用户名: 密码: 验证码:
好氧硝化颗粒污泥的性能及储存与解体后的自修复行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥是一种用于废水处理的新型微生物聚集体,是微生物在各种选择压的作用下自发凝聚而形成的结构致密、沉降性能良好、生物协作性强的生物颗粒。好氧颗粒污泥具有能够同时去除废水中的COD、N和P的特殊性能,是一项很有应用潜力的废水生物处理技术。本论文采用逐步提高选择压的培养策略,成功的培养了硝化菌大量富集、稳定性良好、能同时除碳脱氮的好氧硝化颗粒污泥,系统考察了好氧硝化颗粒污泥的培养形成过程、储存过程和解体过程,研究了储存和解体后恢复颗粒污泥性能的自修复行为,并验证了好氧硝化颗粒污泥处理高氨氮催化剂废水的可行性。主要研究内容如下:
     (1)研究逐步提高底物NH_4~+-N浓度选择压的培养策略的优势和形成的好氧硝化颗粒污泥的性能。结果表明,在底物NH_4~+-N浓度为200 mg/L的条件下无法完成好氧颗粒化过程;而底物NH_4~+-N浓度为50 mg/L条件下培养的好氧颗粒污泥以异养菌为主,结构松散,丝状菌大量繁殖,稳定性差,反应器运行131天颗粒污泥就开始解体。将底物NH_4~+-N浓度从50mg/L逐步提高到200 mg/L的培养策略使颗粒污泥内的硝化菌逐渐富集,最终形成了能同时去除COD和NH_4~+-N并具有一定反硝化能力的好氧硝化颗粒污泥。逐步提高选择压的培养策略使好氧硝化颗粒污泥的性能得到逐步改善,反应器内污泥浓度(MLSS)和颗粒粒径逐步提高,颗粒沉降性能和硝化反硝化活性逐步得到强化。同时,硝化菌的大量富集抑制了丝状菌的生长,形成的好氧硝化颗粒污泥以杆菌为主,颗粒结构紧凑、稳定性能良好,反应器运行283天未出现明显颗粒解体现象。在进水COD和NH_4~+-N浓度分别为500和200 mg/L时,COD、NH_4~+-N和总氮(TN)平均去除率分别达到82%、98%和50%。
     (2)考察短期储存2个月对好氧硝化颗粒污泥的影响,并研究储存后的自修复阶段的操作条件对硝化菌活性恢复的影响。结果表明,储存2个月对好氧硝化颗粒污泥的物理性能和结构稳定性都没有明显影响。采用储存前的操作条件进行活性恢复,即较低的剪切力(0.9cm/s)和循环时间(4h)条件下,异养菌活性恢复最快,5天后COD去除率基本恢复并稳定在80%以上;而亚硝酸菌和硝酸菌的比耗氧速率(SOUR)只能分别恢复至储存前的88%和82%,NH_4~+-N去除率仅在80%~90%之间:第41天剪切力提高至1.8cm/s后,亚硝酸菌活性完全恢复,NH_4~+-N去除率达到98%以上,但硝酸菌的SOUR仍只有储存前的92%;第65天将循环时间延长至6h,硝酸菌活性完全恢复。
     (3)研究好氧硝化颗粒污泥长期储存7个月过程中的性能、结构和菌群衰减变化以及储存后的自修复行为。结果表明,长期储存使好氧硝化颗粒污泥的VSS/SS值下降,沉降性能恶化,颗粒表面出现较多孔穴和褶皱,但颗粒污泥并未发生明显解体现象,仍保持其形态结构的稳定性。好氧硝化颗粒污泥储存后,硝化菌和异养菌的活性都有明显的衰减,但硝化菌的衰减速度较慢。在储存阶段,微生物首先利用胞外聚合物(EPS)和混合液中残留的溶解氧(DO)进行代谢生长,随后分泌越来越多的EPS(尤其是多糖)。好氧硝化颗粒污泥内硝化菌的衰减速度慢以及EPS的大量分泌是其在长期储存阶段能保持形态结构稳定性的重要原因。在自修复阶段,好氧硝化颗粒污泥的物理性能和微生物活性都迅速恢复,经过1个月的时间,其结构、VSS含量、沉降性能等都完全恢复甚至优于储存前的水平。在剪切力为1.8cm/s,循环时间为6 h的条件下,好氧硝化颗粒污泥内的硝化菌和异养菌活性分别经11天和16天即可完全恢复。
     (4)对好氧硝化颗粒污泥的解体机制进行系统研究。结果表明,随着好氧硝化颗粒污泥粒径的增长,颗粒污泥内部底物和DO的传质限制是导致颗粒解体的根本原因。解体过程主要包括以下三个阶段:①颗粒污泥内部底物和DO的传质通道被堵塞,中心空穴区域逐渐扩大,最终颗粒污泥形成明显的中空结构;②反硝化以及有机物厌氧分解产生的气体在颗粒内部难以排出,颗粒内部产生较大气压,从而导致颗粒外层出现裂痕;③颗粒碎片沿颗粒裂痕处脱落,颗粒污泥完全解体。
     (5)考察加入新的活性污泥促进解体好氧硝化颗粒污泥完成自修复的可行性。结果表明,解体颗粒污泥的空穴能逐渐吸附新加入的活性污泥,并与之形成一个有机的整体。大约3周时间,解体颗粒污泥完全修复,被修复后的颗粒污泥结构规则,微生物相致密,颗粒污泥的沉降性能和强度都得到了极大的改善。剩余活性污泥在各种选择压的作用下形成新的颗粒污泥。由修复的和新形成的颗粒污泥组成的系统对COD和NH_4~+-N都具有高效稳定的去除效果,在进水COD和NH_4~+-N浓度分别为500和150mg/L时,COD、NH_4~+-N和TN去除率分别稳定在90%、99%和50%左右。
     (6)研究好氧硝化颗粒污泥处理高氨氮催化剂废水的可行性。结果表明,好氧硝化颗粒污泥适合处理高氨氮催化剂废水,而且具有很好的抗冲击负荷能力。在循环时间为4h,NH_4~+-N浓度为600 mg/L时,NH_4~+-N容积负荷达到1.8kg/m~3·d,NH_4~+-N去除率达到98%以上。在模拟废水盐度为15g/L,COD和NH_4~+-N浓度分别在100~400 mg/L和300~600 mg/L之间波动时,COD去除率在75%~90%之间,NH_4~+-N去除率在97%以上,出水都能达到《污水综合排放标准(GB 8978-1996)》一级标准的要求。
Aerobic granules,as self-aggregated bio-particles by microorganisms under certain selection pressures,have compact structure and good settling ability.It is believed that aerobic granulation would be a novel and promised biotechnology for simultaneous removal of COD,N and P in wastewater treatment.In this study,aerobic nitrifying granules were successfully cultivated under stepwise increased selection pressure.Aerobic nitrifying granules,which were enriched with nitrifying bacteria,had excellent stability and were able to simultaneous organic oxidation,nitrification,and partial denitrification.This study detailed investigated the cultivation,storage,and disintegration process of aerobic nitrifying granules, the self-remediation behaviors after granule storage and disintegration,and the feasibility in synthetic high ammonia-nitrogen catalytic wastewater treatment.The main experimental results were listed as follows:
     (1) This study evaluated the utility of a cultivation strategy of stepwise increased selection pressure for aerobic granulation and investigated the performance of aerobic nitrifying granules.Results showed that aerobic granules failed to be developed under substrate NH_4~+-N of 200 mg/L.Heterotrophs dominated aerobic granules formed under substrate NH_4~+-N of 50 mg/L were fluffy structured and unstable due to the outgrowth of filamentous bacteria and they were quickly disintegrated from day 131.Nitrifying bacteria were gradually selected and enriched in aerobic granules by adopted a cultivation strategy of stepwise increased substrate NH_4~+-N from 50 to 200 mg/L.Finally,aerobic nitrifying granules capable of simultaneous organic oxidation,nitrification,and partial denitrification, were successfully formed.This cultivation strategy stepwise improved the performance of aerobic nitrifying granules,such as MLSS,granules size,settleability,and nitrifying and denitrifying activities.Enrichment of nitrifying bacteria also suppressed filamentous growth and further improved the stability of aerobic nitrifying granules.During 283 days' operation, no evidence of granule disintegration could be found.The respective COD,NH_4~+-N,and total nitrogen(TN) removal efficiency reached 82%,98%,and 50%when the substrate COD and NH_4~+-N concentration were 500 and 200 mg/L,respectively.
