]C.Y. Deng, J.H. Chen, Z. Nie, S.H. Si, A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode [J], Biosens Bioelectron,2010,26, 213-219.
    [31]P. Wu, Q.A. Shao, Y.J. Hu, J.A. Jin, Y.J. Yin, H. Zhang, C.X. Cai, Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection [J], Electrochim Acta,2010,55,8606-8614.
    [32]O. Courjean, F. Gao, N. Mano, Deglycosylation of Glucose Oxidase for Direct and Efficient Glucose Electrooxidation on a Glassy Carbon Electrode [J], Angewandte Chemie-International Edition,2009,48,5897-5899.
    [33]武宝利,张国梅,高春光,双少敏,生物传感器的应用研究进展[J],中国生物工程杂志,2004,24.
    [34]C. Ziegler, W. Gopel, Biosensor development [J], Curr Opin Chem Biol,1998,2, 585-591.
    [35]许并社等,纳米材料及应用技术[M],北京,化学工业出版社,2003.
    [36]刘焕彬,陈小泉,纳米科学与技术导论[M],北京,化学工业出版社,2006.
    [37]李群主编,纳米材料的制备与应用技术[M],北京,化学工业出版社,2008.
    [38]D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279,548-552.
    [39]C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism [J], Nature,1992,359,710-712.
    [40]H.N. Wang, X.F. Zhou, M.H. Yu, Y.H. Wang, L. Han, J. Zhang, P. Yuan, G. Auchterlonie, J. Zou, C.Z. Yu, Supra-assembly of siliceous vesicles [J], J Am Chem Soc,2006,128,15992-15993.
    [41]S. Cuenot, C. Fretigny, S. Demoustier-Champagne, B. Nysten, Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy [J], Phys Rev B,2004,69,-.
    [42]R.A. Andrievski, A.M. Glezer, Size effects in properties of nanomaterials [J], Scripta Mater,2001,44,1621-1624.
    [43]陈月辉,赵光贤,纳米材料的特性和制备方法及应用[J],橡胶工业,2004,51,182-188.
    [44]V.J. Nagpal, R.M. Davis, S.B. Desu, Novel Thin-Films of Titanium-Dioxide Particles Synthesized by a Sol-Gel Process [J], J Mater Res,1995,10, 3068-3078.
    [45]V.J. Nagpal, R.M. Davis, J.S. Riffle, In-Situ Steric Stabilization of Titanium-Dioxide Particles Synthesized by a Sol-Gel Process [J], Colloid Surface A,1994,87,25-31.
    [46]闫惠珍,樊荣涛,太阳能-二氧化钛光催化在水处理中的应用[J],环境与健康杂志,2005,22,231-233.
    [47]M.G. Antoniou, D.D. Dionysiou, Application of immobilized titanium dioxide photocatalysts for the degradation of creatinine and phenol, model organic contaminants found in NASA's spacecrafts wastewater streams [J], Catal Today, 2007,124,215-223.
    [48]X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J], Science,2011,331,746-750.
    [49]A.I. Staikov, V.S. Kalishevich, Effect of Crystal-Structure of Titanium-Dioxide Pigment in Spectrographic Analysis [J], J Anal Chem-Ussr+,1978,33,163-168.
    [50]Bobyrenk.Yy, Formation of Elements of Crystalline Titanium-Dioxide Structure [J], Zh Fiz Khim+,1973,47,709-710.
    [51]N. Daude, C. Gout, C. Jouanin, Electronic Band-Structure of Titanium-Dioxide [J], Phys Rev B,1977,15,3229-3235.
    [52]L. Qiao, C. Roussel, J.J. Wan, J. Kong, P.Y. Yang, H.H. Girault, B.H. Liu, MALDI in-source photooxidation reactions for online peptide tagging [J], Angewandte Chemie-International Edition,2008,47,2646-2648.
    [53]徐国财,纳米科技导论[M],北京,高等教育出版社,2005.
    [54]S. Iijima, T. Ichihashi, Single-Shell Carbon Nanotubes of 1-Nm Diameter [J], Nature,1993,363,603-605.
    [55]F. Kuemmeth, S. Ilani, D.C. Ralph, P.L. McEuen, Coupling of spin and orbital motion of electrons in carbon nanotubes [J], Nature,2008,452,448-452.
    [56]M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics-Enhanced flow in carbon nanotubes [J], Nature,2005,438,44-44.
    [57]M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer, Materials-Carbon nanotubes in an ancient Damascus sabre [J], Nature,2006, 444,286-286.
    [58]A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Rotational actuators based on carbon nanotubes [J], Nature,2003,424,408-410.
    [59]E.D. Minot, Y. Yaish, V. Sazonova, P.L. McEuen, Determination of electron orbital magnetic moments in carbon nanotubes [J], Nature,2004,428,536-539.
    [60]B.C. Regan, S. Aloni, R.O. Ritchie, U. Dahmen, A. Zettl, Carbon nanotubes as nanoscale mass conveyors [J], Nature,2004,428,924-927.
    [61]K.A. Williams, P.T.M. Veenhuizen, B.G. de la Torre, R. Eritja, C. Dekker, Nanotechnology-Carbon nanotubes with DNA recognition [J], Nature,2002, 420,761-761.
    [62]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films [J], Science,2004,306,666-669.
    [63]宋峰,于音,什么是石墨烯——2010年诺贝尔物理学奖介绍[J],大学物理,2011,30.
    [64]史永胜,李雪红,宁青菊,石墨烯的制备及研究现状[J],电子元件与材料,2010,29,70-73.
    [65]胡耀娟,金娟,张卉,吴萍,蔡称心,石墨烯的制备、功能化及在化学中的应用[J],物理化学学报,2010,26,2073-2086.
    [66]A. Stein, Advances in microporous and mesoporous solids-Highlights of recent progress [J], Adv Mater,2003,15,763-775.
    [67]M.E. Davis, Ordered porous materials for emerging applications [J], Nature, 2002,417,813-821.
    [68]R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J], J Phys Chem B,1999,103, 7743-7746.
    [69]J. Lee. S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J], Chem Commun,1999,2177-2178.
    [70]J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials [J], Adv Mater,2006,18,2073-2094.
    [71]S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J], J Am Chem Soc,2000,122,10712-10713.
    [72]S. Yoon, J.W. Lee, T. Hyeon, S.M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon [J], J Electrochem Soc,2000,147, 2507-2512.
    [73]M. Kruk, M. Jaroniec, R. Ryoo, S.H. Joo, Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates [J], J Phys Chem B,2000,104,7960-7968.
    [74]S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J], Nature,2001,412,169-172.
    [75]A.G. Dong, N. Ren, Y. Tang, Y.J. Wang, Y.H. Zhang, W.M. Hua, Z. Gao, General synthesis of mesoporous spheres of metal oxides and phosphates [J], J Am Chem Soc,2003,125,4976-4977.
    [76]H.Y. Liu, K.P. Wang, H.S. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation [J], Carbon,2005,43,559-566.
    [77]H.S. Zhou, S.M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon [J], J Power Sources,2003,122,219-223.
    [78]M. Hartmann, A. Vinu, G. Chandrasekar, Adsorption of vitamin E on mesoporous carbon molecular sieves [J], Chem Mater,2005,17,829-833.
    [79]A. Vinu, C. Streb, V. Murugesan, M. Hartmann, Adsorption of cytochrome c on new mesoporous carbon molecular sieves [J], J Phys Chem B,2003,107, 8297-8299.
    [80]A. Imhof, D.J. Pine, Ordered macroporous materials by emulsion templating [J], Nature,1997,389,948-951.
    [81]R.C. Schroden, M. Al-Daous, C.F. Blanford, A. Stein, Optical properties of inverse opal photonic crystals [J], Chem Mater,2002,14,3305-3315.
    [82]G. Subramanian, V.N. Manoharan, J.D. Thorne, D.J. Pine, Ordered macroporous materials by colloidal assembly:A possible route to photonic bandgap materials [J], Adv Mater,1999,11,1261-+.
