用户名: 密码: 验证码:
厌氧好氧除磷厌氧氨氧化脱氮城市污水再生全流程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水是国际公认的宝贵的城市“第二水源”,城市污水再生全流程的研发及应用,是缓解水危机、恢复或维系社会用水健康循环的重中之重。在污水生物处理过程中,为了从本质上解决除磷菌和脱氮菌之间存在的矛盾和竞争,可以将除磷和脱氮过程分别进行考虑。目前,对于生物除磷,厌氧-好氧工艺最为经济可靠;而对于生物脱氮,厌氧氧氧化工艺无疑最具有可持续发展的意义。
     针对厌氧/好氧生物除磷-部分亚硝化/厌氧氨氧化生物脱氮城市污水再生全流程工艺,通过对除磷反应器的运行工况进行调整,提出了污泥膨胀的解决方法,确定了其快速恢复的技术手段;通过对部分亚硝化和厌氧氨氧化反应的机理特性进行分析,确定了影响生物自养脱氮反应的主要因素,提出了低氨城市污水条件下厌氧氨氧化脱氮的主要技术手段;并将全流程工艺中的脱氮菌和聚磷菌进行耦合,探究了不同工况条件下反应器的运行效能,为全流程优化提供了基础资料。
     本论文研究工作的主要内容和创新点表现在以下几个方面:
     (1)确立了低溶解氧控制是实现城市污水部分亚硝化的主要途径对于生物滤池亚硝化系统,通过在滤池上部水中进行曝气和处理水携氧内循环联合的方式,可以实现对生物膜系统内溶解氧浓度的良好控制,并同时能起到提高处理水pH值的作用,这更有利于氨氧化细菌的富集生长。亚硝化生物滤池间歇运行条件下,“三氮”浓度的变化均符合零级动力学反应的特点,而亚氮与氨氮的比例呈二次曲线变化规律,在本试验条件下实现部分亚硝化所需要的适宜水力停留时间为9.05~13.58小时。
     (2)实现了常温、低氨氮城市污水厌氧氨氧化生物滤池的快速启动接种厌氧氨氧化菌的生物滤池反应器将经历厌氧氨氧化菌的驯化和快速扩增过程,其中驯化时间约为30天,快速扩增时间约为75天。以火山岩活性生物陶粒为滤料的生物膜反应器作为厌氧氨氧化菌富集与增殖的载体,在反应器启动过程中,反应器内生成气体的产量、生物滤料颜色的改变、各类氮素的转化以及pH值等的变化情况,均可作为表征厌氧氨氧化菌驯化与扩增阶段厌氧氨氧化反应特性的重要标志。
     (3)提出了磷酸盐对厌氧氨氧化生物滤池脱氮性能的影响机制进水磷酸盐浓度的提高对常温、低氨氮城市污水厌氧氨氧化反应存在可逆性抑制作用。当进水总磷浓度高于10mg/L时,在滤池内开始有鸟粪石晶体等沉积物形成,这些沉积物填充了厌氧氨氧化生物填料的部分孔隙,并阻滞了厌氧氨氧化反应基质的正常传递,从而造成了反应器脱氮负荷的明显下降。通过联合减少磷酸盐的投加、短期降低进水pH值和反冲洗三个途径,可在2天内将厌氧氨氧化生物滤池的脱氮负荷恢复至原来的88.8%。
     (4)获得了SBR同步亚硝化-厌氧氨氧化深度处理城市污水的方法在SBR悬浮污泥法同步亚硝化-厌氧氨氧化处理城市污水的过程中,根据溶解氧、氧化还原电位和pH值在反应周期中的变化规律,在控制DO≤0.30mg/L的系统运行条件时,可将DO=1mg/L作为SBR周期反应终点的标志。在较低温度条件下,厌氧氨氧化菌活性难以提高,考虑到城市污水处理工程的实际情况,相对于升高温度和增加非曝气反应时段两种途径来说,适当提高厌氧氨氧化菌的生物量密度,是提高厌氧氨氧化工艺脱氮效果的适宜途径。
     (5)实现了常温、低氨氮城市污水生物滤池CANON反应器的启动溶解氧控制可作为常温、低氨氮城市污水条件下,生物滤池亚硝化-厌氧氨氧化反应器启动的主要控制因子,通过在生物滤池上部水中进行曝气和处理水携氧内循环联合的方式,可以实现对生物膜系统内溶解氧浓度的良好控制。间歇式运行条件下,可通过pH值的变化来对反应周期进行实时控制。
Urban sewage has been internationally recognized as valuable city’s "secondresources", while the research, development and application of the integrated processfor regeneration of municipal wastewater is very important for alleviating the watercrisis, restoring or maintaining the healthy cycle of cultural water. In biologicalwastewater treatment process, in order to solve the contradictions and competitionsessentially between the nitrogen removal bacteria and phosphorus removal bacteria,the removal of phosphorus and nitrogen can be considered separately. Currently,anaerobic-oxic process is the most economical and reliable for biological phosphorusremoval, while for biological nitrogen removal, anaerobic ammonium oxidationundoubtedly owns more significance for sustainable development.