     (2) A short-term storage of 2 months on the performance of aerobic nitrifying granules and the effect of operational conditions on the reactivation of nitrifying bacteria were investigated.The physical characteristics and structure stability of aerobic nitrifying granules had not significantly changed after short-term storage.At shear force of 0.9 cm/s and cycle time of 4 h,heterotrophs reactivated quickly and the COD removal efficiency recovered and stabilized above 80%after 5 days.While the respective specific oxygen utilization rate (SOUR) of AOB and NOB recovered 88%and 82%as that of before storage and the NH_4~+-N removal efficiency was only between 80%~90%.When the shear force was increased to 1.8 cm/s on day 41,AOB was fully recovered and NH_4~+-N removal efficiency reached above 98%,while the activity of NOB recovered only 92%during this period.Until day 65 when the cycle time was prolonged to 6 h,NOB was fully reactivated.
     (3) The evolution of physical characteristics,structure,and population decay of aerobic nitrifying granules during a long-term storage of 7 months and the self-bioremediation behavior after storage were investigated.Some cavities and pleats appeared on the surface of granules after storage.Meanwhile,the ratio of VSS/SS decreased and the settleability was also deteriorated.However,the structure stability of aerobic nitrifying granules was remained. During storage,though both heterotrophs and nitrifying bacteria significantly decayed, nitrifying bacteria decayed slower.Microorganisms firstly used extracellular polymeric substances(EPS) as substrate and residual oxygen as electron acceptor after storage began, and then produced more and more EPS during the rest storage,in particular polysaccharides (PS).The slower decay rate of nitrifying bacteria and the production of EPS would be two important reasons for maintaining structural stability of aerobic nitrifying granules during long-term storage.During self-remediation period,the physical characteristics and microbial activities of aerobic nitrifying granules were quickly recovered.After one month,their structure,VSS content,and settleability were both reactivated and even became better.Under shear force of 1.8 cm/s and cycle time of 6 h,heterotrophs and nitrifying bacteria can by fully recovered within 16 and 11 days,respectively.
     (4) This study described the detailed disintegration mechanism of aerobic nitrifying granules.Along with the increase of granule size,the ultimate reason for disintegration of aerobic nitrifying granules was mass transfer limitation of substrates and dissolved oxygen (DO).The detailed disintegration process can be concluded as follows.Firstly,granules exhibited distinct void structure because the channels presented within granules were eventually plugged and cavity structure in the center of granules was enlarged.Secondly,gas produced by denitrification and anaerobic fermentation came into being pressures within granules and further led to appearance of fissures on the granular shells.Finally,fragments broken off and granules were completely disintegrated.
     (5) The feasibility of adding fresh activated sludge for stimulating self-remediation of disintegrated granules was evaluated in this study.Results showed that fresh activated sludge was gradually adsorbed into disintegrated and cavity granules and then combined together with granules.Disintegrated aerobic granules were fully remedied after about 3 weeks. Remedied granules exhibited regular and compact structure.Granule settleability and strength were both improved profoundly during self-remediation.Besides those activated sludge used for bioremediation,the rest formed fresh aerobic granules finally.Reactor system which was composed of bioremedied and fresh granules exhibited excellent performance.The respective removal efficiency of COD,NH_4~+-N and TN were stabilized at about 90%,99%and 50% when the substrate COD and NH_4~+-N concentration were 500 mg/L and 150 mg/L, respectively.
     (6) This study also investigated and confirmed the feasibility of aerobic nitrifying granules in synthetic high ammonia-nitrogen catalytic wastewater treatment.At cycle time of 4 h and NH_4~+-N concentration of 600 mg/L,the wolumetric load of NH_4~+-N achieved 1.8 kg/m~3·d and the NH_4~+-N removal efficiency exceeded 98%.The system had a high capacity in resistance to shock loading.The removal efficiency of COD was about 75%to 90%when the COD concentration was fluctuated between 100 mg/L and 400 mg/L.When the NH_4~+-N concentration was fluctuated between 300 mg/L and 600 mg/L,NH_4~+-N removal efficiency was basically above 97%.The effluent reached the first class integrated wastewater discharge standard(GB 8978-1996).