    [83]O.D. Velev, T.A. Jede, R.F. Lobo, A.M. Lenhoff, Porous silica via colloidal crystallization [J], Nature,1997,389,447-448.
    [84]B.T. Holland, C.F. Blanford, A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J], Science,1998, 281,538-540.
    [85]P. Jiang, K.S. Hwang, D.M. Mittleman, J.F. Bertone, V.L. Colvin, Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids [J], J Am Chem Soc,1999,121,11630-11637.
    [86]O.D. Velev, E.W. Kaler, Structured porous materials via colloidal crystal templating:From inorganic oxides to metals [J], Adv Mater,2000,12,531-534.
    [87]A. Imhof, D.J. Pine, Uniform macroporous ceramics and plastics by emulsion templating [J], Adv Mater,1998,10,697-700.
    [88]M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film [J], Science,2001,292,79-83.
    [89]H.Y. Bi, L. Qiao, J.M. Busnel, B.H. Liu, H.H. Girault, Kinetics of Proteolytic Reactions in Nanoporous Materials [J], J Proteome Res,2009,8,4685-4692.
    [90]K. Qian, J.J. Wan, X.D. Huang, P.Y. Yang, B.H. Liu, C.Z. Yu, A Smart Glycol-Directed Nanodevice from Rationally Designed Macroporous Materials [J], Chem-Eur J,2010,16,822-828.
    [91]K. Qian, J.J. Wan, L. Qiao, X.D. Huang, J.W. Tang, Y.H. Wang, J.L. Kong, P.Y. Yang, C.Z. Yu, B.H. Liu, Macroporous Materials as Novel Catalysts for Efficient and Controllable Proteolysis [J], Anal Chem,2009,81,5749-5756.
    [92]J.J. Wan, K. Qian, L. Qiao, Y.H. Wang, J.L. Kong, P.Y. Yang, B.H. Liu, C.Z. Yu, TiO2-Modified Macroporous Silica Foams for Advanced Enrichment of Multi-Phosphorylated Peptides [J], Chem-Eur J,2009,15,2504-2508.
    [93]陈扬,陆祖宏,生物分子的纳米粒子标记和检测技术[J],中国生物化学与分子生物学报,2003,19,1-4.
    [94]T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes [J], Science,2000,289,1757-1760.
    [95]T.A. Taton, G. Lu, C.A. Mirkin, Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes [J], J Am Chem Soc,2001,123, 5164-5165.
    [96]L. He, M.D. Musick, S.R. Nicewarner, F.G. Salinas, S.J. Benkovic, M.J. Natan, C.D. Keating, Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization [J], J Am Chem Soc,2000,122, 9071-9077.
    [97]M.B. Gonzalez-Garcia, C. Fernandez-Sanchez, A. Costa-Garcia, Colloidal gold as an electrochemical label of streptavidin-biotin interaction [J], Biosens Bioelectron,2000,15,315-321.
    [98]W. Sun, P. Qin, R.J. Zhao, K. Jiao, Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode [J], Talanta,2010,80,2177-2181.
    [99]Y. Cao, J. Wang, Y.Y. Xu, G.X. Li, Sensing purine nucleoside phosphorylase activity by using silver nanoparticles [J], Biosens Bioelectron,2010,25, 1032-1036.
    [100]J.F. Liu, C. Roussel, G. Lagger, P. Tacchini, H.H. Girault, Antioxidant sensors based on DNA-modified electrodes [J], Anal Chem,2005,77,7687-7694.
    [101]A.K. Singh, A.W. Flounders, J.V. Volponi, C.S. Ashley, K. Wally, J.S. Schoeniger, Development of sensors for direct detection of organophosphates. Part I:immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports [J], Biosens Bioelectron, 1999,14,703-713.
    [102]J. Wang, M. Musameh, Carbon-nanotubes doped polypyrrole glucose biosensor [J], Anal Chim Acta,2005,539,209-213.
    [103]U. Yogeswaran, S. Thiagarajan, S.M. Chen, Nanocomposite of functional multiwall carbon nanotubes with nafion, nano platinum, and nano biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid [J], Anal Biochem,2007,365,122-131.
    [104]C.Y. Li, C.F. Wang, Y. Ma, W. Bao, S.H. Hu, A novel amperometric sensor and chromatographic detector for determination of parathion [J], Anal Bioanal Chem,2005,381,1049-1055.
    [105]J. Manso, M.L. Mena, P. Yanez-Sedeno, J.M. Pingarron, Alcohol dehydrogenase amperometric biosensor based on a colloidal gold-carbon nanotubes composite electrode [J], Electrochim Acta,2008,53,4007-4012.
    [106]F. Patolsky, Y. Weizmann, I. Willner, Long-range electrical contacting of redox enzymes by SWCNT connectors [J], Angewandte Chemie-International Edition, 2004,43,2113-2117.
    [107]H.X. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J], Anal Chem,2001,73,915-920.
    [108]J. Chen, J.C. Bao, C.X. Cai, T.H. Lu, Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode [J], Anal Chim Acta,2004,516,29-34.
    [109]M.J. Esplandiu, M. Pacios, L. Cyganek, J. Bartroli, M. del Valle, Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes [J], Nanotechnology,2009,20,
    [110]C. Li, M. Curreli, H. Lin, B. Lei, F.N. Ishikawa, R. Datar, R.J. Cote, M.E. Thompson, C.W. Zhou, Complementary detection of prostate-specific antigen using ln2O3 nanowires and carbon nanotubes [J], J Am Chem Soc,2005,127, 12484-12485.
    [111]J. Yang, R.Y. Zhang, Y. Xu, P.G. He, Y.Z. Fang, Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and its biosensoring for glucose [J], Electrochem Commun,2008,10,1889-1892.
    [112]J.C. Claussen, A.D. Franklin, A. ul Haque, D.M. Porterfield, T.S. Fisher, Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks [J], Acs Nano,2009,3,37-44.
    [113]Z.H. Wen, S.Q. Ci, J.H. Li, Pt Nanoparticles Inserting in Carbon Nanotube Arrays:Nanocomposites for Glucose Biosensors [J], J Phys Chem C,2009,113, 13482-13487.
    [114]Y.J. Zou, C.L. Xiang, L.X. Sun, F. Xu, Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel [J], Biosens Bioelectron,2008, 23,1010-1016.
    [115]M.C. Tsai, Y.C. Tsai, Adsorption of glucose oxidase at platinum-multiwalled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor [J], Sensor Actuat B-Chem,2009,141,592-598.
    [116]Y.T. Wang, L. Yu, Z.Q. Zhu, J. Zhang, J.Z. Zhu, C.H. Fan, Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor [J], Sensor Actuat B-Chem,2009,136,332-337.
    [117]S.H. Chen, R. Ynan, Y.Q. Chai, B. Yin, Y. Xu, Multilayer Assembly of Hemoglobin and Colloidal Gold Nanoparticles on Multiwall Carbon Nanotubes/Chitosan Composite for Detecting Hydrogen Peroxide [J], Electroanal,2008,20,2141-2147.
    [118]K.J. Huang, D.J. Niu, W.Z. Xie, W. Wang, A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode [J], Anal Chim Acta,2010,659,102-108.
    [119]X. Che, R. Yuan, Y.Q. Chai, J.J. Li, Z.J. Song, J.F. Wang, Amperometric immunosensor for the determination of alpha-1-fetoprotein based on multiwalled carbon nanotube-silver nanoparticle composite [J], J Colloid Interf Sci,2010,345,174-180.
    [120]A. Jane, R. Dronov, A. Hodges, N.H. Voelcker, Porous silicon biosensors on the advance [J], Trends Biotechnol,2009,27,230-239.
    [121]C. Ispas, I. Sokolov, S. Andreescu, Enzyme-functionalized mesoporous silica for bioanalytical applications [J], Anal Bioanal Chem,2009,393,543-554.
    [122]V.V. Doan, M.J. Sailor, Luminescent Color Image Generation on Porous Silicon [J], Science,1992,256,1791-1792.
    [123]V.S.Y. Lin, K. Motesharei, K.P.S. Dancil, M.J. Sailor, M.R. Ghadiri, A porous silicon-based optical interferometric biosensor [J], Science,1997,278,840-843.