     For the integrated reclamation process of municipal wastewater includinganaerobic-oxic biological phosphorus removal and shortcut nitrification-anaerobicammonium oxidation (ANAMMOX), the problem of activated sludge bulking issolved, and the reactor’s fast recovery techniques are determined through adjustingthe operation parameters of phosphorus removal reactor. Through the analysis on themechanism characteristics for the reaction of shortcut nitrification and ANAMMOX,the main effect factors for biological autotrophic denitrification reaction aredetermined, and the main technical means of ANAMMOX reaction for municipalwastewater with low ammonia are put forward. Nitrogen and phosphorus removalbacteria from the integrated process are coupled, and the reactor’s runningperformance is explored, thus providing basis information for the optimization ofintegrated process.
     The primary content and innovations of this research work are as follows:
     (1) The low dissolved oxygen control is the main way for the partialnitrosation of municipal wastewater For nitrosation system of biofilter, the DOconcentration in the biofilm system can be controlled well through the approach ofcombination of aeration in the water column of upper part of the filter and inner loopdevice carrying DO. At the same time, the pH value of treated water can be improved,which is more conductive to the enrichment and growth of ammonia-oxidizingbacteria. Under the intermittent running conditions for the notrosation biofilter, theconcentration change of NH4+-N, NO2--N and NO3--N all have the dynamics characterof zero-order reaction, while the change trend of the ratio between NO2--N andNH4+-N shows a quadratic variation. Accordingly, the suitable hydraulic retentiontime (HRT) for partial nitrosation should be controlled between 9.05 to 13.58 hoursunder the experimental conditions.
     (2) The fast startup of ANAMMOX biofilter for municipal wastewater withlow ammonia and room temperature is achieved The domestication and rapid expansion process of ANAMMOX bacteria should be experienced for the startup ofbiofilter reactor inoculated ANAMMOX bacteria, which includes 30 days for thedomesticated time, and 75 days for the rapid amplification time. The biofilm reactortaking bioactivity volcanic ceramic as filter media is recognized as the carrier for theenrichment and amplification of ANAMMOX bacteria. In the reactor startup process,the gas production quantity, the changes of biofilm color, the nitrogen transformationand the pH value etc., can be recognized as the important symbol for demonstratingthe characteristics of the phases of domestication and multiplication.
     (3) The phosphate effect mechanism for the running performance ofANAMMOX biofilter is put forward There is a reversible inhibition effect on theANAMMOX reaction for municipal wastewater with room temperature and lowammonia through increasing the phosphate concentration in the influent. When the TPconcentration is more than 10 mg/L, some crystal sediments such asMgNH4PO4·6H2O (MAP) will begin to form in the filter, which may fill the pore ofANAMMOX biofilter and block the normal delivery of ANAMMOX reactionsubstrate, thus resulting in the significant decreasing of nitrogen removal load. Thenitrogen removal load can be restored to 88.8% of the original ability in two daysthrough the union of stopping adding the phosphate, reducing the pH value inshort-term and backwashing.
     (4) The method of simultaneous nitrosation-ANAMMOX in SBR isestablished In the process of simultaneous nitrosation-ANAMMOX for municipalwastewater treatment in SBR suspended activated sludge reactor, for DO, 1 mg/L canbe recognized as the end sign for the SBR reaction cycle under the system runningconditions of no more than 0.3 mg/L according to the cycle variation of DO, ORP andpH. At lower temperatures, the activity of anammox bacteria is difficult to be raised.Given the actual situation of urban sewage treatment works, the appropriateincreasing of the biomass density for ANAMMOX bacteria is a feasible approach forimproving the effect of nitrogen removal by ANAMMOX process compared to thetwo ways of raising temperature and adding non-aeration term.
     (5) The startup of CANON biofilter is realized under the conditions ofmunicipal wastewater with low ammonia and room temperature Controlling DOcan be recognized as the main control factor for the biofileter’s startup ofnitrosation-ANAMMOX for urban wastewater in the conditions of room temperatureand low ammonia nitrogen. The DO concentration in the biofilm system can becontrolled well through the union approach of aeration in the upper water of biofilterand the inner loop device carrying DO in the treated water. In intermittent operatingconditions, the whole reaction cycle can be real-time controlled according to thechanges of pH value.