引文
[1]沈耀良,黄勇,赵丹等.固定化微生物污水处理技术.北京:化学工业出版社,2002.
    [2]白凤武.无载体固定化细胞的研究进展.生物工程进展,2000,20:32-36.
    [3]周律,钱易.好氧颗粒污泥的形成和技术条件.给水排水,1994,(4):12-14.
    [4]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    [5]Kennedy E J,Lentz E M.Treatmeng of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket(UASB) reactors.Water Res,2000,34(14):3640-3656.
    [6]Halalsheh M,Sawajneh Z,Zu'bi M,et al.Treatment of strong domestic sewage in a 96 m~3 UASB reactor operated at ambient temperatures:two-stage versus single-stage reactor.Bioresource Technol,2005,96(5):577-585.
    [7]Nunez L A,Martinez B.Anaerobic treatment of slaughterhouse wastewater in an Expanded Granular Sludge Bed(EGSB) reactor.Water Sci Technol,1999,40(8):99-106.
    [8]许英杰,冯贵颖,买文宁.生产性IC反应器厌氧颗粒污泥的生物学特征.环境污染治理技术与设备,2005,6(4):84-85.
    [9]张彦波,樊江利.UBF反应器在抗生素废水处理工程中的应用.工业用水与废水,2004,35(3):60-62.
    [10]郝晓地.可持续污水-废物处理技术.北京:中国建筑工业出版社,2006.
    [11]Lettinga G,Van Velson A F M,Hobma S W,et al.Use of the upflow sludge blanket(USB) reactor concept for biological wastewater treatment,especially for anaerobic treatment.Biotechnol Bioeng,1980,22:699-734.
    [12]Liu Y,Wang Z W,Qin L,et al.Selection pressure-driven aerobic granulation in a sequencing batch reactor.Appl Microbiol Biot,2005,67(1):26-32.
    [13]Liu Y,Wang Z W,Tay J H.A unified theory for upscaling aerobic granular sludge sequencing batch reactors.Biotechnol Adv,2005,23(5):335-344.
    [14]Beun J J,Hendriks A,van Loosdrecht M C M,et al.Aerobic granulation in a sequencing batch reactor.Water Res,1999,33:2283-2290.
    [15]Tay J H,Liu Q S,Liu Y.The effects of shear force on the formation,structure and metabolism of aerobic granules.Appl Microbiol Biot,2001,57(1-2):227-233.
    [16]Mishima K,Nakamura M.Self-immobilization of aerobic activated sludge-A pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment.Water Sci Technol,1991,23(4-6):981-990.
    [17]Shin H S,Lim K H,Park H S.Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors.Water Sci Technol,1992,26(3-4):601-605.
    [18]Morgenroth E,Sherden T,Van Loosdrecht M C M,et al.Aerobic granular sludge in a sequencing batch reactor.Water Res,1997,31(12):3191-3194.
    [19]Peng D,Bernet N,Delgenes J P,et al.Aerobic granular sludge:a case study.Water Res,1999,33:890-893.
    [20]Beun J J,Van Loosdrecht M C M,Heijnen J J.Aerobic granulation.Water Sci Technol,2000,41(4-5):41-48.
    [21] Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol, 2001,91(1): 168-175.
    [22] Tay J H, Liu Q S, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol, 2001, 33(3): 222-226.
    [23] Tay J H, Ivanov V, Pan S, et al. Specific layers in aerobically grown microbial granules. Lett Appl Microbiol, 2002, 34(4): 254-257.
    [24] Liu Y, Woon K H, Yang S F, et al. Influence of phenol on cultures of acetate-fed aerobic granular sludge. Lett Appl Microbiol, 2002, 35(2): 162-165.
    [25] Liu Y, Yang S F, Tan S F, et al. Aerobic granules: A novel zinc biosorbent. Lett Appl Microbiol, 2002, 35(6): 548-551.
    [26] Tay J H, Tay S T L, Ivanov V, et al. Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Lett Appl Microbiol, 2003,36(5): 297-301.
    [27] Liu Y, Xu H, Yang S F, et al. A general model for biosorption of Cd~(2+), Cu~(2+) and Zn~(2+) by aerobic granules. J Biotechnol, 2003,102(3): 233-239.
    [28] Liu Y, Yang S F, Xu H, et al. Biosorption kinetics of cadmium(II) on aerobic granular sludge. Process Biochem, 2003, 38(7): 997-1001.
    [29] Lin Y M, Liu Y, Tay J H. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Appl Microbiol Biot, 2003, 62(4): 430-435.
    [30] Tsuneda S, Nagano T, Hoshino T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res, 2003, 37(20): 4965-4973.
    [31] Yang S F, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules. Biochem Eng J, 2004, 17(1): 41-48.
    [32] Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem, 2004, 39(5): 579-584.
    [33] Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem Eng J, 2004, 21(1): 47-52.
    [34] Liu Y, Yang S F, Qin L, et al. A thermodynamic interpretation of cell hydrophobicity in aerobic granulation. Appl Microbiol Biot, 2004, 64(3): 410-415.
    [35] Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biot, 2005, 66(6): 711-718.
    [36] Schwarzenbeck N, Erley R, Wilderer P A. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci Technol, 2004,49(11-12): 41-46.
    [37] Schwarzenbeck N, Erley R, Wilderer P A, et al. Treatment of malting wastewater in a granular sludge sequencing batch reactor (SBR). Acta Hydroch Hydrob, 2004, 32(1): 16-24.
    [38] Su K Z, Yu H Q. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ Sci Technol, 2005, 39(8): 2818-2827.
    [39] Inizan M, Freval A, Cigana J, et al. Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment. Water Sci Technol, 2005, 52(10-11): 335-343.
    [40] Wang S G, Liu X W, Gong W X, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technol, 2006,98(11): 2142-2147.