    [124]S. Singh, S.N. Sharma, Govind, S.M. Shivaprasad, M. Lal, M.A. Khan, Nanostructured porous silicon as functionalized material for biosensor application [J], J Mater Sci-Mater M,2009,20,181-187.
    [125]Y. Koh, J. Park, J. Kim, S. Jang, H.G. Woo, H. Sohn, Fabrication of Encoded Rugate Porous Silicon Interferometer for Biosensor [J], J Nanosci Nanotechno, 2010,10,3590-3594.
    [126]E. Topoglidis, C.J. Campbell, A.E.G. Cass, J.R. Durrant, Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing [J], Langmuir,2001,17, 7899-7906.
    [127]X. Xu, B.Z. Tian, S. Zhang, J.L. Kong, D.Y. Zhao, B.H. Liu, Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix [J], Anal Chim Acta,2004,519,31-38.
    [128]X. Xu, B.Z. Tian, J.L. Kong, S. Zhang, B.H. Liu, D.Y. Zhao, Ordered mesoporous niobium oxide film:A novel matrix for assembling functional proteins for bioelectrochemical applications [J], Adv Mater,2003,15,1932-+.
    [129]Z.F. Deng, H.W. Zhang, Y.Z. Jiao, Hydrogen Peroxide Biosensor Based on Cytochrome c/Nano-ZnO [J], Chinese J Anal Chem,2009,37,613-616.
    [130]Z.H. Dai, G.J. Shao, J.M. Hong, J.C. Bao, J. Shen, Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor [J], Biosens Bioelectron,2009,24, 1286-1291.
    [131]C.C. Chen, J.S. Do, Y. Gu, Immobilization of HRP in Mesoporous Silica and Its Application for the Construction of Polyaniline Modified Hydrogen Peroxide Biosensor [J], Sensors-Basel,2009,9,4635-4648.
    [132]Z.H. Dai, X.X. Xu, H.X. Ju, Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix [J], Anal Biochem,2004,332,23-31.
    [133]Z.H. Dai, S.Q. Liu, H.X. Ju, H.Y. Chen, Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J], Biosens Bioelectron,2004,19,861-867.
    [134]C. Delacote, J.P. Bouillon, A. Walcarius, Voltammetric response of ferrocene-grafted mesoporous silica [J], Electrochim Acta,2006,51, 6373-6383.
    [135]Z.H. Dai, G.F. Lu, J.C. Bao, X.H. Huang, H.X. Ju, Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode [J], Electroanal,2007,19,604-607.
    [136]JJ. Zhang, J.J. Zhu, A novel amperometric biosensor based on gold nanoparticles-mesoporous silica composite for biosensing glucose [J], Science in China Series B-Chemistry,2009,52,815-820.
    [137]N.Q. Jia, Z.Y. Wang, G.F. Yang, H.B. Shen, L.Z. Zhu, Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J], Electrochem Commun,2007,9, 233-238.
    [138]J.J. Feng, J.J. Xu, H.Y. Chen, Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly [J], Biosens Bioelectron,2007,22,1618-1624.
    [139]M. Zhou, L. Shang, B.L. Li, L.J. Huang, S.J. Dong, Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase-and oxidase-based biosensors [J], Biosens Bioelectron,2008, 24,442-447.
    [140]X.Y. Jiang, L.D. Zhu, D.X. Yang, X.Y. Mao, Y.H. Wu, Amperometric Ethanol Biosensor Based on Integration of Alcohol Dehydrogenase with Meldola's Blue/Ordered Mesoporous Carbon Electrode [J], Electroanal,2009,21, 1617-1623.
    [141]J.P. Dong, Y.Y. Hu, S.M. Zhu, J.Q. Xu, Y.J. Xu, A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid [J], Anal Bioanal Chem,2010,396,1755-1762.
    [142]X.Y. Jiang, Y.H. Wu, X.Y. Mao, X.J. Cui, L.D. Zhu, Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite [J], Sensor Actuat B-Chem,2011,153,158-163.
    [143]宣婕,姜立萍,朱俊杰,基于三维有序大孔金电极的过氧化氢无酶传感器[J],分析化学,2010,38,513-516.
    [144]R.D. Das, C. RoyChaudhuri, S. Maji, S. Das, H. Saha, Macroporous silicon based simple and efficient trapping platform for electrical detection of Salmonella typhimurium pathogens [J], Biosens Bioelectron,2009,24, 3215-3222.
    [145]Y.H. Zhu, H.M. Cao, L.H. Tang, X.L. Yang, C.Z. Li, Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications [J], Electrochim Acta,2009,54,2823-2827.
    [146]H.M. Cao, Y.H. Zhu, L.H. Tang, X.L. Yang, C.Z. Li, A Glucose Biosensor Based on Immobilization of Glucose Oxidase into 3D Macroporous TiO2 [J], Electroanal,2008,20,2223-2228.
    [147]N.N. Wei, X. Xin, J.Y. Du, J.L. Li, A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film [J], Biosens Bioelectron,2011,26,3602-3607.
    [148]J.L. Li, T. Han, N.N. Wei, J.Y. Du, X.W. Zhao, Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor [J], Biosens Bioelectron,2009,25,773-777.
    [149]L. Zhang, Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode [J], Biosens Bioelectron,2008,23,1610-1615.
    [150]Y. Li, J. Li, X.H. Xia, S.Q. Liu, Direct electrochemistry of cytochrome c immobilized on a novel macroporous gold film coated with a self-assembled 11-mercaptoundecanoic acid monolayer [J], Talanta,2010,82,1164-1169.
    [151]H. Ishida, K. Mitsui, H. Nukaya, K. Matsumoto, K. Tsuji, Study of active substances involved in skin dysfunction induced by crowding stress. I. Effect of crowding and isolation on some physiological variables, skin function and skin blood perfusion in hairless mice [J], Biol Pharm Bull,2003,26,170-181.
    [152]Y. Matsubara, T. Yusa, A. Sawabe, Y. Iizuka, K. Okamoto, Studies on Physiologically Active Substances in Citrus-Fruit Peel.20. Structure and Physiological-Activity of Phenyl Propanoid Glycosides in Lemon (Citrus-Limon Burm F) Peel [J], Agr Biol Chem Tokyo,1991,55,647-650.
    [153]T. Ozawa, A. Hanaki, Reactions of Superoxide Ion with Redox-Active Substances of Physiological Importance-Generation of Semiquinone Radicals from Physiologically Important Quinones [J], Chem Pharm Bull,1983,31, 2535-2539.
    [154]K. Uchizono, Proceeding of the 8th Seiriken Conference on Physiologically Active Substances National-Institue-for-Physiological-Sciences, Okazaki, Japan, February 23-25,1983-Preface [J], Biomed Res-Tokyo,1984,5, U1-U1.
    [155]赵保路,氧自由基和天然抗氧化剂[M],北京,科学出版社,1999.
    [156]B. Halliwell, Reactive Oxygen Species and the Central-Nervous-System [J], J Neurochem,1992,59,1609-1623.
    [157]D.T. Clarkson, M. Carvajal, T. Henzler, R.N. Waterhouse, A.J. Smyth, D.T. Cooke, E. Steudle, Root hydraulic conductance:diurnal aquaporin expression and the effects of nutrient stress [J], J Exp Bot,2000,51,61-70.
    [158]S.E. Forest, M.J. Stimson, J.D. Simon, Mechanism for the photochemical production of superoxide by quinacrine [J], J Phys Chem B,1999,103, 3963-3964.
    [159]B. Halliwell, O.I. Aruoma, DNA Damage by Oxygen-Derived Species-Its Mechanism and Measurement in Mammalian Systems [J], Febs Lett,1991,281,9-19.
    [1]J.M. Mccord, Free-Radicals and Inflammation-Protection of Synovial-Fluid by Superoxide-Dismutase [J], Science,1974,185,529-531.
    [2]A. Petkau, J.R. Lepock, L.D. Arnold, Interaction of Superoxide-Dismutase with Liposomes [J], Fed Proc,1980,39,1987-1987.