引文
1钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告.北京:中国水利水电出版社, 2001: 1~31
    2解振华.国家环境安全战略报告.北京:中国环境科学出版社, 2005: 13~55
    3国家环保总局环境规划院,国家信息中心. 2008-2020年中国环境经济形势分析与预测.中国环境科学出版社, 2008: 1~19
    4中国科学院可持续发展战略研究组.中国可持续发展战略报告.北京:科学出版社, 2005: 86~135
    5张杰,熊必永.城市水系统健康循环的实施策略,北京工业大学学报, 2004,30(2): 185~189
    6张杰,熊必永,李捷.水健康循环原理与应用.中国建筑工业出版社, 2006:33~62
    7李冬,张杰.水资源与植物营养素的社会循环规律研究.给水排水. 2009,35(7): 13~16
    8张杰,李捷,熊必永.城市排水系统新思维.给水排水. 2002, 28(11): 24~26
    9郭晓,丛广治,张杰.城市污水再生全流程概念与方案优选.中国给水排水.2005, 21(9): 89~91
    10刘文君,王占生.积极推动我国给水深度处理技术的研究和应用.给水排水.2009, 35(3): 1~3
    11李军生,程海涛. 2008年日本绿色和可持续发展化学奖获奖项目评述.现代化工. 2008, 28(8): 84~86
    12王俊安,李冬,张杰.以城市污水再生全流程促进社会用水健康循环.北京工业大学学报. 2009, 35(4): 522~526
    13王俊安,李冬,张杰.城市污水再生全流程优化理念与系统设计.现代化工.2009, 29(3): 60~63
    14 P. M. J. Janseen, K. Meinema and H. F. van der Roest. Biological PhosphorusRemoval: Manual for Design and Operation. IWA Publishing, 2002: 1~14
    15 E. G. Srinath, C. A. Sastry and S. C. Pillai. Rapid Removal of Phosphorus fromSewage by Activated Sludge. Experientia. 1959, 15(2): 339~340
    16 G. V. Levin, J. Shapiro. Metabolic Uptake of Phosphorus by WastewaterOrganisms. Water Pollution Control Federation. 1965, 37(6): 800~821
    17 J. L. Barnard. Biological Nutrient Removal without the Addition of Chemicals.Water Research. 1975, 9(5-6): 485~490
    18 J. L. Barnard. A Review of Biological Phosphorus Removal in the ActivatedSludge Process. Water SA. 1976, 2(3): 136~144
    19 D. W. Osborn and H. A. Nicholls. Optimization of the Activated Sludge Processfor the Biological Removal of Phosphorus. Wat. Technol. 1978, 10(1-2): 261~277
    20 J. H. Rensink, H. J. G. W. Donker and H. P. de Vries. Biological P-removal inDomestic Wastewater by the Activated Sludge Process. Proceedings 5th EuropeanSewage and Refuse Symposium. EAS, Munich, 1982: 487~502
    21 L. H. L?tter and M Murphy. The Identification of Heterotrophic Bacteria in anActivated Sludge Plant with Particular Reference to Polyphosphate Accumulation.Water SA. 1985, 11(4) : 179~184
    22 Y. Comeau, K. J. Hall and R. E. W. Hancock, et al. Biochemical Model forEnhanced Biological Phosphate removal. Wat. Res. 1986, 20(12): 1511~1521
    23 M. C. Wentzel, H. L. Lotter and R. E. Loewenthal, et al. Metabolic Behaviors ofAcinetobacter spp. In Enhanced Biological Phosphorus Removal: A BiochemicalModel. Water SA. 1986, 12(4): 209~224
    24戴镇生,张杰,余尔捷,等.厌氧-好氧活性污泥法的应用前景.中国给水排水.1994, 10(4): 35~37
    25丛广治,白羽,陈立学,等.大连开发区污水处理厂的生物除磷实践.中国给水排水. 2004, 20(1): 74~77
    26 Z. Y. Tian, D. Li, J. L. Liu, et al. An Environmental Perspective of Nitrogen Cycle.International Journal of Global Environmental Issues. 2009, 9(3): 199~211
    27 R. J. Allgeier, W. H. Pererson, C. Juday, et al. The anaerobic fermentation of lakedeposits. Int. Rev. Hydrobiol. 1932, 26: 444~471
    28 T. Koyama. Formal Discussion of PaperⅢ-10. Discussion of Paper by Richards.In Proceedings of the 2nd International Conference on Water Pollution Research,Tokyo, 1965: 234~243
    29 E. Broda. Two Kinds of Lithotrophs Missing in Nature. Z. Allg. Microbiol. 1977,17(6): 491~493