    [41]Wang H L,Yu G L,Liu G S,et al.A new way to cultivate aerobic granules in the process of papermaking wastewater treatment.Biochem Eng J,2006,28(1):99-103.
    [42]De Kreuk M K,van Loosdrecht M C M.Formation of aerobic granules with domestic sewage.J Environ Eng,2006,132(6):694-697.
    [43]黄钧,李毅军,刘东渝等.三种工业废水颗粒污泥的化学及微生物学相组成.应用与环境生物学报,1995,1(3):252-259.
    [44]Ratask C H,Kooi B W,van Verseveld H W.Biomass reduction and mineralization increase due to the ciliate Tetrahymena pyriformis grazing on the bacterium Pseudomonas fluorescens.Water Sci Technol,1994,29(7):119-128.
    [45]陈声贵,许木启,杨向平等.原生动物在活性污泥中的作用.生态学杂志,2002,21(3):47-51.
    [46]Etterer T,Wilderer P A.Generation and properties of aerobic granular sludge.Water Sci Technol,2001,43(3):19-26.
    [47]竺建荣,刘纯新,何建中等.厌-好氧交替工艺的生物除磷特性研究.环境科学学报,1999,19(4):394-398.
    [48]竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究.环境科学,1999,20(2):38-41.
    [49]Zita A,Hermansson M.Effects of bacterial cell surface structure and hydrophobic on attachment to activated sludge flocs.Appl Environ Microb,1997,63:1168-1170.
    [50]Selim L S,Sanin F D,Bryers J D.Effects of starvation on the adhesive properties of xenobiotic degrading bacteria.Process Biochem,2003,38(6):909-914.
    [51]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理.中国环境科学,2004,24(5):623-626.
    [52]Tay J H,Liu Q S,Liu Y.Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors.Environ Technol,2002,23(8):931-936.
    [53]Liu Y,Yang S F,Liu Q S,et al.The role of cell hydrophobicity in the formation of aerobic granules.Curr Microbiol,2003,46(4):270-274.
    [54]Liu Y,Tay J H.The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge.Water Res,2002,36(7):1653-1665.
    [55]Liu Y,Xu H L,Yang S F,et al.Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor.Water Res,2003,37(3):661-673.
    [56]Schmidt J E,Ahring B K.Granular sludge formation in upflow anaerobic sludge blanket(UASB)reactors.Biotechnol Bioeng,1996,49(3):229-246.
    [57]Tay J H,Yang S F,Liu Y.Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors.Appl Microbiol Biot,2002,59(2-3):332-337.
    [58]Sutherland I W.Exopolysaccharides in biofilms,floes and related structures.Water Sci Technol,2001,43(6):77-86.
    [59]McSwain B S,Irvine R L,Hausner M,et al.Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge.Appl Environ Microb,2005,71(2):1051-1057.
    [60]Zhang L L,Feng X X,Zhu N W,et al.Role of extracellular protein in the formation and stability of aerobic granules.Enzyme Microb Technol,2007,41(5):551-557.
    [61]张丽丽,陈效,陈建孟等.胞外多聚物在好氧颗粒污泥形成中的作用机制.环境科学,2007,28(4):795-799.
    [62]Zeng R J,Lemaire R,Yuan Z,et al.Simultaneous nitrification,denitrification,and phosphorus removal in a lab-scale sequencing batch reactor.Biotechnol Bioeng,2003,84(2):170-178.
    [63]Pachana K,Keller J.Study of factors affecting simultaneous nitrification and denitrification(SND).Water Sci Technol,1999,39(6):600-605.
    [64]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    [65]Jang A,Bishop P L,Yoon Y H,et al.Characterization and evaluation of aerobic granules in sequencing batch reactor.J Biotechnol,2003,105(1-2):71-82.
    [66]Helmer C,Kunst S.Simultaneous nitrification/denitrification in an aerobic biofilm system.Water Sci Technol,1998,37(4-5):183-187.
    [67]Robertson L A,Van Niel E W J,Torremans R A M,et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of thiosphaera pantotropha.Appl Environ Microb,1988,54(11):2812-2818.
    [68]Robertson L A,Kuenen J G.Aerobic denitrification:a controversy revived.Arch Microbiol,1984,139:351-354.
    [69]van Niel E W J.Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification.Ph.D,Delft University of Technology,Delft,1991.
    [70]Hanaki K,Hong Z,Matsuo T.Production of nitrous oxide gas during denitrification of wastewater.Water Sci Technol,1992,26(1027-1036).
    [71]Spieck E,Ehrich S,Aamand J,et al.Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis.Arch Microbiol,1998,169(225-230).
    [72]Lloyd H,Ketchum J R.Design an physical features of sequencing batch reactors.Water Sci Technol,1997,35(1):11-18.
    [73]Tam N F Y,Wong Y S,Leung G.Significance of external carbon sources on simultaneous removal of nutrients from wastewater.Water Sci Technol,1992,26(5-6):1047-1055.
    [74]杨麒,李小明,曾光明等.SBR系统中同步硝化反硝化好氧颗粒污泥的培养.环境科学,2003,24(4):94-98.
    [75]Beun J J,Heijnen J J,Van Loosdrecht M C M.N-removal in a granular sludge sequencing batch airlift reactor.Biotechnol Bioeng,2001,75(1):82-92.
    [76]De Kreuk M K,Heijnen J J,Van Loosdrecht M C M.Simultaneous COD,nitrogen,and phosphate removal by aerobic granular sludge.Biotechnol Bioeng,2005,90(6):761-769.
    [77]Third K A,Burnett N,Cord-Ruwisch R.Simultaneous nitrification and denitrification using stored substrate(PHB) as the electron donor in an SBR.Biotechnol Bioeng,2003,83(6):706-720.
    [78]Collivignavelli C,Bertanza G.Simultaneous nitrification and nitrification processes in activated sludge plants:performance and applicability.Water Sci Technol,1999,40(4-5):187-194.
    [79]Bertanza G.Simultaneous nitrification and nitrification process in extended aeration plants:pilot and real scale experience.Water Sci Technol,1997,35(6):53-61.
    [80]Ng P H(2002) Storage stability of aerobic granules cultivated in aerobic granular sludge blanket reactor,Final year report of Bachelor of Engineering 2002,Nanyang Technological University,Singapore.
