用户名: 密码: 验证码:
不同养殖海藻表面附着细菌多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型海藻的表面附着着大量的细菌,这些细菌对于藻的生长发育和形态发生必不可少,某些菌株在特定条件下还可以导致藻类疾病的发生。藻类表面附着细菌群落多样性研究是了解海藻和附着细菌相互关系的必要前提。本论文应用分离培养方法和分子生物学技术对中国沿海不同海域不同养殖海藻表面的附着细菌进行了分析研究。
     从不同地点采集7种海藻(条斑紫菜、坛紫菜、龙须菜、细基江篱、异枝麒麟菜、浒苔、蜈蚣藻)的22个样品上分离培养,获得了606个菌株,通过鉴定它们主要分布于4个门的35个属内。其中变形菌门的菌株最多,占总分离菌数的84.48%,其后依次为拟杆菌门7.43%、厚壁菌门7.10%、放线菌门0.99%。变形菌门的γ-变形菌纲中菌株最多(占总菌株的84.16%),有16个属,以Pseudoalteromonas(假交替单胞菌属)菌株最多,占总分离菌数的54.29%。其它是Acinetobacter(不动杆菌属)、Alteromonas(交替单胞菌属)、Amphritea、Cobetia、Colwellia、Escherichia(埃希氏菌属)、Halomonas、Marinomonas、Photobacterium(发光杆菌属)、Pseudoalteromonas、Pseudomonas(假单胞菌属)、Psychrobacter、Psychromonas、Shewanella(希瓦氏菌属)、Stenotrophomonas、Vibrio(弧菌属);-变形菌纲2个属,是Brevundimonas和Pseudoruegeria。在拟杆菌门发现了10个属,分别为Algibacter、Cellulophaga(食纤维素属)、Maribacter、Olleya、Persicivirga、Polaribacter、Psychroserpens、Tenacibaculum、Winogradskyella、Zobellia。厚壁菌门有5个属,分别为Bacillus(芽孢杆菌属)、Desemzia、Jeotgalicoccus、Salinicoccus(盐水球菌属)、Staphylococcus(葡萄球菌属)。放线菌门有2个属,分别为Microbacterium(微杆菌属)、Micrococcus(微球菌属)。
     同海区来源的同品种海藻间,分离获得可培养菌株,在优势种属和多样性上都有较明显差异。条斑紫菜各不同来源海区样品分离菌株之间,不仅种类组成差异明显,优势菌株也各不相同,分别为Pseudoalteromonas、Bacillus、Maribacter和Photobacterium。坛紫菜、龙须菜、细基江篱三种海藻各自不同的样品之间,分离菌株在种类组成及数量上有明显差异,但每个样品的优势菌株均属Pseudoalteromonas。异枝麒麟菜的两个样品分离菌株的种类组成较为相似,并且优势菌株均为Pseudoalteromonas。浒苔上分离的菌株较少,但两个样品分离菌株之间差异较大,仅有一个相同属,是Pseudomonas。蜈蚣藻样品仅一个样品,分离菌株全部为Pseudoalteromonas。
     不同种类海藻之间比较的结果表明,Pseudoalteromonas在每种海藻中均有发现,并且除了条斑紫菜以及浒苔的个别样品外,均为优势菌株。另外的优势种类是Vibrio、Pseudomonas和Staphylococcus。Vibrio在除了蜈蚣藻之外的6种藻类样品上均分离;Pseudomonas在条斑紫菜、坛紫菜、龙须菜、细基江篱和浒苔5种藻上均有发现;Staphylococcus在条斑紫菜、坛紫菜、龙须菜、细基江篱、异枝麒麟菜5种藻上均有发现。
     不同海藻样品分离菌株组成的比较以及聚类分析和非线性多维标度分析结果表明,藻种差异和地区差异以及可能存在的其它因素共同影响着分离菌株的组成,仅在少数样品之间呈现出较强的同地区相似性或同种藻相似性。
     对采集自大连的7种海藻(条斑紫菜、马泽藻、海萝、龙须菜、孔石莼、裙带菜、海带)构建了表面附着细菌的克隆文库,并对克隆文库进行了多样性及系统发育分析。条斑紫菜表面附着细菌构建的克隆文库主要由Ahrensia、Octadecabacter、Roseobacter、Sulfitobacter、Cocleimonas、Moritella、Psychromonas、Formosa、Olleya、Winogradskyella10个属组成,其中以Olleya占优势,约27.87%。马泽藻表面附着细菌的克隆文库主要由13个属组成,分别为Loktanella、Pseudoruegeria、Robiginitomaculum、Roseovarius、Sulfitobacter、Aliivibrio、Colwellia、Leucothrix、 Oleispira、 Pseudoalteromonas、 Psychrobacter、 Psychromonas、Polaribacter,其中以Leucothrix居多,占14.81%。海萝表面附着细菌克隆文库主要包括8个属,分别为Octadecabacter、Roseovarius、Sulfitobacter、Alteromonas、Leucothrix、 Marinomonas、 Pseudoalteromonas、 Lacinutrix,其中以Pseudoalteromonas最多,总共42.37%。龙须菜表面附着细菌克隆文库由Alteromonas、Colwellia、Oceanisphaera、Photobacterium、Pseudoalteromonas、Psychrobacter、Psychromonas、Vibrio8个属组成,其中以Pseudoalteromonas最多,占67.86%。孔石莼表面附着细菌克隆文库主要包括Altererythrobacter、Bradyrhizobium、 Erythrobacter、 Octadecabacter、 Roseovarius、 Sulfitobacter、Psychromonas、Winogradskyella和Bacillus9个属,其中Octadecabacter最多,占28%。裙带菜表面附着细菌克隆文库主要包括Loktanella、Alteromonas、Colwellia、 Granulosicoccus、 Leucothrix、 Moritella、 Oceanisphaera、Pseudoalteromonas、 Psychrobacter、 Psychromonas、 Rheinheimera、 Bizionia、Lacinutrix、Polaribacter,计14个属,其中Leucothrix占了46%。海带表面附着细菌克隆文库仅包括三个属Pseudoalteromonas、Psychromonas、Vibrio,其中Psychromonas最多,占91.67%。