    30 Mulder, A. A. van de Graaf and L. A. Robertson, et al. Anaerobic AmmoniumOxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMSMicrobiology Ecology. 1995, 16(3): 177~183
    31 A. van de Graaf, A. Mulder and P. de Bruijn, et al. Anaerobic Oxidation ofAmmonium is a Biologically Mediated Process. Appl. Environ. Microbiol. 1995,61(4): 1246~1251
    32 M. Strous, J. J. Heijnen and J. G. Kuenen, et al. The Sequencing Batch Reactor asa Powerful Tool for the Study of Slowly Growing AnaerobicAmmonium-Oxidizing Microorganisms. Appl. Microbiol. Biotechnol. 1998, 50(4):589~596
    33 M. S. M. Jetten, M. Wagner and J. Fuerst, et al. Microbiology and Application ofthe Anaerobic Ammonium Oxidation (ANAMMOX) Process. Current OpinionBiotechnology. 2001, 12: 283~288
    34 J. G. Kuenen, M. S. M. Jetten. Extraordinary Anaerobic Ammonium-OxidizingBacteria. ASM News. 2001, 67: 456~463
    35彭永臻,马斌.低C/N比条件下高效生物脱氮策略分析.环境科学学报. 2009,29(2): 225~230
    36王欢,裴伟征,李旭东,等.低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮.环境科学. 2009, 30(3): 815~821
    37 R. E. Bruce and W. E. Langeland. Simultaneous Denitrification with Nitrificationin a Single-Channel Oxidation Ditches. Journal WPCF. 1985, 57(4): 300~308
    38 V. M. Elisabeth, L. Paul and K. Jürg. Simultaneous Nitrification andDenitrification in Bench-Scale Sequencing Batch Reactors. Water Research. 1996,30(2): 227~284
    39 Collivignarelli and G. Bertanza. Simultaneous Nitrification and DenitrificationProcesses in Activated Sludge Plants: Performance and Applicability. Wat. Sci.Tech. 1999, 40(4~5): 187~194
    40 Castignetti and T. C. Hollocher. Heterotrophic Nitrification among Denitrifiers.Applied Environmental Microbiology. 1984, 47(4): 620~623
    41 L. A. Robertson, E. W. J. van Niel and R. A. M. Torremans et al. SimultaneousNitrification and Denitrification in Aerobic Chemostat of Thiosphaera Pantotropha.Apllied Environmental Microbiology. 1988, 54(11): 2812~2818
    42张悦,曾薇,刘春兰,等.单级好氧和限氧污水处理系统中总氮损失的微生物学机理.应用与环境生物学报. 2009, 15 (3): 399~404
    43 J. Yan and Y. Y. Hu. Comparison of Partial Nitrification to Nitrite forAmmonium-Rich Organic Wastewater in Sequencing Batch Reactors andContinuous Stirred-Tank Reactor at Laboratory-Scale. Water Science &Technology. 2009, 60(11): 2861~2868
    44 J. P. Votes, H. Wanstaen and W. Verstraete. Removal of Nitrogen from HighlyNitrogenous Wastewater. J. Wat. Pollut. Control Fed. 1975, 47: 394~398
    45 S. Sutherson and J. J. Ganczarczyk. Inhibition of Nitrite Oxidation duringNitrification: Some Observations. Wat. Poll. Res. J. Can. 1986, 21(2): 257~266
    46 Turk and D. S. Mavinic. Preliminary Assessment of a Shortcut in NitrogenRemoval from Wastewater. Can. J. Civil Eng. 1986, 13: 600~ 605
    47 Hellinga, A. A. J. C. Schellen and J. W. Mulder, et al. The SHARON Process: anInnovative Method for Nitrogen Removal from Ammonia-Rich Wastewater. Wat.Sci. Tech. 1998, 37: 135~142
    48 Q. Yang, Y. Z. Peng, X. H. Liu, et al. Nitrogen Removal via Nitrite formMunicipal Wastewater at Low Temperatures using Real-time Control to OptimizeNitrifying Communities. Environmental Science & Technology. 2007, 41(23):8159~8164