    [81]Zhu J R,Wilderer P A.Effect of extended idle conditions on structure and activity of granular activated sludge.Water Res,2003,37:2013-2018.
    [82]Zhang L L,Zhang B,Huang Y F,et al.Re-activation characteristics of preserved aerobic granular sludge.J Environ Sci-China,2005,17(4):655-658.
    [83]Liu Q S,Liu Y,Tay S T L,et al.Startup of pilot-scale aerobic granular sludge reactor by stored granules.Environ Technol,2005,26(12):1363-1369.
    [84]Zeng P,Zhuang W Q,Tay S T L,et al.The influence of storage on the morphology and physiology of phthalic acid-degrading aerobic granules.Chemosphere,2007,69(11):1751-1757.
    [85]Tay S T L,Zhuang W Q,Tay J H.Start-up,microbial community analysis and formation of aerobic granules in a tert-butyl alcohol degrading sequencing batch reactor.Environ Sci Technol,2005,39(15):5774-5780.
    [86]Pan S,Tay J H,He Y X,et al.The effect of hydraulic retention time on the stability of aerobically grown microbial granules.Lett Appl Microbiol,2004,38(2):158-163.
    [87]Jiang H L,Tay J H,Tay S T L.Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol.Lett Appl Microbiol,2002,35(5):439-445.
    [88]Jiang H L,Tay J H,Liu Y,et al.Ca~(2+) augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors.Biotechnol Lett,2003,25(2):95-99.
    [89]Moy B Y P,Tay J H,Toh S K,et al.High organic loading influences the physical characteristics of aerobic sludge granules.Lett Appl Microbiol,2002,34(6):407-412.
    [90]卢然超,张晓健,张悦等.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,22(2):87-90.
    [91]Zita A,Hermansson M.Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ.FEMS Microbiol Lett,1997,18:299-306.
    [92]Wilen B M,Onuki M,Hermansson M,et al.Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability.Water Research,2008,42(8-9):2300-2308.
    [93]Beun J J,van Loosdrecht M C M,Heijnen J J.Aerobic granulation in a sequencing batch airlift reactor.Water Res,2002,36(3):702-712.
    [94]Tay J H,Liu Q S,Liu Y.Aerobic granulation in sequential sludge blanket reactor.Water Sci Technol,2002,46(4-5):13-18.
    [95]De Kreuk M K,Pronk M,Van Loosdrecht M C M.Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures.Water Res,2005,39(18):4476-4484.
    [96]Liu Y Q,Tay J H,Moy B Y P.Characteristics of aerobic granular sludge in a sequencing batch reactor with variable aeration.Appl Microbiol Biotechnol,2005.
    [97]Liu Y Q,Tay J H.Variable aeration in sequencing batch reactor with aerobic granular sludge.J Biotechnol,2006,124(2):338-346.
    [98]Li Z H,Kuba T,Kusuda T.The influence of starvation phase on the properties and the development of aerobic granules.Enzyme Microb Technol,2006,38(5):670-674.
    [99] Li Z H, Kuba T, Kusuda T. Selective force and mature phase affect the stability of aerobic granule: An experimental study by applying different removal methods of sludge. Enzyme Microb Technol, 2006, 39(5): 976-981.
    [100] Tay S T L, Moy B Y P, Jiang H L, et al. Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed. J Biotechnol, 2005,115(4): 387-395.
    [101] Tay S T L, Moy B Y P, Maszenan A M, et al. Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation. Appl Microbiol Biot, 2005,67(5): 708-713.
    [102] Wang F, Liu Y H, Yang F L, et al. (2004) Study on the stability of aerobic granules in SBAR-effect of superficial upflow air velocity and carbon source, Munich, Germany.
    [103] Wang F. Cultivation and characteristics of aerobic granular sludge in sequencing batch airlift reactor. Dalian University of Technology, China, 2004.
    [104] Wang Q, Du G, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochem, 2004, 39(5): 557-563.
    [105] Cai C G, Zhu N W, Wang Z P, et al. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor. J Environ Sci-China, 2004,16(4): 624-626.
    [106] Liu L L, Wang Z P, Yao J, et al. Investigation on the formation and kinetics of glucose-fed aerobic granular sludge. Enzyme Microb Technol, 2005,36(4): 487-491.
    [107] Liu L L, Wang Z P, Yao J, et al. Investigation on the properties and kinetics of glucose-fed aerobic granular sludge. Enzyme Microb Technol, 2005,36(2-3): 307-313.
    [108] Tay S T L, Ivanov V, Yi S, et al. Presence of anaerobic Bacteroides in aerobically grown microbial granules. Microb Ecol, 2002,44(3): 278-285.
    [109] Wang Z P, Liu L L, Yao J, et al. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere, 2006, 63(10): 1728-1735.
    [110] Tay J H, Pan S, He Y, et al. Effect of organic loading rate on aerobic granulation. II: Characterisctics of aerobic granules. J Environ Eng, 2004,130(10): 1102-1109.
    [111] Tay J H, Pan S, He Y, et al. Effect of organic loading rate on aerobic granulation. I: Reactor performance. J Environ Eng, 2004,130(10): 1094-1101.
    [112] Liu Y, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnol Adv, 2006, 24(1): 115-127.
    [113] Zheng Y M, Yu H Q, Liu S J, et al. Formation and instability of aerobic granules under high organic loading conditions. Chemosphere, 2006, 63(10): 1791-1800.
    [114] Zheng Y-M, Yu H-Q, Sheng G-P. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochem, 2005,40: 645-650.
    [115] Tsuneda S, Ejiri Y, Nagano T, et al. Formation mechanism of nitrifying granules observed in an aerobic upflow fluidized bed (AUFB) reactor. Water Sci Technol, 2004,49(11-12): 27-34.
    [116] Wilen B M, Gapes D, Keller J. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. Biotechnol Bioeng, 2004, 86(4): 445-457.
    [117] Wilen B M, Gapes D, Blackall L L, et al. Structure and microbial composition of nitrifying microbial aggregates and their relation to internal mass transfer effects. Water Sci Technol, 2004, 50(10): 213-220.