     在获得的所有克隆文库中均以变形菌门(主要为α-变形菌纲和γ-变形菌纲)为主,其次为拟杆菌门。从属的水平进行比较,7个克隆文库总共发现了34个属。其中条斑紫菜克隆文库中Ahrensia、Roseobacter、Cocleimonas、Formosa和Winogradskyella5个属为特有属。马泽藻表面附着细菌克隆文库中Pseudoruegeria、Robiginitomaculum、Aliivibrio、Oleispira为特有属。海萝表面附着细菌克隆文库中仅Photobacterium为特有属。龙须菜表面附着细菌克隆文库中仅Marinomonas为特有属。孔石莼表面附着细菌克隆文库中Altererythrobacter、Bradyrhizobium、Erythrobacter和Bacillus4个属为特有属。裙带菜表面附着细菌克隆文库中Granulosicoccus、Rheinheimera和Bizionia为特有属。其余各属中,Psychromonas分布较广,在6个海藻克隆文库中均有发现(龙须菜中未发现),其它各属仅发现于少数几个克隆文库。各海藻样品表面附着细菌构建的克隆文库均有较为明显的优势属存在。其中龙须菜和海萝克隆文库中具有相同优势属,裙带菜和马泽藻克隆文库具有相同优势属,条斑紫菜、孔石莼、海带克隆文库各自具有特有的优势属。
     在属的水平上进行的聚类分析表明,大连7个海藻样品表面附着细菌的克隆文库分为3类:绿藻门孔石莼、红藻门龙须菜和条斑紫菜聚为一类,红藻门马泽藻、海萝和褐藻门裙带菜聚为一类,海带单独归为一类。非线性多维标度分析的结果和聚类分析结果一致,并且显示出绿藻门、红藻门、褐藻门之间较为明显的差异。
Epiphytic bacteria are abundant and ubiquitous colonizers of the external surfacesof marine macroalgae, but relatively little is known about the nature of theirinteraction or the perceived benefits to the macroalgae. This bacteria are generallyassumed to be essential for the development, defense and morphogenesis of algaes,and some bacteria are opportunistic pathogens of host algae. In order to fully assessand explore such interactions, an improved understanding of the composition anddynamics of the surface community is required. We isolated some bacteria fromseveral macroalge sampled from different sites of China coast and investigated thebacterial community of another seveal macroalge simped in Dalian by16S rDNAclone library analysis.
     Totally606strains were isloated from the surface of22macroalgae samples(Porphyra yezoensis, P. haitanensis, Gracilaria lemaneiformis, G. tenuistipitata,Eucheuma striatum, Grateloupia filicina, Grateloupia filicina) and identified by aphylogenetic analysis of the16S rDNA sequences. They were composed of4phylum:Proteobacteria (84.48%), Bacteroidetes (7.43%), Firmicutes (7.10%) andActinobacteria (0.99%).
     Gammaproteobacteria (84.16%of the total,16genera) was apparently amajordivision of Pretobacteria, and a large portion (54.29%of the total) fell withinthe genus Pseudoalteromonas. Other strains of Gammaproteobacteria belonged tothe genera Acinetobacter, Alteromonas, Amphritea, Cobetia, Colwellia, Escherichia,Halomonas, Marinomonas, Photobacterium, Pseudomonas, Psychrobacter,Psychromonas, Shewanella, Stenotrophomonas and Vibrio. Marine Bacteroidetesincluding10genera, Algibacter, Cellulophaga, Maribacter, Olleya, Persicivirga,Polaribacter, Psychroserpens, Tenacibaculum, Winogradskyella, Zobellia, wasanother large group found in the culturable part of epibacterial community.Strains ofthe genera Desemzia, Jeotgalicoccus, Salinicoccus, Staphylococcus in the Firmicutes,Microbacterium, Micrococcus in the Actinobacteria, and Brevundimonas,Pseudoruegeria in the Alphaproteobacteria were also be found.
     Within different samples of the same algal species, the composition of bacteria wassubjected to shifts at the bacterial genus level. Composition patterns of cultural epibacteria of P. yezoensis differed not only in the types of genera but also in therelative proportions of those tpyes within different sampling sites. This phenomenonre-occurred in P. haitanensis, G. lemaneiformis, G. tenuistipitata but all the samplesof this three algae species had the the same dominant genus, Pseudoalteromonas.Composition pattern of two samples of E. striatum were nearly the same but slightlydiffered in proportions of some genera. Few stains were isolated from surface of G.filicina, and only one genus, Pseudomonas, was found coexisting in the two samples.