    49 Q. Yang, X. H. Liu and Y. Z. Peng, et al. Advanced Nitrogen Removal via Nitritefrom Municipal Wastewater in a Pilot-Plant Sequencing Batch Reactor. WaterScience & Technology. 2009, 59(12): 2371~2377
    50 J. H. Guo, Q. Yang and Y. Z Peng, et al. Biological Nitrogen Removal withReal-time Control Using Step-feed SBR Technology. Enzyme & MicrobialTechnology. 2007, 40(6): 1564~1569
    51 H. De Clippeleir, S. E. Vlaeminck a, M. Carballa, et al. A Low VolumetricExchange Ratio Allows High Autotrophic Nitrogen Removal in a SequencingBatch Reactor. Bioresource Technology. 2009, 100: 5010~5015
    52 W. R. Abma, C. E. Schultz and J. W. Mulder, et al. Full Scale Granular SludgeANAMMOX Process. Water Sci. Technol. 2007, 55(8~9), 27~33
    53 U. van Dongen, M. S. M Jetten and M. C. M van Loosdrecht. TheSHARON-ANAMMOX Process for Treatment of Ammonium Rich Wastewater.Water Sci. Technol. 2001, 44 (1): 153~160
    54 W. R. L. van de Star, W. R. Abma and D. Blommers, et al. Startup of Reactors forAnoxic Ammonium Oxidation: Experiences from the First Full-ScaleANAMMOX Reactor in Rotterdam. Water Research. 2007, 41(18): 4149~4163
    55 H. J. Laanbroek, S. Gerards. Competition for Limiting Amounts of Oxygenbetween Nitrosomanas Europaea and Nitrobacteria Winogadskyi Grown in MixedContinuous Cultures. Arch. Microbiology. 1993, 159(6): 453~459
    56 H. Dijkman and M. Strous. Process for Ammonia Removal from Wastewater.Patent 1999, PCT/NL99/00446
    57 M. Strous, J. A. Fuerst and E. H. M. Kramer, et al. Missing Lithotroph Identifiedas New Planctomycete. Nature. 1999, 400: 446~449
    58 J. Vázquez-Padín, I. Fernádez, M. Figueroa, et al. Applications of AnammoxBased Processes to Treat Anaerobic Digester Supernatant at Room Temperature.Bioresource Technology. 2009, 100: 2988~2994
    59 K. Furukawa,P. K. Lieu and H. Tokitoh, et al. Development of Single-StageNitrogen Removal Using ANAMMOX and Partial Nitritation (SNAP) and ItsTreatment Performances. Water Science and Technology. 2006, 53(6): 83~90
    60 K. Furukawa,Y. Inatomi, S. Qiao, et al. Innovative Treatment System for DigesterLiquor Using Anammox Process. Bioresource Technology. 2009, 100(22):5437~5443
    61尚会来,彭永臻,张静蓉,等. SRT对于污水脱氮过程中N2O产生的影响.环境科学学报. 2009, 29(4): 754~758
    62支霞辉,黄霞,李朋,等.厌氧-好氧-缺氧短程硝化同步反硝化除磷工艺研究.环境科学学报. 2009, 29(9): 1806~1812
    63荣宏伟,彭永臻,张朝升,等.硝酸盐氮对反硝化除磷的影响及过程控制.北京工业大学. 2009, 35(3): 385~390
    64 H. J. Laanbroek, P. L. E. Bodelier and S. Gerard. Oxgen Consumption Kinetics ofNitrosomonas Europaea and Nitrobacter Hamburgensis Grown in MixedContinuous Cultures at Different Oxygen Concentrations. Arch. Microbiol.1994,161:156~162
    65 K. Hanaki, C. Wantawin and S. Ohgaki. Nitrification at Low Levels of DissolvedOxygen with and without Organic Loading in a Suspended-growth Reactor. Wat.Res. 1990, 24(3): 297~302
    66 B. Balmelle, K. Nguyen and B. Capdeville. Study of Factors Controlling NitriteBuild-up in Biological Processes for Water Nitrification. Wat. Sci. Tech. 1992,26(5~6): 1243~1258
    67 G. Knowles, A. L. Downong, and M. J. Barrett. Determination of kinetic constantsfor nitrifying bacteria in mixed culture with the aid of an electronic computer.Journal of General Microbiology. 1965, 38: 263~278