    [118] Jiang H L, Tay J H, Tay S T L. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biot, 2004, 63(5): 602-608.
    [119] Jiang H L, Tay J H, Maszenan A M, et al. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microb, 2004, 70(11): 6767-6775.
    [120] Tay J H, Jiang H L, Tay S T L. High-rate biodegradation of phenol by aerobically grown microbial granules. J Environ Eng, 2004,130(12): 1415-1423.
    [121] Tay S T L, Jiang H L, Tay J H. Functional analysis of microbial community in phenol-degrading aerobic granules cultivated in SBR. Water Sci Technol, 2004,50(10): 229-234.
    [122] Lan H X, Chen Y C, Chen Z H, et al. Cultivation and characters of aerobic granules for pentachlorophenol (PCP) degradation under microaerobic condition. J Environ Sci-China, 2005, 17(3): 506-510.
    [123] Lan H X, Chen Z H, Chen Y C, et al. Formation of aerobic granular sludge for pentachlorophenol (PCP) degradation under microaerobic condition. Chung-kuo Tsao Chih/China Pulp and Paper, 2004, 23(12): 7-10.
    [124] Chen Y C, Lan H X, Chen Z H. Physical-chemical character of aerobic granular sludge for pentachlorophenol (PCP) degradation under microaerobic condition. Zhongguo Zaozhi Xuebao/Transactions of China Pulp and Paper, 2005,20(1): 97-100.
    [125] Zhuang W Q, Tay J H, Yi S, et al. Microbial adaptation to biodegradation of tert-butyl alcohol in a sequencing batch reactor. J Biotechnol, 2005,118(1): 45-53.
    [126] Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res, 2004, 38(14-15): 3389-3399.
    [127] Sun F Y, Yang C Y, Li J Y, et al. Influence of different substrates on the formation and characteristics of aerobic granules in sequencing batch reactors. J Environ Sci-China, 2006, 18(5): 864-871.
    [128] Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J Biotechnol, 2004,108(2): 161-169.
    [129] Chudoba J. Control of activated sludge filamentous bulking-VI. Formulation of basic principle. Water Res, 1985,19: 1017-1022.
    [130] Thaveesri J, Liessens B, Verstraete W. Granular sludge growth under different reactor liquid surface tensions in lab-scale upflow anaerobic sludge blanket reactors treating wastewater from sugar-beet processing. Appl Microbiol Biot, 1995,43: 1122-1127.
    [131] Yi S, Zhuang W Q, Wu B, et al. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ Sci Technol, 2006,40(7): 2396-2401.
    [132] Bhatti Z I, Toda H, Furukawa K. p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Res, 2002, 36: 1135-1142.
    [133] Liu Y, Yang S F, Tay J H. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biot, 2003,61(5-6): 556-561.
    [134] Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol, 2003,106(1): 77-86.
    [135]Yang S F,Tay J H,Liu Y.Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios.Curr Microbiol,2004,49(1):42-46.
    [136]Yang S F,Tay J H,Liu Y.Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules.J Environ Eng,2005,131(1):86-92.
    [137]Tay J H,Pan S,Tay S T L,et al.The effect of organic loading rate on the aerobic granulation:The development of shear force theory.Water Sci Technol,2003,47(11):235-240.
    [138]McSwain B S,Irvine R L,Wilderer P A.The effect of intermittent feeding on aerobic granule structure.Water Sci Technol,2004,49(11-12):19-25.
    [139]Wirtz R A,Dague R R.Enhancement of granulation and start-up in the anaerobic sequencing batch reactor.Water Environ Res,1996,68(883-892).
    [140]Liu Y Q,Tay J H.Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors.Enzyme Microb Technol,2007,41(4):516-522.
    [141]Liu Y Q,Wu W W,Tay J H,et al.Starvation is not a prerequisite for the formation of aerobic granules.Appl Microbiol Biot,2007,76:211-216.
    [142]Wang Z W,Li Y,Zhou J Q,et al.The influence of short-term starvation on aerobic granules.Process Biochem,2006,41(12):2373-2378.
    [143]Liu Y-Q,Tay J-H.Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors.Bioresource Technol,2007:doi:10.1016/j.biortech.2007.1003.1011.
    [144]Wang Z W,Liu Y,Tay J H.The role of SBR mixed liquor volume exchange ratio in aerobic granulation.Chemosphere,2006,62(5):767-771.
    [145]Adav S S,Lee D J,Lai J.Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances.Appl Microbiol Biot,2007,77(1):175-182.
    [146]刘莉莉,王志平,蔡伟民.好氧颗粒污泥处理啤酒废水的研究.工业用水与废水,2006,37:27-30.
    [147]迟寒,刘毅慧,杨凤林.好氧颗粒污泥处理城市生活污水.水处理技术,2006,32(8):73-77.
    [148]阮文权,陈坚.同步硝化与反硝化(SND)好氧颗粒污泥脱氮过程初步研究.安全与环境学报,2003,3(5):3-7.
    [149]邹雪,孙飞云,杨成久等.利用好氧硝化颗粒污泥SBR处理分离尿液的研究.环境科学,2007,28(9):1987-1992.
    [150]Kuba T,Smolders G J F,Van Loosdrecht M C M,et al.Biological phosphorus removal from wastewater by anaerobic/anoxic sequencing batch reactor.Water Sci Technol,1993,27(5-6):241-252.
    [151]Ng W J,Ong S L,Hu J Y.Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch ractor.Water Sci Technol,2001,43(3):139-146.
    [152]王春英,隋军,赵庆良.反硝化聚磷机理实验.环境污染治理技术与设备,2002,3(6):65-68.
    [153]Kuba T,Van Loosdrecht M C M,Brandse F A,et al.Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants.Water Res,1997,31(4):777-786.
    [154]Ahn J,Daidou T,Tsuneda S,et al.Metabolic behavior of denitrifying phosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions.J Biosci Bioeng,2001,92(5):442-446.
    [155]Sorm R,Bortonc G,Saltarclli R,et al.Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system.Water Res,1996,30(7):1573-1584.
    [156]Kerm-Jespersen J P,Henze M,Strube R.Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor.Water Res,1994,28(5):1253-1255.