    [3]R.L. Levine, Oxidative Modification of Glutamine-Synthetase.1. Inactivation Is Due to Loss of One Histidine Residue [J], J Biol Chem,1983,258,1823-1827.
    [4]S.E. Forest, M.J. Stimson, J.D. Simon, Mechanism for the photochemical production of superoxide by quinacrine [J], J Phys Chem B,1999,103, 3963-3964.
    [5]B. Halliwell, O.I. Aruoma, DNA Damage by Oxygen-Derived Species-Its Mechanism and Measurement in Mammalian Systems [J], Febs Lett,1991,281, 9-19.
    [6]S.X. Chen, P. Schopfer, Hydroxyl-radical production in physiological reactions-A novel function of peroxidase [J], Eur J Biochem,1999,260,726-735.
    [7]B. Halliwell, Reactive Oxygen Species and the Central-Nervous-System [J], J Neurochem,1992,59,1609-1623.
    [8]B. Halliwell, J.M.C. Gutteridge, The Definition and Measurement of Antioxidants in Biological-Systems [J], Free Radical Bio Med,1995,18,125-126.
    [9]C.S. Yang, P.J. Tsai, J.P. Wu, N.N. Lin, S.T. Chou, J.S. Kuo, Evaluation of extracellular lipid peroxidation in brain cortex of anaesthetized rats by microdialysis perfusion and high-performance liquid chromatography with fluorimetric detection [J], Journal of Chromatography B,1997,693,257-263.
    [10]V. Fogliano, V. Verde, G. Randazzo, A. Ritieni, Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines [J], J Agr Food Chem,1999,47,1035-1040.
    [11]F. Tubaro, E. Micossi, F. Ursini, The antioxidant capacity of complex mixtures by kinetic analysis of crocin bleaching inhibition [J], J Am Oil Chem Soc,1996, 73,173-179.
    [12]T. Hatano, H. Kagawa, T. Yasuhara, T. Okuda,2 New Flavonoids and Other Constituents in Licorice Root-Their Relative Astringency and Radical Scavenging Effects [J], Chem Pharm Bull,1988,36,2090-2097.
    [13]C. Tai, X.X. Gu, H. Zou, Q.H. Guo, A new simple and sensitive fluorometric method for the determination of hydroxyl radical and its application [J], Talanta, 2002,58,661-667.
    [14]M. Lopez, F. Martinez, C. Del Valle, M. Ferrit, R. Luque, Study of phenolic compounds as natural antioxidants by a fluorescence method [J], Talanta,2003, 60,609-616.
    [15]B. Tang, L. Zhang, Y. Geng, Determination of the antioxidant capacity of different food natural products with a new developed flow injection spectrofluorimetry detecting hydroxyl radicals [J], Talanta,2005,65,769-775.
    [16]G.W. Winston, F. Regoli, A.J. Dugas, J.H. Fong, K.A. Blanchard, A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids [J], Free Radical Bio Med,1998,24,480-493.
    [17]S.O. Ugwu, M.J. Alcala, R. Bhardwaj, J. Blanchard, Characterization of the complexation of diflunisal with hydroxypropyl-beta-cyclodextrin [J], J Pharmaceut Biomed,1999,19,391-397.
    [18]D. Pezo, J. Salafranca, C. Nerin, Determination of the antioxidant capacity of active food packagings by in situ gas-phase hydroxyl radical generation and high-performance liquid chromatography-fluorescence detection [J], J Chromatogr A,2008,1178,126-133.
    [19]E.I. Korotkova, Y.A. Karbainov, A. Shevchuk, Study of antioxidant properties by voltammetry [J], J Electroanal Chem,2002,518,56-60.
    [20]S. Ignatov, D. Shishniashvili, B. Ge, F.W. Scheller, F. Lisdat, Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants [J], Biosens Bioelectron,2002,17,191-199.
    [21]L.D. Mello, S. Hernandez, G. Marrazza, M. Mascini, L.T. Kubota, Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor [J], Biosens Bioelectron,2006,21,1374-1382.
    [22]R. Rodrigo, G. Rivera, Renal damage mediated by oxidative stress:A hypothesis of protective effects of red wine [J], Free Radical Bio Med,2002,33,409-422.
    [23]A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode [J], Nature,1972,238,37-+.
    [24]L. Qiao, C. Roussel, J.J. Wan, J. Kong, P.Y. Yang, H.H. Girault, B.H. Liu, MALDI in-source photooxidation reactions for online peptide tagging [J], Angewandte Chemie-International Edition,2008,47,2646-2648.
    [25]P. Atienzar, S. Valencia, A. Corma, H. Garcia, Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells [J], Chemphyschem, 2007,8,1115-1119.
    [26]H. Hennig, Homogeneous photo catalysis by transition metal complexes [J], Coordin Chem Rev,1999,182,101-123.
    [27]S. Sato, Effects of Surface Modification with Silicon-Oxides on the Photochemical Properties of Powdered TiO2 [J], Langmuir,1988,4,1156-1159.
    [28]A.H. Boonstra, C.A.H.A. Mutsaers, Adsorption of Hydrogen-Peroxide on Surface of Titanium-Dioxide [J], J Phys Chem-Us,1975,79,1940-1943.
    [29]D. Lawless, N. Serpone, D. Meisel, Role of Oh. Radicals and Trapped Holes in Photocatalysis-a Pulse-Radiolysis Study [J], J Phys Chem-Us,1991,95, 5166-5170.
    [30]D.R. McCabe, T.J. Maher, I.N. Acworth, Improved method for the estimation of hydroxyl free radical levels in vivo based on liquid chromatography with electrochemical detection [J], Journal of Chromatography B,1997,691,23-32.
    [31]J.F. Jen, M.F. Leu, T.C. Yang, Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography [J], J Chromatogr A,1998,796,283-288.
    [32]Y.L. Hu, Y. Lu, G.J. Zhou, X.H. Xia, A simple electrochemical method for the determination of hydroxyl free radicals without separation process [J], Talanta, 2008,74,760-765.
    [33]K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique [J], Electrochem Commun,2000,2,207-210.
    [34]L. SteMarie, D. Boismenu, L. Vachon, J. Montgomery, Evaluation of sodium 4-hydroxybenzoate as an hydroxyl radical trap using gas chromatography mass spectrometry and high-performance liquid chromatography with electrochemical detection [J], Anal Biochem,1996,241,67-74.
    [35]I.A. Borisov, A.V. Lobanov, A.N. Reshetilov, B.I. Kurganov, Quantitative analysis of the calibration dependences for biosensors [J], Appl Biochem Micro+, 2000,36,215-220.
    [36]S.A.V. Eremia, D. Chevalier-Lucia, G.L. Radu, J.L. Marty, Optimization of hydroxyl radical formation using TiO2 as photocatalyst by response surface methodology [J], Talanta,2008,77,858-862.
    [37]郝婕,董金皋,天然抗氧化剂的提取分离及功能研究[J],河北林果研究, 20.05,20(4):369-372.
    [38]Bran A L. Toxicology and biochemistry of BHA and BHT [J]. JAOCS,1975, 52(2):72-375.
    [39]眭红卫.天然抗氧化剂的开发研究与应用前景[J],武汉商业服务学院学报,2001,20(3):82-83.
    [40]方允中,郑荣梁.自由基生物学的理论与应用[M],北京:科学出版社,2002.7522754.
    [41]井乐刚等.大豆异黄酮在保健食品和医药中应用的研究进展.植物学通报[J],2002,19(6):692-697.
    [42]新华本草纲目[M],上海:上海科学技术出版社,1991.
    [43]刘书成,李元瑞.大蒜复合抗氧化剂的配方优化及抗氧化机理分析[J],中国食品添加剂专论综述,2007,120-125.
    [1]B. Halliwell, Reactive Oxygen Species and the Central-Nervous-System [J], J Neurochem,1992,59,1609-1623.
    [2]E.D. Hall, J.M. Braughler, Central Nervous-System Trauma and Stroke.2. Physiological and Pharmacological Evidence for Involvement of Oxygen Radicals and Lipid-Peroxidation [J], Free Radical Bio Med,1989,6,303-313.