     All the isolates from G. filicina belonged to Pseudoalteromonas.Pseudoalteromonas was the dominant group of all the algal species but P. yezoensis.Vibrio was isolated from surface of all algae species but G. filicina.Pseudomonas andStaphylococcus were also in different five algal species, respectively. Obviousdifferences of other genera appeared between different algal species, and many generawere only isolated from one algal species.
     Cluster analysis and Non-metric multi-dimensional scaling analysis (NMDS)indicated that the cultured part of the epibacterial community of macroalgae wasdetermined by algal species and sampling regions. In this study, no more similaritywas found on closely related host species.
     Epibacterial community of another7macroalgae (P. yezoensis, Mazzaella sp.,Gloiopeltis furcata, G. lemaneiformis, Ulva pertusa, Undaria pinnatifida, Laminariajaponica) sampled in Dalian were studied with molecular technical method. The16SrDNA clone libriaries analysis revealed that the epibacterial community weredominated by the Proteobacteria and Bacteroidetes. Bacterial phylotypes associatedwith P. yezoensis were affiliated with the genera Ahrensia, Octadecabacter,Roseobacter, Sulfitobacter, Cocleimonas, Moritella, Psychromonas, Formosa, Olleya,Winogradskyella, and Olleya was the dominant genus, about27.87%of the totalclones. Bacterial phylotypes associated with Mazzaella sp. belonged to the generaLoktanella, Pseudoruegeria, Robiginitomaculum, Roseovarius, Sulfitobacter,Aliivibrio, Colwellia, Leucothrix, Oleispira, Pseudoalteromonas, Psychrobacter,Psychromonas, Polaribacter, and Leucothrix dominated the libriay, about14.81%. Alarge portion (42.37%) of clone libriary associated with Gloiopeltis furcata fall withinthe genus Pseudoalteromonas and the genera Octadecabacter, Roseovarius,Sulfitobacter, Alteromonas, Leucothrix, Marinomonas, Lacinutrix were also be found.Only γ-proteobacteria was found in clone libriary associated with G. lemaneiformis,and the clones belonged to the genera Alteromonas, Colwellia, Oceanisphaera,Photobacterium, Pseudoalteromonas, Psychrobacter, Psychromonas, Vibrio. Pseudoalteromonas dominated the libriary, about67.86%. Bacterial phylotypesassociated with Ulva pertusa were mainly assigned to Altererythrobacter,Bradyrhizobium, Erythrobacter, Octadecabacter, Roseovarius, Sulfitobacter,Psychromonas, Winogradskyella, Bacillus, and Octadecabacter was the donminant28%. Clone libriary associated with Undaria pinnatifida was comprised of the generaLoktanella, Alteromonas, Colwellia, Granulosicoccus, Leucothrix, Moritella,Oceanisphaera, Pseudoalteromonas, Psychrobacter, Psychromonas, Rheinheimera,Bizionia, Lacinutrix, Polaribacter, and Leucothrix was the main part,46%. Clonelibriary associated with Laminaria japonica showed the lowest bacterial diversity.Only three genera were found in the libriary: Pseudoalteromonas, Psychromonas,Vibrio and Pseudoalteromonas was the dominant part,91.67%of the total clones.
     Comparisons of different clone libraries showed obvious differences between theepibacterial community of different macroalgae. Totally, the7clone libraries contains34genera.18genera were found only in one clone library。Ahrensia, Roseobacter,Cocleimonas, Formosa and Winogradskyella were be found only in the clone libraryof P. yezoensis and Pseudoruegeria, Robiginitomaculum, Aliivibrio, Oleispira inMazzaella sp., and Photobacterium in G. furcata, and Marinomonas in G.lemaneiformis, and Altererythrobacter, Bradyrhizobium, Erythrobacter, Bacillus in U.pertusa, and Granulosicoccus, Rheinheimera, Bizionia in U. pinnatifida. Theremained genera existed in several clone libraries. Psychromonas existed in6clonelibraries, not founded in clone library of G. lemaneiformis. Pseudoalteromonas wasthe domintant in epibacterial community of G. lemaneiformis and Gloiopeltis furcata,and Leucothrix in Mazzaella sp., U. pinnatifida. Clone library of P. yezoensis, U.pertusa, L. japonica was dominant with Olleya, Octadecabacter, Psychromonasrespectively.
     Cluster analysis of clone libraries showed that the variability between thecommunity of different algal species was generally high.2D-NMDS analysis alsoindicated that obvious but slightly differences existed between different phylum ofalgae.
引文
1.Ferguson R L, Rublee P. Contribution of bacteria to standing crop of coastal plankton[J]. Limnologyand Oceanography,1976,21(1):141-145.
    2.Hobbie J E, Daley R J, Jasper S. Use of nuclepore filters for counting bacteria by fluorescencemicroscopy[J]. Applied and Environmental Microbiology,1977,33(5):1225-1228.
    3.Wommack K E, Colwell R R. Virioplankton: viruses in aquatic ecosystems[J]. Microbiology andMolecular Biology Reviews,2000,64(1):69-114.
    4.张晓华.海洋微生物学[M].青岛:中国海洋大学出版社,2007.
    5.Carrias J F, Sime-Ngando T. Bacteria, attached to surfaces[M]//Encyclopedia of inland waters. Oxford:Academic Press,2009:182-192.
    6.Armstrong E, Yan L, Boyd K G, et al. The symbiotic role of marine microbes on living surfaces[J].Hydrobiologia,2001,461(1-3):37-40.
    7.Zheng L, Han X, Chen H, et al. Marine bacteria associated with marine macroorganisms: thepotential antimicrobial resources[J]. Annals of Microbiology,2005,55(2):119-124.