    [157]Dulekgurgen E,Ovez S,Artan N,et al.Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor.Biotcchnol Lett,2003,25(9):687-693.
    [158]蓝惠霞,陈中豪,陈元彩等.微氧条件下培养降解五氯酚的好氧颗粒污泥.中国造纸,2004,23(12):7-10.
    [159]蓝惠霞,陈中豪,陈元彩等.好氧颗粒污泥和活性污泥细菌种群结构对五氯酚污染的响应研究.中国造纸,2004,23(12):7-10.
    [160]胡林林,王建龙,文湘华等.SBR中厌氧颗粒污泥向好氧颗粒污泥的转化.环境科学,2004,25(4):74-77.
    [161]王芳,杨凤林,张兴文等.SBAR中培养条件对好氧颗粒污泥特性影响.大连理工大学学报,2005,45(6):808-813
    [162]Tay J H,Yah Y G.Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors.Water Environ Res,1996,68(7):1140-1150.
    [163]Anthonisen A C,Loehr R C,Prakasam T B S,et al.Inhibition of nitrification by ammonia and nitrous acid.J Water Pollut Contr Fed,1976,48:835-852.
    [164]Suthersan S,Ganczarczyk J J.Inhibition of nitrite oxidation during nitrification:some observations.Water Pollut Res J Canada,1986,21:257-266.
    [165]Hansen K H,Angelidaki J,Ahring B K.Anaerobic digestion of swine manure:inhibition by ammonia.Water Res,1998,32:5-12.
    [166]Kim D J,Seo D.Selective enrichment and granulation of ammonia oxidizers in a sequencing batch airlift reactor.Process Biochem,2006,41:1055-1062.
    [167]国家环境保护总局.水和废水监测分析方法.北京:中国环境科学出版社.2002.
    [168]Carvalho G,Meyer R L,Yuan Z,ct al.Differential distribution of ammonia-and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor.Enzyme Microb Technol,2006,39(7):1392-1398.
    [169]Ochoa J C,Colprim J,Palacios B,et al.Active heterotrophic and autotrophic biomass distribution between fixed and suspended systems in a hybrid biological reactor.Water Sci Technol,2002,46:397-404.
    [170]程翔.好氧颗粒污泥同步硝化反硝化处理高浓度氨氮废水研究.工学硕士学位论文,哈尔滨工业大学.2006.
    [171]Ford D L,Churchwell R L,Kachtick J W.Comprehensive analysis of nitrification of chemical processing wastewaters.J Water Pollut Contr Fed,1980,52:2726-2746.
    [172]Liu L L,Wang Z P,Yao J,et al.Investigation on the formation and kinetics of glucose-fed aerobic granular sludge.Enzyme Microb Technol,2005,36(5-6):712-716.
    [173]Villaverde S,Fdz-Polanco F.Spatial distribution of respiratory activity in Pseudomonas putida 54G biofilms degrading volatile organic compounds(VOC).Appl Microbiol Biot,1999,51(3):382-387.
    [174]Rittmann B E,McCarty P L.Environmental Biotechnology:Principles and Applications.New York:McGraw-Hill,2001.
    [175]Tijhuis L,van Loosdrecht M C M,Heijnen J J.Dynamics of biofilm detachment in biofilm airlift suspension reactors.Biotechnol Bioeng,1995,45(6):481-487.
    [176]Gjaltema A,Tijhuis L,van Loosdrecht M C M,et al.Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors.Biotechnol Bioeng,1995,46(3):258-269.
    [177]Kwok W K,Picioreanu C,Ong S L,et al.Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor.Biotechrlol Bioeng,1998,58(4):400-407.
    [178]Liu Y.Estimating minimum fixed biomass concentration and active thickness of nitrifying biofilm.J Environ Eng,1997,123:198-202.
    [179]Richard M R,Collins S B F(2003) Activated sludge microbiology problem and their control,Buffalo,NY.
    [180]Bitton G.Wastewater Microbiology.New York:Wiley-Liss,1999.
    [181]Knoop S,Kunst S.Influence of temperature and sludge loading on activated sludge settling,especially on Microthrix parvicella.Water Sci Technol,1998,37:27-35.
    [182]Rossetti S,Tomei M C,Levantesi C,et al.Microthrix parvicella:a new approach for kinetic and physiological characterization.Water Sci Technol,2002,46:65-72.
    [183]Qin L,Liu Y.Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor.Chemosphere,2006,63(6):926-933.
    [184]Li Y,Liu Y.Diffusion of substrate and oxygen in aerobic granule.Biochem Eng J,2005,27(1):45-52.
    [185]Li Y,Liu Y,Shen L,et al.DO diffusion profile in aerobic granule and its microbiological implications.Enzyme Mierob Technol,2007:doi:10.1016/j.enzmictec.2008.1004.1005.
    [186]斯皮思R E.工业废水的厌氧生物处理技术.北京:中国建筑工业出版社,2001.
    [187]Wang Z W,Liu Y,Tay J H.Distribution of EPS and cell surface hydrophobicity in aerobic granules.Appl Microbiol Biot,2005,69(4):469-473.
    [188]Adav S S,Lee D J,Tay J H.Extracellular polymeric substances and structural stability of aerobic granule.Water Res,2007,doi:10.1016/j.watres.1007.10.013.
    [189]McSwain B S,Irvine R L,Wilderer P A.The influence of settling time on the formation of aerobic granules.Water Sci Technol,2004,50(10):195-202.
    [190]Wang Z W,Liu Y,Tay J H.Biodegradability of extracellular polymeric substances produced by aerobic granules.Appl Microbiol Biot,2007,74(2):462-466.
    [191]Chen M,Lee D,Tay J.Distribution of extracellular polymeric substances in aerobic granules.Appl Microbiol Biot,2007,73(6):1463-1469.
    [192]Allison D G,Maira-Litran T,Gilbert P.Antimicrobial resistance of biofilms.In:Evans LV(ed)Biofilms:recent advances in their study and control,2000,Harwood,Amsterdam,pp 149-166.
    [193]Toh S K,Tay J H,Moy B Y P,et al.Size-effect on the physical characteristics of the aerobic granule in a SBR.Appl Microbiol Biot,2003,60(6):687-695.