    68 V. Quinlan. Prediction of the Optimum pH for Ammonia-N Oxidation byNitrosomonas Europaea in Well-Aerated Natural and Domestic Wastewater. WaterResearch. 1984, 18: 561~566
    69 U. Abeling and C. F. Seyfried. Anaerobic-aerobic Treatment of High-strengthAmmonium Wastewater Nitrogen Removal via Nitrite. Wat. Sci. Tech. 1992,26(5-6): 1007~1015
    70 Turk and D. S. Mavinic. Benefits of Using Selective Inhibition to RemoveNitrogen from Highly Nitrogenous Wastes. Env. Tech. Lett. 1987,8(9):419~426
    71 C. Anthonisen, R. C. Loehr and T. B. Prakasam, et al. Inhibition of Nitrification ofAmmonia and Nitrous Acid. Journal of Water Pollution Control Federation, 1976,48(5): 835~852
    72高大文,彭永臻,王淑莹.控制pH实现短程硝化反硝化生物脱氮技术.哈尔滨工业大学学报. 2005, 37(12): 1664~1666
    73王淑莹,顾升波,杨庆,等. SBR工艺实时控制策略研究进展.环境科学学报.2009, 29 (6): 1121~1130
    74杨庆,彭永臻,王淑莹,等. SBR法低温短程硝化实现与稳定的中试研究.化工学报. 2007, 58(11): 2901~2905
    75张秀红,周集体,郭海燕,等.一体化A/O生物膜反应器低温硝化研究.环境科学. 2007, 28(1): 142~146
    76邱立平,马军.曝气生物滤池的短程硝化反硝化机理研究.中国给水排水.2002, 18(11): 1~4
    77李凌云,彭永臻,杨庆,等. SBR工艺短程硝化快速启动条件的优化.中国环境科学. 2009, 29(3): 312~317
    78马勇,陈伦强,彭永臻.实际生活污水短程/全程硝化反硝化处理中试研究.环境科学. 2006, 27(12): 2477~2482
    79 P. C. Sabumon. Effect of Potential Electron Acceptors on Anoxic AmmoniaOxidation in the Presence of Organic Carbon. Journal of Hazardous Materials.2009, 172: 280~288
    80唐崇俭,郑平,陈建伟,等.基于基质浓度的厌氧氨氧化工艺运行策略.化工学报. 2009, 60(3): 718~725
    81郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究.生物工程学报.2001, 17(2): 193~198
    82 M. S. M. Jetten, M. Strous and K. T. van de Pas-Schoonen, et al. The AnaerobicOxidation of Ammonium. FEMS Microbiology Reviews. 1999, 22(5): 421~437
    83 T. Dalsgaard, E. Canfield and J. Petersen,et al. N2 Production by ANAMMOXReaction in the Anoxic Water Column of Golfo Dulce, Costa Rica. Nature. 2003,422(6932): 606~608
    84 M. Strous, E. Van Gerven and G. Kuenen, et al. Effects of Aerobic andMicroaerobic Condition on Anaerobic Ammonium-Oxidizing (ANAMMOX)Sludge. Applied and Environmental Microbiology. 1997, 63(6): 2446~2448
    85 T. Wang, H. M. Zhang, F. L. Yang, et al. Start-up of the Anammox Process fromthe Conventional Activated Sludge in a Membrane Bioreactor. BioresourceTechnology. 2009, 100: 2501~2506
    86孟凡能,张树,吕鑑,等.混合污泥接种的厌氧氨氧化处理污泥脱水液的启动.中国环境科学. 2009, 29(3): 318~324
    87 J. Tang, P. Zheng, Q. Mahmood, et al. Start-up and Inhibition Analysis of theAnammox Process Seeded with Anaerobic Granular Sludge. J. Ind. Microbiol.Biotechnol. 2009, 36: 1093~1100
    88唐崇俭,郑平,陈建伟,等.中试厌氧氨氧化反应器的启动与调控.生物工程学报. 2009, 25(3): 406~412
    89钟红春,周少奇,姚俊芹,等.两种UASB-ANAMMOX反应器启动和运行特征对比.化工学报. 2007, 58(11): 2798~2804
    90操家顺,王超,蔡娟.低浓度氨氮污水厌氧氨氧化影响因素试验.南京理工大学学报. 2007, 31(6): 775~779
    91 C. Wang, P. H. Lee, M. Kumar, et al. Simultaneous Partial Nitrification, AnaerobicAmmonium Oxidation and Denitrification (SNAD) in a Full-ScaleLandfill-Leachate Treatment Plant. Journal of Hazardous Materials. 2010,175(1~3): 622~628
    92 Galí, J. Dosta, M. C. M. van Loosdrecht et al. Two Ways to Achieve an AnammoxInfluent from Real Reject Water Treatment at Lab-Scale: Partial SBR Nitrificationand SHARON Process. Process Biochemistry. 2007, 42(4):715~720