    8.Kogure K, Simidu U, Taga N. Bacterial attachment to phytoplankton in sea water[J]. Journal ofExperimental Marine Biology and Ecology,1981,56(2–3):197-204.
    9.Lewis J, Kennaway G, Franca S, et al. Bacterium-dinoflagellate interactions: investigative microscopyof Alexandrium spp.(Gonyaulacales, Dinophyceae)[J]. Phycologia,2001,40(3):280-285.
    10.Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellularproducts[J]. The Biological Bulletin,1972,143(2):265-277.
    11.Blackburn N, Fenchel T, Mitchell J. Microscale nutrient patches in planktonic habitats shown bychemotactic bacteria[J]. Science,1998,282(5397):2254-2256.
    12. Sieburth J McN. Studies on algal substances in the sea. III. The production of extracellular organicmatter by littoral marine algae[J]. Journal of Experimental Marine Biology and Ecology,1969,3(3):290-309.
    13.Worm J, S ndergaard M. Dynamics of heterotrophic bacteria attached to Microcystis spp.(Cyanobacteria)[J]. Aquatic Microbial Ecology,1998,14:19-28.
    14.Mayali X, Doucette G J. Microbial community interactions and population dynamics of an algicidalbacterium active against Karenia brevis (Dinophyceae)[J]. Harmful Algae,2002,1(3):277-293.
    15.Watanabe K, Takihana N, Aoyagi H, et al. Symbiotic association in Chlorella culture[J]. FEMSMicrobiology Ecology,2005,51(2):187-196.
    16.Hodson S, Croft M, Deery E, et al. Algae acquire vitamin B12through a symbiotic relationship withbacteria[J]. Comparative Biochemistry and Physiology-Part A: Molecular& IntegrativePhysiology,2007,146(4, Supplement):S222.
    17.Ohta S, Chang T, Ikegami N, et al. Antibiotic substance produced by a newly isolated marinemicroalga, Chlorococcum HS-101[J]. Bulletin of Environmental Contamination and Toxicology,1993,50(2):171-178.
    18.Kubanek J, Jensen P R, Keifer P A, et al. Seaweed resistance to microbial attack: a targeted chemicaldefense against marine fungi[J]. Proceedings of the National Academy of Sciences of USA,2003,100(12):6916-6921.
    19.Manage P M, Kawabata Z, Nakano S. Dynamics of cyanophage-like particles and algicidal bacteriacausing Microcystis aeruginosa mortality[J]. Limnology,2001,2(2):73-78.
    20.Haines K C, Guillard R R L. Growth of vitamin B12-requiring marine diatoms in mixed laboratorycultures with vitamin B12-producing marine bacteria[J]. Journal of Phycology,1974,10(3):245-252.
    21.Keshtacher-Liebso E, Hadar Y, Chen Y. Oligotrophic bacteria enhance algal growth underiron-deficient conditions[J]. Applied and Environmental Microbiology,1995,61(6):2439-2441.
    22.邹迪,肖琳,杨柳燕,等.不同形态磷源对铜绿微囊藻与附生假单胞菌磷代谢的影响[J].环境科学,2005(03):118-121.
    23.赵婕,李建宏,管章玲,等.一株产碱性磷酸酶附生菌对微囊藻生长的影响[J].湖泊科学,2011(01):49-55.
    24.Rier S T, Stevenson R J. Effects of light, dissolved organic carbon, and inorganic nutrients on therelationship between algae and heterotrophic bacteria in stream periphyton[J]. Hydrobiologia,2002,489(1):179-184.
    25.蒋丽娟,史小丽,杨柳燕,等.游离附生假单胞菌对铜绿微囊蓝细菌中32P释放的影响[J].环境科学学报,2003(04):521-524.
    26.肖琳,杨柳燕,蒋丽娟,等.附生假单胞菌信号分子对铜绿微囊藻磷代谢的影响[J].环境科学学报,2005(04):557-561.
    27.Fukami K, Yuzawa A, Nishijima T, et al. Isolation and properties of a bacterium inhibiting the growthof Gymnodinium nagasakiense[J]. Nippon Suisan Gakkaishi,1992,58(6):1073-1077.
    28.Lovejoy C, Bowman J P, Hallegraeff G M. Algicidal effects of a novel marine Pseudoalteromonasisolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the generaChattonella, Gymnodinium, and Heterosigma[J]. Applied and Environmental Microbiology,1998,64(8):2806-2813.
    29.晏荣军,尹平河,裘俊红.2株球形棕囊藻溶藻细菌的分离及鉴定[J].环境科学,2011(01):225-230.
    30.Dillon P S, Maki J S, Mitchell R. Adhesion of Enteromorpha swarmers to microbial films[J]. MicrobialEcology,1989,17(1):39-47.
    31.Thomas RWSP., Allsopp D. The effects of certain periphytic marine bacteria upon the settlementand growth of Enteromorpha, a fouling alga[J]. Biodeterioration,1983,5:348-357.
    32.Joint I, Callow M E, Callow J.A., et al. The attachment of Enteromorpha zoospores to a bacterialbiofilm assemblage[J]. Biofouling,2000,16(2-4):151-158.
    33.Pratixa P, Callow M E, Ian J, et al. Specificity in the settlement–modifying response of bacterialbiofilms towards zoospores of the marine alga Enteromorpha[J]. Environmental Microbiology,2003,5(5):338-349.