    [194]Liu Y Q,Liu Y,Tay J H.Relationship between size and mass transfer resistance in aerobic granules.Lett Appl Microbiol,2005,40(5):312-315.
    [195]Okabe S,Hirata K,Watanabe Y.Dynamic changes in spatial microbial distribution in mixed-population biofilms:Experimental results and model simulation.Water Sci Technol,1995,32(8):67-74.
    [196]van Loosdrecht M C M,Tijhuis L,Wijdieks A M S,et al.Population distribution in aerobic biofilms on small suspended particles.Water Sci Technol,1995,31(1):163-171.
    [197]Mosquera-Corral A,De Kreuk M K,Heijnen J J,et al.Effects of'oxygen concentration on N-removal in an aerobic granular sludge reactor.Water Res,2005,39(12):2676-2686.
    [198]孙寓姣,左剑恶,杨洋等.好氧亚硝化颗粒污泥中硝化细菌群落结构分析.环境科学,2006,27(9):1858-1861.
    [199]Mobarry B K,Wagner M,Urbain V,et al.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria.Appl Environ Microbiol,1996,62(6):2156-2162.
    [200]Wagner M,Rath G,Koops H P,et al.In situ analysis of nitrifying bacteria in sewage treatment plants.Water Sci Technol,1996,34(1-2):237-244.
    [201]Daims H,Nielsen P H,Nielsen J L,et al.Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants:diversity and in situ physiology.Water Sci Technol,2000,41(4-5):85-90.
    [202]Frolund B,Palmgren R,Keiding K,et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Res,1996,30(8):1749-1758.
    [203]Dubois M,Gilles K,Hamilton J K,et al.Colorimetric method for determination of sugars and related substances.Anal Chem,1956,28:350-356.
    [204]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding.Anal Biochem,1976,72(1-2):248-254.
    [205]Morgenroth E,Obermayer A,Arnold E,et al.Effect of long-term idle periods on the performance of sequencing batch reactors.Water Sci Technol,2000,41(1):105-113
    [206]Coello Oviedo M D,Lopez-Ramirez J A,Sales Marquez D,et al.Evolution of an activated sludge system under starvation conditions.Chem Eng J,2003,94(2):139-146.
    [207]Geets J,Boon N,Verstraete W.Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations.FEMS Microbiol Ecol,2006,58(1):1-13.
    [208]Witzig R,Manz W,Rosenberger S,et al.Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater.Water Res,2002,36(2):394-402.
    [209]Kurisu F,Satoh H,Mino T,et al.Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method.Water Res,2002,36(2):429-438.
    [210]Costerton J W,Irvin R T,Cheng K J.The bacterial glycocalyx in nature and disease.Annu Rev Microbiol,1981,35:299-324.
    [211]Nielsen P H,Frolund B,Keiding K.Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage.Appl Microbiol Biot,1996,44:823-830.
    [212]Neu T R.Significance of bacterial surface-active compounds in interaction of bacteria with interfaces.Microbiol Rev,1996,60:151-166.
    [213]Takeda M,Nakano F,Nagase T,et al.Isolation and chemical composition of the sheath of Sphaerotilus natans.Biosci Biotechnol Biochem,1998,62:1138-1143.
    [214]Cammarota M C,Sant'Anna G L.Metabolic blocking of exopolysaccharides synthesis:effects on microbial adhesion and biofilm accumulation.Biotechnol Lett,1998,20:1-4.
    [215]Wu S T,Huang C C,Yu S T,et al.Effects of nitrogen and phosphorus on poly-beta-hydroxyalkanoate production by Ralstonia eutropha.J Chin Inst Chem Eng,2006,37:501-508.
    [216]Hwang K J,You S F,Don T M.Disruption kinetics of bacteria cells during purification of poly-beta-hydroxyalkanoate using ultrasonication.J Chin Inst Chem Eng,2006,37:209-216.
    [217]Quarmby J,Forster C F.An examination of the structure of UASB granules.Water Res,1995,29:2449-2454.
    [218]王暄,季民,王景峰等.好氧颗粒污泥胞外聚合物提取方法研究.中国给水排水,2005,21(8):91-93.
    [219]Ruijssenaars H J,Stingele F,Hartmans S.Biodegradability of food-associated extracellular polysaccharides.Curr Microbiol,2000,40(3):194-199.
    [220]Zhang X Q,Bishop P L.Biodegradability of biofilm extracellular polymeric substances.Chemosphere,2003,50(1):63-69.
    [221]Aquino S F,Stuckey D C.Production of soluble microbial products(SMP) in anaerobic chemostats under nutrient deficiency.J Environ Eng,2003,129:1007-1014.
    [222]Wingender J,Neu T R,Flemming H C(1999) Microbial Extracellular Polymeric Substances,pp.1-53,Berlin.
    [223]Bura R,Cheung M,Liao B,et al.Composition of extracellular polymeric substances in the activated sludge floc matrix.Water Sci Technol,1998,37(4-5):325-333.
    [224]Cadoret A,Conrad A,Block J C(2002) Extracellular proteolytic activity in whole and dispersed activated sludges,pp.321-327,Rome,Italy.
    [225]de Kreuk M K,van Loosdrecht M C M.Selection of slow growing organisms as a means for improving aerobic granular sludge stability.Water Sci Technol,2004,49(11-12):9-17.
    [226]Di Iaconi C,Ramadori R,Lopez A,et al.Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor.Biochem Eng J,2006,30(2):152-157.
    [227]Ghangrekar M M,Asolekar S R,Ranganathan K R,et al.Experience with UASB reactor start-up under different operating conditions.Water Sci Technol,1996,34:421-428.
    [228]Massol-Deya A A,Whallon J,Hickey R F,et al.Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater.Appl Environ Microb,1995,61:769-777.
    [229]Tolker-Nielsen T,Molin S.Spatial organization of microbial biofilm communities.Microb Ecol,2000,40:75-84.
    [230]崔有为,王淑莹,孔祥智等.活性污泥处理系统抗盐度冲击的能力.中国给水排水,2003,19(11):12-15.
    [231]李梅,郑西来,李玲玲.盐度对活性污泥驯化前后硝化特性的影响.环境工程学报,2007,1(10):108-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700