    [3]W. Maruyama, P. Dostert, K. Matsubara, M. Naoi, N-Methyl(R)Salsolinol Produces Hydroxyl Radicals-Involvement to Neurotoxicity [J], Free Radical Bio Med,1995,19,67-75.
    [4]C. Amatore, S. Arbault, D. Bruce, P. de Oliveira, M. Erard, M. Vuillaume, Characterization of the electrochemical oxidation of peroxynitrite:Relevance to oxidative stress bursts measured at the single cell level [J], Chem-Eur J,2001,7, 4171-4179.
    [5]E.W. Miller, A.E. Albers, A. Pralle, E.Y. Isacoff, C.J. Chang, Boronate-based fluorescent probes for imaging cellular hydrogen peroxide [J], J Am Chem Soc, 2005,127,16652-16659.
    [6]D.T. Clarkson, M. Carvajal, T. Henzler, R.N. Waterhouse, A.J. Smyth, D.T. Cooke, E. Steudle, Root hydraulic conductance:diurnal aquaporin expression and the effects of nutrient stress [J], J Exp Bot,2000,51,61-70.
    [7]E.C. Hurdis, H. Romeyn, Accuracy of Determination of Hydrogen Peroxide by Cerate Oxidimetry [J], Anal Chem,1954,26,320-325.
    [8]C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5,10,15,20-Tetra(4-Pyridyl) Porphyrinato]Titanium(Iv)-an Ultra-High Sensitivity Spectrophotometric Reagent for Hydrogen-Peroxide [J], Analyst,1992,117,1781-1784.
    [9]G.F. Zhang, P.K. Dasgupta, W.S. Edgemond, J.N. Marx, Determination of Hydrogen-Peroxide by Photoinduced Fluorogenic Reactions [J], Anal Chim Acta, 1991,243,207-216.
    [10]Z. Rosenzweig, R. Kopelman, Analytical properties and sensor size effects of a micrometer-sized optical fiber glucose biosensor [J], Anal Chem,1996,68, 1408-1413.
    [11]L.R. Luo, Z.J. Zhang, Sensors based on galvanic cell generated electro-chemiluminescence and its application [J], Anal Chim Acta,2006,580,14-17.
    [12]F.R.P. Rocha, E. Rodenas-Torralba, B.F. Reis, A. Morales-Rubio, M. de la Guardia, A portable and low cost equipment for flow injection chemiluminescence measurements [J], Talanta,2005,67,673-677.
    [13]U. Pinkernell, S. Effkemann, U. Karst, Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide [J], Anal Chem,1997,69,3623-3627.
    [14]G.S. Lai, H.L. Zhang, D.Y. Han, Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde [J], Microchim Acta,2009,165,159-165.
    [15]Y. Zhang, L.Q. Luo, Y.P. Ding, X.A. Liu, Z.Y. Qian, A highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid [J], Microchim Acta,2010,171,133-138.
    [16]X. Che, R. Yuan, Y.Q. Chai, L.P. Ma, W.J. Li, J.J. Li, Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film [J], Microchim Acta,2009,167,159-165.
    [17]J. Song, J.M. Xu, P.S. Zhao, L.D. Lu, J.C. Bao, A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon [J], Microchim Acta,2011,172,117-123.
    [18]S.X. Xu, X.F. Zhang, T. Wan, C.X. Zhang, A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes [J], Microchim Acta,2011,172,199-205.
    [19]T. Tatsuma, Y. Okawa, T. Watanabe, Enzyme Monolayer-Modified and Bilayer-Modified Tin Oxide Electrodes for the Determination of Hydrogen-Peroxide and Glucose [J], Anal Chem,1989,61,2352-2355.
    [20]A. Mulchandani, C.L. Wang, H.H. Weetall, Amperometric Detection of Peroxides with Poly(Anilinomethylferrocene)-Modified Enzyme Electrodes [J], Anal Chem, 1995,67,94-100.
    [21]F. Wendzinski, B. Grundig, R. Renneberg, F. Spencer, Highly sensitive determination of hydrogen peroxide and peroxidase with tetrathiafulvalene-based electrodes and the application in immunosensing [J], Biosens Bioelectron,1997, 12,43-52.
    [22]A.A. Karyakin, A.K. Strakhova, E.E. Karyakina, S.D. Varfolomeyev, A.K. Yatsimirsky, The Electrochemical Polymerization of Methylene-Blue and Bioelectrochemical Activity of the Resulting Film [J], Bioelectroch Bioener, 1993,32,35-43.
    [23]A. Rojashernandez, M.T. Ramirez, I. Gonzalez, Equilibria among Condensed Phases and a Multicomponent Solution Using the Concept of Generalized Species.2. Systems with Polynuclear Species [J], Anal Chim Acta,1993,278, 335-347.
    [24]A.H. Liu, M.D. Wei, I. Honma, H.S. Zhou, Direct electrochemistry of myoglobin in titanate nanotubes film [J], Anal Chem,2005,77,8068-8074.
    [25]A. Vaze, M. Parizo, J.F. Rusling, Enhanced rates of electrolytic styrene epoxidation catalyzed by cross-linked myoglobin-poly(L-lysine) films in bicontinuous microemulsions [J], Langmuir,2004,20,10943-10948.
    [26]H.Y. Liu, J.F. Rusling, N.F. Hu, Electroactive core-shell nanocluster films of heme proteins, polyelectrolytes, and silica nanoparticles [J], Langmuir,2004,20, 10700-10705.
    [27]G.Y. Shi, Z.Y. Sun, M.C. Liu, L. Zhang, Y. Liu, Y.H. Qu, L.T. Jin, Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO2 with vapor-surface sol-gel deposition [J], Anal Chem,2007,79, 3581-3588.
    [28]E. Ferapontova, E. Dominguez, Adsorption of differently charged forms of horseradish peroxidase on metal electrodes of different nature:effect of surface charges [J], Bioelectrochemistry,2002,55,127-130.
    [29]L.Q. Mao, K. Yamamoto, Glucose and choline on-line biosensors based on electropolymerized Meldola's blue [J], Talanta,2000,51,187-195.
    [30]Y.L. Zhou, J.F. Zhi, Y.S. Zou, W.J. Zhang, S.T. Lee, Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode [J], Anal Chem,2008,80, 4141-4146.
    [31]J.X. Wang, M.X. Li, Z.J. Shi, N.Q. Li, Z.N. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes [J], Anal Chem,2002,74,1993-1997.
    [32]K.P. Lee, A.I. Gopalan, S. Komathi, Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanorube electrode [J], Sensor Actuat B-Chem,2009,141,518-525.
    [33]Q. Xu, C. Mao, N.N. Liu, J.J. Zhu, J. Sheng, Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite [J], Biosens Bioelectron,2006,22,768-773.
    [34]X.D. Zeng, X.F. Li, X.Y. Liu, Y. Liu, S.L. Luo, B. Kong, S.L. Yang, W.Z. Wei, A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes [J], Biosens Bioelectron, 2009,25,896-900.
    [35]L. Zhang, Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode [J], Biosens Bioelectron,2008,23,1610-1615.
    [36]L. Zhu, K.Q. Wang, T.H. Lu, W. Xing, J. Li, X.G. Yang, The direct 发 electrochemistry behavior of Cyt c on the modified glassy carbon electrode by SBA-15 with a high-redox potential [J], J Mol Catal B-Enzym,2008,55,93-98.
    [37]A.W. Zhu, Y. Tian, H.Q. Liu, Y.P. Luo, Nanoporous gold film encapsulating cytochrome c for the fabrication of a H2O2 biosensor [J], Biomaterials,2009,30, 3183-3188.
    [38]M.E. Davis, Ordered porous materials for emerging applications [J], Nature, 2002,417,813-821.
    [39]E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics [J], Phys Rev Lett,1987,58,2059-2062.
    [40]Y.N. Xia, B. Gates, YD. Yin, Y. Lu, Monodispersed colloidal spheres:Old materials with new applications [J], Adv Mater,2000,12,693-713.