    34.Provasoli L. Effect of plant hormones on Ulva[J]. The Biological Bulletin,1958,114(3):375-384.
    35.Provasoli L, Pintner I J. Symbiotic relationship between microorganisms and seaweeds[J]. AmericanJournal of Botany,1964,51:681.
    36.Provasoli L, Pintner I J. Bacteria induced polymorphism in an axenic laboratory strain of UlvaLactuca (Chlorophyceae)[J]. Journal of Phycology,1980,16(2):196-201.
    37.Nakanishi K, Nishijima M, Masamichi N, et al. Bacteria that induce morphogenesis in Ulva Pertusa(Chlorophyta) grown under axenic conditions[J]. Journal of Phycology,1996,32(3):479-482.
    38.Fries L. Some observations on the morphology of Enteromorpha linza (L.) J. Ag. and Enteromorphacompressa (L.) Grev. in axenic culture[J]. Botanica Marina,1975,18(4):251-253.
    39.Marshall K, Joint I, Callow M E, et al. Effect of marine bacterial isolates on the growth andmorphology of axenic plantlets of the green alga Ulva linza[J]. Microbial Ecology,2006,52(2):302-310.
    40.Matsuo Y, Suzuki M, Kasai H, et al. Isolation and phylogenetic characterization of bacteria capableof inducing differentiation in the green alga Monostroma oxyspermum[J]. EnvironmentalMicrobiology,2003,5(1):25-35.
    41.Tatewaki M, Provasoli L, Pintner I J. Morphogenesis of Monostroma Oxyspermum (Kü TZ.) Doty(Chlorophyceae) in axenic culture, especially in bialgal culture[J]. Journal of Phycology,1983,19(4):409-416.
    42.Holmstr m C, James S, Egan S, et al. Inhibition of common fouling organisms by marine bacterialisolates with special reference to the role of pigmented bacteria[J]. Biofouling,1996,10(1-3):251-259.
    43.Nakanishi K, Nishijima M, Ann M N, et al. Requisite morphologic interaction for attachmentbetween Ulva pertusa (Chlorophyta) and symbiotic bacteria[J]. Marine Biotechnology,1999,1(1):107-111.
    44.Pedersén M. Ectocarpus fasciculatus: marine brown alga requiring kinetin[J]. Nature,1968,218(5143):776-776.
    45.Saga N, Motomura T, Sakai Y. Induction of callus from the marine brown alga Dictyosiphonfoeniculaceus[J]. Plant and Cell Physiology,1982,23(4):727-730.
    46.Kingman A R, Moore J. Isolation, purification and quantitation of several growth regulatingsubstances in Ascophyllum nodosum (Phaeophyta)[J]. Botanica Marina,1982,25(4):149-153.
    47.Yamazaki A, Nakanishi K, Saga N. Axenic tissue culture and morphogenesis in Porphyra Yezoensis(Bangiales, Rhodophyta)[J]. Journal of Phycology,1998,34(6):1082-1087.
    48.Maximilien R, de Nys R, Holmstr m C, et al. Chemical mediation of bacterial surface colonisation bysecondary metabolites from the red alga Delisea pulchra[J]. Aquatic Microbial Ecology,1998,15(3):233-246.
    49.Hellio C, Bremer G, Pons A M, et al. Inhibition of the development of microorganisms (bacteria andfungi) by extracts of marine algae from Brittany, France[J]. Applied Microbiology and Biotechnology,2000,54(4):543-549.
    50.Hellio C, Thomas-Guyon H, Culioli G, et al. Marine antifoulants from Bifurcaria bifurcata(Phaeophyceae, Cystoseiraceae) and other brown macroalgae[J]. Biofouling,2001,17(3).
    51.Hellio C, Marechal J P, Veron B, et al. Seasonal variation of antifouling activities of marine algaefrom the Brittany coast (France)[J]. Marine Biotechnology,2004,6(1):67-82.
    52.Holmstrom C, James S, Neilan B A, et al. Pseudoalteromonas tunicata sp. nov., a bacterium thatproduces antifouling agents[J]. International Journal of Systematic Bacteriology,1998,48Pt4:1205-1212.
    53.Holmstrom C, Kjelleberg S. Marine Pseudoalteromonas species are associated with higherorganisms and produce biologically active extracellular agents[J]. FEMS Microbiology Ecology,1999,30(4):285-293.
    54.Egan S, Thomas T, Holmstrom C, et al. Phylogenetic relationship and antifouling activity of bacterialepiphytes from the marine alga Ulva lactuca[J]. Environmental Microbiology,2000,2(3):343-347.
    55.Egan S, James S, Holmstr m C, et al. Inhibition of algal spore germination by the marine bacteriumPseudoalteromonas tunicata[J]. FEMS Microbiology Ecology,2001,35(1):67-73.
    56.Holmstrom C, Egan S, Franks A, et al. Antifouling activities expressed by marine surface associatedPseudoalteromonas species[J]. FEMS Microbiology Ecology,2002,41(1):47-58.
    57.Egan S, Thomas T, Holmstr m C, et al. Phylogenetic relationship and antifouling activity of bacterialepiphytes from the marine alga Ulva lactuca[J]. Environmental Microbiology,2000,2(3):343-347.
    58.Dobretsov S V, Qian P Y. Effect of bacteria associated with the green alga Ulva reticulata on marinemicro-and macrofouling[J]. Biofouling,2002,18(3):217-228.