    93 J. Yan and Y. Y. Hu. Comparison of Partial Nitrification to Nitrite forAmmonium-Rich Organic Wastewater in Sequencing Batch Reactors andContinuous Stirred-Tank Reactor at Laboratory-Scale. Water Science &Technology. 2009, 60(11): 2861~2868
    94 C, Sunja, T. Yoshitaka, F. Naoki, et al. Nitrogen Removal Performance andMicrobial Community Analysis of an Anaerobic Up-Flow Granular BedAnammox Reactor. Chemosphere. 2010, 78(9): 1129~1135
    95 Q. Sen, K. Ryuichi, N. Takashi, et al. Partial Nitrification Treatment for HighAmmonium Wastewater from Magnesium Ammonium Phosphate Process ofMethane Fermentation Digester Liquor. Journal of Bioscience and Bioengineering.2010, 109 (2): 124~129
    96丛广治.城市污水再生全流程技术研究与实践.哈尔滨工业大学博士论文.2003: 22~46
    97李捷.厌氧/好氧-厌氧氨氧化工艺深度处理城市污水研究.哈尔滨工业大学博士论文. 2005: 32~50
    98杨宏,姚乾,黄春雷,等. A/O生物除磷工艺丝状菌膨胀的控制.北京工业大学学报. 2009, 35(12): 1663~1669
    99郭春艳,王淑莹,李夕耀,等.聚磷菌和聚糖菌的竞争影响因素研究进展.微生物学通报. 2009, 36(2): 267~275
    100王晓玲,尹军,叶龙,等.低温条件下MUCT工艺污泥膨胀的产生与控制.哈尔滨工业大学学报. 2009, 41(4): 67~71
    101杨庆,彭永臻,王淑莹,等. SBR法短程深度脱氮过程分析与控制模式的确立.环境科学. 2009, 30(4): 1084~1089
    102韩晓宇,张树军,甘一萍,等.以FA与FNA为控制因子的短程硝化启动与维持.环境科学. 2009, 30(3): 809~814
    103张树军,马富国,曹相生,等.低C/N高氨氮消化污泥脱水液部分亚硝化研究.环境科学. 2009, 30(6): 1695~1700
    104田智勇,李冬,曹相生,等.污水深度处理中稳定亚硝化单元工艺的试验研究.给水排水. 2007, 33(12): 53~57
    105 J. Yan, Y. Y. Hu. Partial Nitrification to Nitrite for Treating Ammonium-RichOrganic Wastewater by Immobilized Biomass System. Bioresource Technology.2009, 100: 2341~2347
    106 J. R. Vázquez-Padín, M. Figueroa, I. Fernández, et al. Post-Treatment ofEffluents from Anaerobic Digesters by the Anammox Process. Water Science &Technology. 2009, 60(5): 1135~1143
    107时晓宁,王淑莹,孙洪伟,等.应用在线控制实现高氨氮垃圾渗滤液短程生物脱氮.中国给水排水. 2009, 25(1): 9~13
    108郝晓地,魏丽,仇付国.火山岩填料曝气生物滤池内循环强化脱氮试验研究.环境工程学报. 2009, 3(2): 239~245
    109 J. H. Guo, Y. Z. Peng, S. Y. Wang, et al. Effective and Robust Partial Nitrificationto Nitrite by Real-Time Aeration Duration Control in an SBR Treating DomesticWastewater. Process Biochemistry. 2009, 44: 979~985
    110金仁村,郑平,胡安辉.盐度对厌氧氨氧化反应器运行性能的影响.环境科学学报. 2009, 29(1): 81~87
    111朱杰,黄涛,范兴建.氨氧化工艺处理高氨氮养殖废水研究.环境科学. 2009,30(5): 1442~1448
    112 R. C. Jin, P. Zheng. Kinetics of Nitrogen Removal in High Rate AnammoxUpflow Filter. Journal of Hazardous Materials. 2009, 170: 652~656
    113 Hao, H. Wang, Q. H. Liu, et al. Quantification of AnaerobicAmmonium-Oxidizing Bacteria in Enrichment Cultures by QuantitativeCompetitive PCR. Journal of Environmental Sciences. 2009, 21: 1557~1561
    114田智勇,李冬,杨宏,等.上向流厌氧氨氧化生物滤池的启动与脱氮性能.北京工业大学学报, 2009, 35(4): 509~515
    115赵志宏,廖德祥,李小明等.厌氧氨氧化微生物颗粒化及其脱氮性能的研究.环境科学. 2007, 28(4): 800~804
    116吴立波,宫玥,龙斌,等.厌氧氨氧化工艺在厌氧复合床反应器中的启动运行.天津大学学报. 2008, 41(11): 1367~1371
    117 L. Liu, T. C. Yamamoto, T. Nishiyama, et al. Effect of Salt Concentration inAnammox Treatment Using Non Woven Biomass Carrier. Journal of Bioscienceand Bioengineering. 2009, 107(5): 519~523
    118 K. N. Ohlinger, T. M. Young and E. D. Schroeder. Predicting Struvite Formationin Digestion. Water Research. 1998, 32(12): 3607~3614
    119唐林平,廖德祥,李小明,等.全程自养脱氮污泥颗粒化及其脱氮性能的研究.环境科学. 2009, 30(2): 411~415