    [41]O.D. Velev, E.W. Kaler, Structured porous materials via colloidal crystal templating:From inorganic oxides to metals [J], Adv Mater,2000,12,531-534.
    [42]X.Y. Gao, H. Matsui, Peptide-based nanotubes and their applications in bionanotechnology [J], Adv Mater,2005,17,2037-2050.
    [43]A. Stein, Advances in microporous and mesoporous solids-Highlights of recent progress [J], Adv Mater,2003,15,763-775.
    [44]V.T. Dimakis, V.G. Gavalas, N.A. Chaniotakis, Polyelectrolyte-stabilized biosensors based on macroporous carbon electrode [J], Anal Chim Acta,2002, 467,217-223.
    [45]R. Gasparac, P. Kohli, M.O. Mota, L. Trofin, C.R. Martin, Template synthesis of nano test tubes [J], Nano Lett,2004,4,513-516.
    [46]L. Qiao, Y. Liu, S.P. Hudson, P.Y. Yang, E. Magner, B.H. Liu, A nanoporous reactor for efficient proteolysis [J], Chem-Eur J,2008,14,151-157.
    [47]R.J. Tian, H. Zhang. M.L. Ye, X.G. Jiang, L.H. Hu, X. Li, X.H. Bao, H.F. Zou, Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis [J], Angewandte Chemie-International Edition,2007,46,962-965.
    [48]J.J. Wan, K. Qian, L. Qiao, Y.H. Wang, J.L. Kong, P.Y. Yang, B.H. Liu, C.Z. Yu, TiO2-Modified Macroporous Silica Foams for Advanced Enrichment of Multi-Phosphorylated Peptides [J], Chem-Eur J,2009,15,2504-2508.
    [49]K. Qian, J.J. Wan, L. Qiao, X.D. Huang, J.W. Tang, Y.H. Wang, J.L. Kong, P.Y. Yang, C.Z. Yu, B.H. Liu, Macroporous Materials as Novel Catalysts for Efficient and Controllable Proteolysis [J], Anal Chem,2009,81,5749-5756.
    [50]H.N. Wang, X.F. Zhou, M.H. Yu, Y.H. Wang, L. Han, J. Zhang, P. Yuan, G. Auchterlonie, J. Zou, C.Z. Yu, Supra-assembly of siliceous vesicles [J], J Am Chem Soc,2006,128,15992-15993.
    [51]A.B. Descalzo, D. Jimenez, M.D. Marcos, R. Martinez-Manez, J. Soto, J. E1 Haskouri, C. Guillem, D. Beltran, P. Amoros, M.V. Borrachero, A new approach to chemosensors for anions using MCM-41 grafted with amino groups [J], Adv Mater,2002,14,966-+.
    [52]Hawkridg.Fm, T. Kuwana, Indirect Coulometric Titration of Biological Electron-Transport Components [J], Anal Chem,1973,45,1021-1027.
    [53]S.F. Wang, T. Chen, Z.L. Zhang, X.C. Shen, Z.X. Lu, D.W. Pang, K.Y. Wong, Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J], Langmuir,2005,21, 9260-9266.
    [54]J.S. Vrettos, M.J. Reifler, O. Kievit, K.V. Lakshmi, J.C. de Paula, G.W. Brudvig, Factors that determine the unusually low reduction potential of cytochrome c(550) in cyanobacterial photosystem II [J], J Biol Inorg Chem,2001,6, 708-716.
    [55]B.A. Kuznetsov, N.A. Byzova, G.P. Shumakovich, The Effect of the Orientation of Cytochrome-C Molecules Covalently Attached to the Electrode Surface Upon Their Electrochemical Activity [J], J Electroanal Chem,1994,371,85-92.
    [56]G. Mclendon, Long-Distance Electron-Transfer in Proteins and Model Systems [J], Accounts Chem Res,1988,21,160-167.
    [57]J.M. Nocek, J.S. Zhou, S. DeForest, S. Priyadarshy, D.N. Beratan, J.N. Onuchic, B.M. Hoffman, Theory and practice of electron transfer within protein-protein complexes:Application to the multidomain binding of cytochrome c by cytochrome c peroxidase [J], Chem Rev,1996,96,2459-2489.
    [58]D. Flock, V. Helms, Protein-protein docking of electron transfer complexes: Cytochrome c oxidase and cytochrome c [J], Proteins,2002,47,75-85.
    [59]X.X. Chen, R. Ferrigno, J. Yang, G.A. Whitesides, Redox properties of cytochrome c adsorbed on self-assembled monolayers:A probe for protein conformation and orientation [J], Langmuir,2002,18,7009-7015.
    [60]E. Laviron, General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems [J], J Electroanal Chem,1979, 101,19-28.
    [61]X. Jiang, L. Zhang, S.J. Dong, Assemble of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works onto ITO electrode and its application for the direct electrochemistry and electrocatalytic behavior of cytochrome c [J], Electrochem Commun,2006,8,1137-1141.
    [62]G.C. Zhao, Z.Z. Yin, L. Zhang, X.W. Wei, Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 [J], Electrochem Commun,2005,7,256-260.
    [63]Dickerso.Re, T. Takano, Eisenber.D, O.B. Kallai, L. Samson, A. Cooper, Margolia.E, Ferricytochrome C.1. General Features of Horse and Bonito Proteins at 2.8 a Resolution [J], J Biol Chem,1971,246,1511-1535.
    [64]R.A. Kamin, G.S. Wilson, Rotating-Ring-Disk Enzyme Electrode for Biocatalysis Kinetic-Studies and Characterization of the Immobilized Enzyme Layer [J], Anal Chem,1980,52,1198-1205.
    [65]X. Zhang, J.F. Wang, W.J. Wu, S.W. Qian, Y.H. Man, Immobilization and electrochemistry of cytochrome c on amino-functionalized mesoporous silica thin films [J], Electrochem Commun,2007,9,2098-2104.
    [66]J. Deere, M. Serantoni, K.J. Edler, B.K. Hodnett, J.G. Wall, E. Magner, Measurement of the adsorption of cytochrome c onto the external surface of a thin-film mesoporous silicate by ellipsometry [J], Langmuir,2004,20,532-536.
    [67]N.G Liu, R.A. Assink, B. Smarsly, C.J. Brinker, Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable -NH2 groups [J], Chem Commun,2003,1146-1147.
    [1]Y. Lvov, G. Decher, H. Mohwald, Assembly, Structural Characterization, and Thermal-Behavior of Layer-by-Layer Deposited Ultrathin Films of Poly(Vinyl Sulfate) and Poly(Allylamine) [J], Langmuir,1993,9,481-486.
    [2]W. Jin, X.Y. Shi, F. Caruso, High activity enzyme microcrystal multilayer films [J], J Am Chem Soc,2001,123,8121-8122.
    [3]M.K. Beissenhirtz, F.W. Scheller, W.F.M. Stocklein, D.G. Kurth, H. Mohwald, F. Lisdat, Electroactive cytochrome c multilayers within a polyelectrolyte assembly [J], Angewandte Chemie-International Edition,2004,43,4357-4360.
    [4]M.N. Zhang, Y.M. Yan, K.P. Gong, L.Q. Mao, Z.X. Guo, Y Chen, Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electro catalytic activity for 0-2 reduction [J], Langmuir,2004,20,8781-8785.
    [5]Y. Lvov, B. Munge, O. Giraldo, I. Ichinose, S.L. Suib, J.F. Rusling, Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption [J], Langmuir,2000,16,8850-8857.
    [6]D.S. Salloum, J.B. Schlenoff, Protein adsorption modalities on polyelectrolyte multilayers [J], Biomacromolecules,2004,5,1089-1096.
    [7]Y. Fang, D. Gu, Y. Zou, Z.X. Wu, F.Y. Li, R.C. Che, Y.H. Deng, B. Tu, D.Y. Zhao, A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size [J], Angewandte Chemie-International Edition,2010,49,7987-7991.