    59.陈騳,林光恒,沈世泽.褐藻酸降解菌的研究Ⅰ.褐藻酸降解菌与褐藻酸酶对海带藻体的作用[J].海洋与湖沼,1979(04):329-333+402.
    60.陈騳,林光恒,沈世泽.褐藻酸降解菌的研究Ⅱ.海带夏苗培育中褐藻酸降解菌与烂苗的关系[J].海洋与湖沼,1981(02):133-137.
    61.陈騳,刘秀云,刘秀珍,等.褐藻酸降解菌的研究Ⅲ.海带育苗系统中脱苗和烂苗原因分析及其预防措施[J].海洋与湖沼,1984(06):581-589.
    62.陈騳,刘秀云,刘秀珍,等.褐藻酸降解菌的研究Ⅳ.褐藻酸降解菌在海带栽培区中的生态分布及其重要性[J].海洋与湖沼,1986(02):137-143.
    63.丁美丽.环境因子对褐藻酸降解菌引起海带病烂影响研究[J].海洋学报(中文版),1990(02):224-230.
    64.Sawabe T, Makino H, Tatsumi M, et al. Pseudoalteromonas bacteriolytica sp. nov., a marinebacterium that is the causative agent of red spot disease of Laminaria japonica[J]. InternationalJournal of Systematic Bacteriology,1998,48Pt3:769-774.
    65.王丽丽,唐学玺,王蒙,等.褐藻酸降解菌在海带绿烂病发生中的作用[J].青岛海洋大学学报(自然科学版),2003(02):245-248.
    66.马家海.条斑紫菜赤腐病的初步研究[J].上海水产大学学报,1996(01):1-7.
    67.闫咏,马家海,许璞,等.1株引起条斑紫菜绿斑病的柠檬假交替单胞菌[J].中国水产科学,2002(04):353-358.
    68.马家海,林秋生,闵建,等.条斑紫菜拟油壶菌病的初步研究[J].水产学报,2007(06):860-864.
    69.严兴洪,黄林彬,周晓,等.坛紫菜叶状体的细菌性红烂病研究[J].中国水产科学,2008(02):313-322.
    70.李宇航,马家海,林秋生.条斑紫菜丝状细菌附着症的初步研究[J].上海海洋大学学报,2009(06):741-748.
    71.王洪斌,李信书,夏亚明,等.条斑紫菜丝状体黄斑病病原体分离鉴定及生物学特性研究[J].海洋环境科学,2011(03):361-364+408.
    72.姜静颖,马悦欣,张泽宇,等.大连地区裙带菜“绿烂病”组织病理的研究[J].大连水产学院学报,1997(03):9-14.
    73.马悦欣,张泽宇,刘长发,等.大连地区裙带菜绿烂病病原的研究[J].中国水产科学,1997(S1):67-70.
    74.马悦欣,张泽宇,范春江,等.大连地区裙带菜斑点烂病病原菌的研究[J].中国水产科学,1997(03):63-66.
    75. Lavilla-Pitogo C R. Agar-digesting bacteria associated with ‘rotten thallus syndrome’ of Gracilariasp.[J]. Aquaculture,1992,102(1-2):1-7.
    76.Weinbergerl F, Friedlander M, Gunkel W. A bacterial facultative parasite of Gracilaria conferta [J].Diseases of Aquatica Organisms,1994,18:135-141.
    77.Jaffray A, Coyne V. Development of an in situ assay to detect bacterial pathogens of the red algaGracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham[J]. Journal of Applied Phycology,1996,8(4):409-414.
    78.Wahl M. Ecological lever and interface ecology: epibiosis modulates the interactions between hostand environment[J]. Biofouling,2008,24(6):427-438.
    79.Harder T. Marine epibiosis: concepts, ecological consequences and host defence marine andindustrial biofouling[M]//Springer series on biofilms. Springer Berlin Heidelberg,2009:219-231.
    80.Bhadury P, Wright P C. Exploitation of marine algae: biogenic compounds for potential antifoulingapplications[J]. Planta,2004,219(4):561-578.
    81.Wahl M. Marine epibiosis.1. Fouling and antifouling-some basic aspects.[J]. Marine EcologyProgress Series,1989,58:175-189.
    82.Dworjanyn S A, Pirozzi I. Induction of settlement in the sea urchin Tripneustes gratilla bymacroalgae, biofilms and conspecifics: A role for bacteria?[J]. Aquaculture,2008,274(2–4):268-274.
    83.Sastry V M V S., Rao G R K. Antibacterial substances from marine algae: successive extraction usingbenzene, chloroform and methanol[J]. Botanica Marina,1994,37(4):357-360.
    84.Xu N, Fan X, Yan X, et al. Antibacterial bromophenols from the marine red alga Rhodomelaconfervoides[J]. Phytochemistry,2003,62(8):1221-1224.
    85.Vairappan C S, Suzuki M, Abe T, et al. Halogenated metabolites with antibacterial activity from theOkinawan laurencia species[J]. Phytochemistry,2001,58(3):517-523.
    86.Vairappan C S. Potent antibacterial activity of halogenated metabolites from Malaysian red algae,Laurencia majuscula (Rhodomelaceae, Ceramiales)[J]. Biomolecular Engineering,2003,20(4-6):255-259.
    87.Hellio C, De La Broise D, Dufosse L, et al. Inhibition of marine bacteria by extracts of macroalgae:potential use for environmentally friendly antifouling paints[J]. Marine Environmental Research,2001,52(3):231-247.