    120 A. van de Graaf, P. D. Bruijn, L. A. Robertson, et al. Autotrophic Growth ofAnaerobic Ammonium Oxidizing Microorganisms in a Fluidized Bed Reactor.Microbiology. 1996, 142: 2187~2196
    121马富国,张树军,曹相生,等.部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液.中国环境科学. 2009, 29(2): 219~224
    122 J. R. Vázquez-Padín, M. J. Pozo, M. Jarpa, et al. Treatment of Anaerobic SludgeDigester Effluents by the CANON Process in an Air Pulsing SBR. Journal ofHazardous Materials. 2009, 166: 336~341
    123付昆明,张杰,曹相生,等.好氧条件下CANON工艺的启动研究.环境科学.2009, 30(6): 1689~1694
    124 A. Joss, D. Salzgeber, J. Alzgeber, et al. Full-Scale Nitrogen Removal fromDigester Liquid with Partial Nitritation and Anammox in One SBR. Environ. Sci.Technol. 2009, 43(14): 5301~5306
    125王欢,李旭东,曾抗美.猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究.环境科学. 2009, 30(1): 114~119
    126田智勇,李冬,曹相生,等.常温限氧条件下SBR反应器中的部分亚硝化研究.环境科学. 2008, 29(4): 931~936
    127张树德,刘欣,郑志军,等.低基质质量浓度条件下ANAMMOX生物滤池脱氮效果研究.北京工业大学学报. 2009, 35(4): 504~508
    128尚会来,彭永臻,张静蓉,等.温度对短程硝化反硝化的影响.环境科学学报. 2009, 29(3): 516~520
    129张杰,付昆明,曹相生,等.序批式生物膜CANON工艺的运行与温度的影响.中国环境科学. 2009, 29(8): 850~855
    130曾薇,张悦,李磊,等.生活污水常温处理系统中AOB与NOB竞争优势的调控.环境科学. 2009, 30(5): 1430~1436
    131 M. M. M. Kuypers, A. O. Sliekers, G. Lavik, et al. Anaerobic AmmoniumOxidation by ANAMMOX Bacteria in the Black Sea. Nature. 2003, 422(10):608~611
    132杨国红,方芳,郭劲松,等.单级自养脱氮工艺氨氮去除途径研究.环境科学. 2009, 30(1): 102~107
    133田智勇,李冬,张杰.厌氧氨氧化过程中COD及pH与基质浓度之间的关系.环境科学. 2009, 30(11): 3342~3346
    134 R. Ganigué, J. Gabarró, A. Sànchez-Melsió, et al. Long-Term Operation of aPartial Nitritation Pilot Plant Treating Leachate with Extremely High AmmoniumConcentration Prior to an Anammox Process. Bioresource Technology. 2009, 100:5624~5632
    135 S. Kalyuzhnyi, M. Gladchenko, A. Mulder, et al. New Anaerobic Process ofNitrogen Removal. Water Science and Technology. 2006, 54(8): 163~170
    136 S. Kalyuzhnyi, M. Gladchenko. DEAMOX-New Microbiological Process ofNitrogen Removal from Strong Nitrogenous Wastewater. Desalination. 2009,248(1~3): 783~793
    137 Mason, J. A. Tomaszek. Anaerobic Ammonium Nitrogen Oxidation in DeamoxProcess. Environment Protection Engineering. 2009, 35(2): 123~130
    138 S. V. Kalyuzhnyi, M. A. Gladchenko, H. Kang, et al. Development andOptimisation of VFA Driven DEAMOX Process for Treatment of StrongNitrogenous Anaerobic Effluents. Water Science and Technology. 2008, 57(3):323~328
    139 M. Waki, T. Yasuda, H. Yokoyama, et al. Nitrogen Removal by Co-OccurringMethane Oxidation, Denitrification, Aerobic Ammonium Oxidation, andAnammox. Appl Microbiol Biotechnol. 2009, 84: 977~985
    140 H. H. Chen, S. T. Liu, F. L. Yang, et al. The Development of SimultaneousPartial Nitrification, ANAMMOX and Denitrification (SNAD) Process in a SingleReactor for Nitrogen Removal. Bioresource Technology. 2009, 100: 1548~1554
    141孙艳波,周少奇,李伙生,等. ANAMMOX与反硝化协同脱氮反应器启动及有机负荷对其运行性能的影响.化工学报. 2009, 60(10): 2596~2602
    142 Z. Y. Xua, G. M. Zeng, Z. H. Yang, et al. Biological Treatment of LandfillLeachate with the Integration of Partial Nitrification, Anaerobic AmmoniumOxidation and Heterotrophic Denitrification. Bioresource Technology. 2010,101(1): 79~86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700