    [8]Dickerso.Re, T. Takano, Eisenber.D, O.B. Kallai, L. Samson, A. Cooper, Margolia.E, Ferricytochrome C.1. General Features of Horse and Bonito Proteins at 2.8 a Resolution [J], J Biol Chem,1971,246,1511-1535.
    [1]A. Bergel, J. Souppe, M. Comtat, Enzymatic Amplification for Spectrophotometric and Electrochemical Assays of Nad+ and Nadh [J], Anal Biochem,1989,179, 382-388.
    [2]D.K.G. R.K. Murray, P.A. Mayes, A.W. Rodwell,, Harper's Biochemistry [M], 25th Edition ed., McGraw-Hill companies, Inc.,2000.
    [3]许华健,辅酶NADH模型物反应机理的研究及其在有机合成中的应用,中国科学技术大学,合肥,2007.
    [4]H. Jaegfeldt, Adsorption and Electrochemical Oxidation Behavior of Nadh at a Clean Platinum-Electrode [J], J Electroanal Chem,1980,110,295-302.
    [5]J. Moiroux, P.J. Elving, Effects of Adsorption, Electrode Material, and Operational Variables on Oxidation of Dihydronicotinamide Adenine-Dinucleotide at Carbon Electrodes [J], Anal Chem,1978,50,1056-1062.
    [6]J. Wang, L. Angnes, T. Martinez, Scanning Tunneling Microscopic Probing of Surface Fouling during the Oxidation of Nicotinamide Coenzymes [J], Bioelectroch Bioener,1992,29,215-221.
    [7]W.J. Blaedel, R.A. Jenkins, Study of a Reagentless Lactate Electrode [J], Anal Chem,1976,48,1240-1247.
    [8]H.R. Zare, S.M. Golabi, Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) at a chlorogenic acid modified glassy carbon electrode [J], J Electroanal Chem,1999,464,14-23.
    [9]D. Dicu, F.D. Munteanu, I.C. Popeseu, L. Gorton, Indophenol and O-quinone derivatives immobilized on zirconium phosphate for NADH electro-oxidation [J], Anal Lett,2003,36,1755-1779.
    [10]B.W. Carlson, L.L. Miller, Mechanism of the Oxidation of Nadh by Quinones-Energetics of One-Electron and Hydride Routes [J], J Am Chem Soc,1985,107, 479-485.
    [11]S. Serban, N. El Murr, Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes-New approach for dehydrogenase based biosensors [J], Biosens Bioelectron,2004,20,161-166.
    [12]N.S. Lawrence, J. Wang, Chemical adsorption of phenothiazine dyes onto carbon nanotubes:Toward the low potential detection of NADH [J], Electrochem Commun,2006,8,71-76.
    [13]C.M. Colon, A.R. Guadalupe, Cobalt polypyridyl complexes as redox mediators for lipoamide dehydrogenase [J], Electroanal,1998,10,621-627.
    [14]S. Hrapovic, Y.L. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J], Anal Chem, 2004,76,1083-1088.
    [15]M. Yemini, M. Reches, E. Gazit, J. Rishpon, Peptide nanotube-modified electrodes for enzyme-biosensor applications [J], Anal Chem,2005,77, 5155-5159.
    [16]S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber, Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology [J], Nature,1998,394,52-55.
    [17]M. Musameh, J. Wang, A. Merkoci, Y.H. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J], Electrochem Commun,2002,4,743-746.
    [18]M.G. Zhang, W. Gorski, Electrochemical sensing based on redox mediation at carbon nanotubes [J], Anal Chem,2005,77,3960-3965.
    [19]Q. Wang, H. Tang, Q.J. Me, L. Tan, Y.Y. Zhang, B. Li, S.Z. Yao, Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH [J], Electrochim Acta, 2007,52,6630-6637.
    [20]A. Curulli, E. Valentini, G. Padeletti, A. Viticoli, D. Caschera, G. Palleschi, Smart (Nano) materials:TiO2 nanostructured films to modify electrodes for assembling of new electrochemical probes [J], Sensor Actuat B-Chem,2005,111,441-449.
    [21]C.A. Pessoa, Y. Gushikem, L.T. Kubota, Ferrocenecarboxylic acid adsorbed on Nb2O5 film grafted on a SiO2 surface:NADH oxidation study [J], Electrochim Acta,2001,46,2499-2505.
    [22]C.R. Raj, S. Chakraborty, Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing [J], Biosens Bioelectron,2006,22,700-706.
    [23]X.R. Zhai, W.Z. Wei, J.X. Zeng, S.G. Gong, J. Yin, Layer-by-layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH [J], Microchim Acta,2006,154,315-320.
    [24]J. Chen, J.C. Bao, C.X. Cai, T.H. Lu, Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode [J], Anal Chim Acta, 2004,516,29-34.
    [25]B. Ge, Y.M. Tan, Q.J. Xie, M. Ma, S.Z. Yao, Preparation of chitosan-dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH [J], Sensor Actuat B-Chem,2009,137, 547-554.
    [26]J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J], Chem Commun,1999,2177-2178.
    [27]S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J], Nature,2001,412,169-172.
    [28]C.D. Liang, S. Dai, G. Guiochon, A graphitized-carbon monolithic column [J], Anal Chem,2003,75,4904-4912.
    [29]W. Yantasee, Y.H. Lin, GE. Fryxell, K.L. Alford, B.J. Busche, C.D. Johnson, Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine [J], Ind Eng Chem Res,2004,43, 2759-2764.
    [30]W.J. Li, Y.W. Yao, Z.C Wang, J.Z. Zhao, M.Y. Zhao, C.Q. Sun, Preparation of stable mesoporous silica FSM-16 from water glass in the presence of cetylpyridium bromide [J], Mater Chem Phys,2001,70,144-149.
    [31]C.T. Kressqe, D.O. Marler, G.S. Rav, B.H. Rose, Supported Heteropoly Acid Catalysts [P], US Patent:5366945,1994-11-12.
    [32]R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J], J Phys Chem B,1999,103, 7743.7746.
    [33]S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J], J Am Chem Soc,2000,122,10712-10713.
    [34]J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials [J], Adv Mater,2006,18,2073-2094.
    [35]S. Yoon, J.W. Lee, T. Hyeon, S.M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon [J], J Electrochem Soc,2000,147, 2507-2512.
    [36]A. Vinu, M. Miyahara, K. Ariga, Biomaterial immobilization in nanoporous carbon molecular sieves:Influence of solution pH, pore volume, and pore diameter [J], J Phys Chem B,2005,109,6436-6441.
    [37]H.S. Zhou, S.M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon [J], J Power Sources,2003,122,219-223.
    [38]D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J], Science,1998,279,548-552.
    [39]H.X. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J], Anal Chem,2001,73,915-920.
    [40]Z.H. Dai, G.F. Lu, J.C. Bao, X.H. Huang, H.X. Ju, Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode [J], Electroanal,2007,19,604-607.
    [41]Y.C. Tsai, M.C. Tsai, C.C. Chiu, Self-assembly of carbon nanotubes and alumina-coated silica nanoparticles on a glassy carbon electrode for electroanalysis [J], Electrochem Commun,2008,10,749-752.
    [42]C.Y. Deng, J.H. Chen, X.L. Chen, C.H. Mao, Z. Nie, S.Z. Yao, Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH [J], Electrochem Commun,2008,10,907-909.
    [43]D.C.S. Tse, T. Kuwana, Electrocatalysis of Dihydronicotinamide Adenosine-Diphosphate with Quinones and Modified Quinone Electrodes [J], Anal Chem, 1978,50,1315-1318.
    [44]F. Pariente, E. Lorenzo, H.D. Abruna, Electrocatalysis of Nadh Oxidation with Electropolymerized Films of 3,4-Dihydroxybenzaldehyde [J], Anal Chem,1994, 66,4337-4344.
    [45]A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon [J], Phys Rev B,2000,61,14095-14107.
    [46]M. Zhou, J.D. Guo, L.P. Guo, J. Bai, Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system [J], Anal Chem,2008, 80.4642-4650.
    [47]C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Electrocatalysis at graphite and carbon nanotube modified electrodes:edge-plane sites and tube ends are the reactive sites [J], Chem Commun,2005,829-841.