    88.Smyrniotopoulos V, Abatis D, Tziveleka L A, et al. Acetylene sesquiterpenoid esters from the greenalga Caulerpa prolifera[J]. Journal of Natural Products,2003,66(1):21-24.
    89.徐涤.海带外生菌的初步研究[D].青岛:中国科学院研究生院(海洋研究所),2003.
    90.Weinberger F, Friedlander M, Hoppe H G. Oligoagars elicit a physiolgical response in GracilariaConferta (Rhodophyta)[J]. Journal of Phycology,1999,35(4):747-755.
    91.Weinberger F, Friedlander M. Response of Gracilaria conferta (Rhodophyta) to oligoagars results indefense against agar-degrading epiphytes[J]. Journal of Phycology,2000,36(6):1079-1086.
    92.Weinberger F, Friedlander M. Endogenous and exogenous elicitors of a hypersensitive response inGracilaria conferta (Rhodophyta)[J]. Journal of Applied Phycology,2000,12(2):139-145.
    93.Keats D W, Groener A, Chamberlain Y M. Cell sloughing in the littoral zone coralline alga, Spongitesyendoi (Foslie) Chamberlain (Corallinales, Rhodophyta)[J]. Phycologia,1993,32(2):143-150.
    94.Nylund G M, Pavia H. Chemical versus mechanical inhibition of fouling in the red alga Dilseacarnosa[J]. Marine Ecology Progress Series,2005,299:111-121.
    95.Lachnit T, Blümel M, Imhoff J F, et al. Specific epibacterial communities on macroalgae: phylogenymatters more than habitat[J]. Aquatic Biology,2009,5(2):181-186.
    96.Tujula N A, Crocetti G R, Burke C, et al. Variability and abundance of the epiphytic bacterialcommunity associated with a green marine Ulvacean alga[J]. The ISME Journal,2010,4(2):301-311.
    97.Hengst M B, Andrade S, Gonzalez B, et al. Changes in epiphytic bacterial communities of intertidalseaweeds modulated by host, temporality, and copper enrichment[J]. Microbial Ecology,2010,60(2):282-290.
    98.Lachnit T, Meske D, Wahl M, et al. Epibacterial community patterns on marine macroalgae arehost-specific but temporally variable[J]. Environmental Microbiology,2011,13(3):655-665.
    99.Staufenberger T, Thiel V, Wiese J, et al. Phylogenetic analysis of bacteria associated with Laminariasaccharina[J]. FEMS Microbiology Ecology,2008,64(1):65-77.
    100.Lee Y K, Jung H J, Lee H K. Marine bacteria associated with the Korean brown alga, Undariapinnatifida[J]. The Journal of Microbiology,,2006,44(6):694-698.
    101.杨锐,方文雅,单媛媛,等.条斑紫菜外生细菌的遗传多样性[J].海洋学报(中文版),2008(04):161-168.
    102.廖律,徐永健.氮素营养对龙须菜生长及其各部附生菌组成的影响[J].水产科学,2009(03):130-135.
    103.Gallardo A A, Risso S, Fajardo M A, et al. Characterization of microbial population present in theedible seaweed, Monostroma undulatum, Wittrock [J]. Archivos Latinoamericanos de Nutrición,2004,54(3):337-345.
    104.刘杰,王晓姗,王能飞,等.青岛近海浒苔粘附着细菌16S rDNA系统发育学研究[J].科学技术与工程,2009(08):2042-2046+2055.
    105.Fuhrman J A, Hagstr m. Bacterial and archaeal community structure and its patterns[M]//Microbial ecology of the oceans. Wiley&Sons, Inc.,2008.
    106.Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella,and Moritella using genes coding for small-subunit rRNA sequences and division of the genusAlteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., andproposal of twelve new species combinations[J]. International Journal of Systematic Bacteriology,1995,45(4):755-761.
    107.Skovhus T L, Ramsing N B, Holmstrom C, et al. Real-time quantitative PCR for assessment ofabundance of Pseudoalteromonas species in marine samples[J]. Applied and EnvironmentalMicrobiology,2004,70(4):2373-2382.
    108.Gram L, Melchiorsen J, Bruhn J B. Antibacterial activity of marine culturable bacteria collectedfrom a global sampling of ocean surface waters and surface swabs of marine organisms[J]. MarineBiotechnology,2010,12(4):439-451.
    109.Vynne N G, Mansson M, Nielsen K F, et al. Bioactivity, chemical profiling, and16S rRNA-basedphylogeny of Pseudoalteromonas strains collected on a global research cruise[J]. MarineBiotechnology,2011,13(6):1062-1073.
    110.王子峰,李洪波,逄少军,等.几种海藻表面附着细菌的分离及其gyrB基因序列分析[J].海洋环境科学,2009(06):635-638+656.
    111.Huggett M J, Williamson J E, de Nys R, et al. Larval settlement of the common Australian seaurchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae[J].Oecologia,2006,149(4):604-619.
    112.Van Landschoot A, de Ley J. Intra-and Intergeneric Similarities of the rRNA Cistrons ofAlteromonas, Marinomonas (gen. nov.) and Some Other Gram-negative Bacteria[J]. Journal ofGeneral Microbiology,1983,129(10):3057-3074.
    113.Lau K W, Ren J, Wai N L, et al. Marinomonas ostreistagni sp. nov., isolated from a pearl-oysterculture pond in Sanya, Hainan Province, China[J]. International Journal of Systematic andEvolutionary Microbiology,2006,56(Pt10):2271-2275.
    114.Arahal D R, Castillo A M, Ludwig W, et al. Proposal of Cobetia marina gen. nov., comb. nov., withinthe family Halomonadaceae, to include the species Halomonas marina[J]. Systematic and AppliedMicrobiology,2002,25(2):207-211.
    115.徐永健,乐观宗,张友平.龙须菜体表附生细菌的几种分离方法比较[J].微生物学通报,2007(01):123-126.
    116.王子峰.海藻表面附着弧菌多样性分析及方法研究[D].青岛:中国科学院研究生院(海洋研究所),2006.
    117.Boyd K G, Adams D R, Burgess J G. Antibacterial and repellent activities of marine bacteriaassociated with algal surfaces[J]. Biofouling,1999,14(3):227-236.
    118.Dunbar J, White S, Forney L. Genetic diversity through the looking glass: effect of enrichmentbias[J]. Applied and Environmental Microbiology,1997,63(4):1326-1331.
    119.孙进,于敏,任晓亮,等.海藻叶面附着细菌群落生理特性与荧光原位杂交分析[J].海洋湖沼通报,2009(04):51-61.
    120.Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturinggradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16SrRNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700.
    121.刘敏.我国黄、东海典型生态过程中的微生物群落结构[D].青岛:中国科学院研究生院(海洋研究所),2011.
    122.Lane D J.16S/23S rRNA sequencing[M]//Nucleic acid techniques in bacterial systematics. NewYork: Wiley,1991:115-175.
    123.Fuhrman J A, Comeau D E, Hagstrom A, et al. Extraction from natural planktonic microorganismsof DNA suitable for molecular biological studies[J]. Applied and Environmental Microbiology,1988,54(6):1426-1429.
    124.Riemann L, F. Steward G, Fandino L B, et al. Bacterial community composition during twoconsecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gelelectrophoresis (DGGE) of rRNA genes[J]. Deep Sea Research II,1999,46(8-9):1791-1811.
    125.Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition[J]. Applied andEnvironmental Microbiology,1996,62(2):316-322.
    126.周小奇,王艳芬,蔡莹,等.内蒙古典型草原细菌群落结构的PCR-DGGE检测[J].生态学报,2007(05):1684-1689.
    127.Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric sequences inmultiple sequence alignments[J]. Bioinformatics,2004,20(14):2317-2319.
    128.Freitas D B, Reis M P, Freitas L M, et al. Molecular bacterial diversity and distribution in wastefrom a steel plant[J]. Canadian Journal of Microbiology,2008,54(12):996-1005.
    129.Baati H, Guermazi S, Gharsallah N, et al. Microbial community of salt crystals processed fromMediterranean seawater based on16S rRNA analysis[J]. Canadian Journal of Microbiology,2010,56(1):44-51.
    130.褚椒江,朱鹏,严小军.海带藻际微生物抗菌活性及其多样性的初步研究[J].水生生物学报,2011,35(06):972-979.
    131.Yu M, Wang J, Tang K, et al. Purification and characterization of antibacterial compounds ofPseudoalteromonas flavipulchra JG1[J]. Microbiology,2012,158(Pt3):835-842.
    132.Mai-Prochnow A, Evans F, Dalisay-Saludes D, et al. Biofilm development and cell death in themarine bacterium Pseudoalteromonas tunicata[J]. Applied and Environmental Microbiology,2004,70(6):3232-3238.
    133.Nam Y D, Chang H W, Park J R, et al. Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat inKorea[J]. International Journal of Systematic and Evolutionary Microbiology,2007,57(Pt3):562-565.
    134.Wang G, Shuai L, Li Y, et al. Phylogenetic analysis of epiphytic marine bacteria on Hole-Rottendiseased sporophytes of Laminaria japonica [J]. Journal of Applied Phycology,2008,20(4):403-409.
    135.Romanenko L A, Tanaka N, Uchino M, et al. Diversity and antagonistic activity of sea ice bacteriaisolated from the sea of Japan[J]. Microbes and Environments,2008,23(3):209-214.
    136.Nedashkovskaya O I, Vancanneyt M, de Vos P, et al. Maribacter polysiphoniae sp. nov., isolatedfrom a red alga[J]. International Journal of Systematic and Evolutionary Microbiology,2007,57(Pt12):2840-2843.
    137.Krebs C J. Ecological Methodology[M].New York: Jim Green,1999.
    138.Chao A. Estimating the population size for capture-recapture data with unequal catchability[J].Biometrics,1987,43(4):783-791.
    139.Kemp P F, Aller J Y. Bacterial diversity in aquatic and other environments: what16S rDNA librariescan tell us[J]. FEMS Microbiology Ecology,2004,47(2):161-177.
    140.Stackebrandt E. Taxonomic note: a place for DNA-DNA reassociation and16S rRNA sequenceanalysis in the present species definition in bacteriology[J]. International Journal of SystematicBacteriology,1994,44(4):846-849.
    141.Allgaier M, Uphoff H, Felske A, et al. Aerobic anoxygenic photosynthesis in Roseobacter cladebacteria from diverse marine habitats[J]. Applied and Environmental Microbiology,2003,69(9):5051-5059.
    142.Yoon J H, Kang K H, Oh T K, et al. Erythrobacter aquimaris sp. nov., isolated from sea water of atidal flat of the Yellow Sea in Korea[J]. International Journal of Systematic and EvolutionaryMicrobiology,2004,54(Pt6):1981-1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700