    [48]R.A. Kamin, G.S. Wilson, Rotating-Ring-Disk Enzyme Electrode for Biocatalysis Kinetic-Studies and Characterization of the Immobilized Enzyme Layer [J], Anal Chem,1980,52,1198-1205.
    [49]N. de-los-Santos-Alvarez, M.J. Lobo-Castanon, A.J. Miranda-Ordieres, P. Tunon-Blanco, H.D. Abruna,5-hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH [J], Anal Chem,2005,77,2624-2631.
    [50]M. Zhou, L. Shang, B.L. Li, L.J. Huang, S.J. Dong, The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes [J], Electrochem Commun,2008,10,859-863.
    [51]M.G. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes [J], Anal Chem,2004, 76,5045-5050.
    [52]L.D. Zhu, J.G. Zhai, R.L. Yang, C.Y. Tian, L.P. Guo, Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes [J], Biosens Bioelectron,2007,22,2768-2773.
    [1]H.W. Hou, Y.L. Wei, Y.L. Song, L.W. Mi, M.S. Tang, L.K. Li, Y.T. Fan, Metal ions play different roles in the third-order nonlinear optical properties of d(10) metal-organic clusters [J], Angewandte Chemie-International Edition,2005,44, 6067-6074.
    [2]J.R. Lombardi, B. Davis, Periodic properties of force constants of small transition-metal and lanthanide clusters [J], Chem Rev,2002,102,2431-2460.
    [3]L.X. Zhao, Y.M. Lei, M. Zhang, X.J. Feng, Y.H. Luo, Structural growth sequences and electronic properties of gold clusters:Highly symmetric tubelike cages [J], Physica B,2009,404,1705-1708.
    [4]H. Hakkinen, Atomic and electronic structure of gold clusters:understanding flakes, cages and superatoms from simple concepts [J], Chem Soc Rev,2008,37, 1847-1859.
    [5]J. Botana, M. Pereiro, D. Baldomir, J.E. Arias, K. Warda, L. Wojtczak, Magnetic-dependent structure in eight-atom gold clusters [J], J Appl Phys,2008, 103.
    [6]R. Engelke, Massive gold clusters feature unique quantum properties [J], Electron Des,1997,45,25-25.
    [7]C. Burgel, R. Mitric, V. Bonacic-Koutecky, Theoretical study of structural and optical properties of small silver and gold clusters at defect centers of MgO [J], Phys Status Solidi B,2010,247,1099-1108.
    [8]J.H. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta, Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters [J], Angewandte Chemie-International Edition,2009,48,7862-7866.
    [9]S. Albonetti, R. Bonelli, J.E. Mengou, C. Femoni, C. Tiozzo, S. Zacchini, F. Trifiro, Gold/iron carbonyl clusters as precursors for TiO2 supported catalysts [J], Catal Today,2008,137,483-488.
    [10]M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters [J], Nature,2008, 454,981-U931.
    [11]P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Structures of neutral Au-7, Au-19, and Au-20 clusters in the gas phase [J], Science,2008,321,674-676.
    [12]C.V. Durgadas, C.P. Sharma, K. Sreenivasan, Fluorescent gold clusters as nanosensors for copper ions in live cells [J], Analyst,2011,136,933-940.
    [13]S. Ariyasu, A. Onoda, R. Sakamoto, T. Yamamura, Alignment of Gold Clusters on DNA via a DNA-Recognizing Zinc Finger-Metallothionein Fusion Protein [J], Bioconjugate Chem,2009,20,2278-2285.
    [14]S. Tanev, W.B. Sun, J. Pond, V.V. Tuchin, V.P. Zharov, Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents:FDTD simulation of light-cell interaction [J], J Biophotonics,2009,2,505-520.
    [15]F. Reith, S.L. Rogers, D.C. McPhail, D. Webb, Biomineralization of gold: Biofilms on bacterioform gold [J], Science,2006,313,233-236.
    [16]J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan, Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles [J], Science,2009,323,112-116.
    [17]W.L. Cheng, N.Y. Park, M.T. Walter, M.R. Hartman, D. Luo, Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets [J], Nat Nanotechnol,2008,3,682-690.
    [18]Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C, Curley, R.L. Johnston, J. Jiang, J. Yuan, Three-dimensional atomic-scale structure of size-selected gold nanoclusters [J], Nature,2008,451,46-U42.
    [19]M.M. Maye, D. Nykypanchuk, M. Cuisinier, D. van der Lelie, O. Gang, Stepwise surface encoding for high-throughput assembly of nanoclusters [J], Nat Mater, 2009,8,388-391.
    [20]Y. Lin, K.A. Watson, M.J. Fallbach, S. Ghose, J.G. Smith, D.M. Delozier, W. Cao, R.E. Crooks, J.W. Connell, Rapid, Solventless, Bulk Preparation of Metal Nanoparticle-Decorated Carbon Nanotubes [J], Acs Nano,2009,3,871-884.
    [21]P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution [J], Science,2007,318,430-433.
    [22]A. Grirrane, A. Corma, H. Garcia, Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics [J], Science,2008,322, 1661-1664.
    [23]S.H. Joo, J.Y. Park, C.K. Tsung, Y. Yamada, P.D. Yang, G.A. Somorjai, Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions [J], Nat Mater,2009,8,126-131.
    [24]H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, C-60 Buckminsterfullerene [J], Nature,1985,318,162-163.
    [25]S. Iijima, Helical Microtubules of Graphitic Carbon [J], Nature,1991,354, 56-58.
    [26]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films [J], Science,2004,306,666-669.
    [27]C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene [J], Science,2008,321,385-388.
    [28]宋峰,于音,什么是石墨烯——2010年诺贝尔物理学奖介绍[J],大学物理,2011,30.
    [29]H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O'Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals [J], Nature,2004,427,523-527.
    [30]M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1:High-yield synthesis and flexibility of the particles [J], Carbon, 2004,42,2929-2937.
    [31]P.V. Kamat, Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support [J], J Phys Chem Lett,2010,1,520-527.
    [32]J.R. McBride, A.R. Lupini, M.A. Schreuder, N.J. Smith, S.J. Pennycook, S.J. Rosenthal, Few-Layer Graphene as a Support Film for Transmission Electron Microscopy Imaging of Nanoparticles [J], Acs Appl Mater Inter,2009,1, 2886-2892.
    [33]K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani, Y. Kuroda, H. Ishida, Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles:Simple preparation from cation exchanged graphite oxide [J], Carbon,2011,49,1118-1125.
    [34]E.K. Athanassiou, F. Krumeich, R.N. Grass, W.J. Stark, Advanced Piezoresistance of Extended Metal-Insulator Core-Shell Nanoparticle Assemblies [J], Phys Rev Lett,2008,101.
    [35]N. Severin, S. Kirstein, I.M. Sokolov, J.P.Rabe, Rapid Trench Channeling of Graphenes with Catalytic Silver Nanoparticles [J], Nano Lett,2009,9,457-461.
    [36]B.S. Kong, J.X. Geng, H.T. Jung, Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions [J], Chem Commun,2009,2174-2176.
    [37]C. Hontorialucas, A.J. Lopezpeinado, J.D.D. Lopezgonzalez, M.L. Rojascervantes, R.M. Martinaranda, Study of Oxygen-Containing Groups in a Series of Graphite Oxides-Physical and Chemical Characterization [J], Carbon, 1995,33,1585-1592.
    [38]D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper [J], Nature,2007,448,457-460.
    [39]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials [J], Nature,2006,442,282-286.
    [40]D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets [J], Nat Nanotechnol,2008,3,101-105.
    [41]W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide [J], J Am Chem Soc,1958,80,1339-1339.
    [42]S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite and graphene [J], J Am Chem Soc,2006, 128,7720-7721.
    [43]S. Hrapovic, Y.L. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J], Anal Chem, 2004,76,1083-1088.
    [44]S. Hrapovic, J.H.T. Luong, Picoamperometric detection of glucose at ultrasmall platinum-based biosensors:Preparation and characterization [J], Anal Chem, 2003,75,3308-3315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700