用户名: 密码: 验证码:
一次西南低涡及其降水的结构特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西南低涡这一中尺度天气系统,其强烈发展和移动能给我国大部分地区带来暴雨等灾害性天气。本文利用四川自动站雨量资料、NECP1°×1°再分析资料、SWAN系统雷达拼图产品和TRMM卫星资料,结合天气学和物理量诊断方法,分析研究了2010年7月15-18日四川盆地区域性暴雨天气过程中西南低涡发生的大尺度环流背景及低涡的发展与移动机制、动力和热力结构,雷达回波、低涡降水和降水云的宏微观结构等特征,主要结论如下:
     (1)本次西南低涡暴雨发生在典型的500hPa“鞍型”环流场和“北槽南涡”高低空配置,台风“康森”和低空急流对低涡演变和水汽输送有重要影响。暴雨过程的两个强降雨中心乐山市、巴中与达州两市的强降雨集中时段与低涡在当地的活动时段一致。700hPa涡区附近的正涡度平流输送,对西南低涡的发生发展起重要作用,正涡度平流中心加强,对应低涡发展加强,反之,低涡不发展。850hPa上,低涡只有在其后部冷平流和前部暖平流同时出现时才会移动,移动方向为冷暖平流交汇中心的零线方向,并且温度平流输送越强,低涡移速越快,反之,越慢。
     (2)动力和热力结构特征分析表明:低涡活动的正涡度区主要出现在500hPa以下高度,700hPa为正涡度中心,500hPa以上为负涡度区;600hPa以下为辐合区,与正涡度区的位置对应较好,强辐合中心出现在850hPa以下,600hPa以上为辐散区。正涡度中心出现时段与强降水出现时段有良好的对应关系,低层的辐合中心和高层的辐散中心基本上都超前于强降水中心一个时段出现,具有很好的指示意义。低涡降水集中时段与强烈上升运动时段有较好的对应关系,垂直速度中心出现在600-500hPa高度,最高能发展到300hPa附近。850hPa以下层结不稳定,最大对流不稳定层结与强降水集中出现时段的时间差,表明强降水的发生需要一定时间的不稳定能量积累过程。另外,低涡过程中850hPa的水汽通量辐合中心与强降水中心有很好的对应关系。
     (3) SWAN系统的COTREC风场雷达拼图产品,从7月15日23点00分到7月18日20点12分多次捕捉到低涡地区的气旋性环流(或切变)特征,说明该气旋性环流很好的反映西南低涡的扰动特征。低涡过程的雷达回波特征表现为层云-对流云混合降水型,强回波中心的发展、移动与低涡的发展、移动有较好对应关系。暴雨过程中最大垂直液态含水量不高,水汽主要还是来自低空暖湿气流的输送。并且,最大垂直液态水含量、最大组合反射率和最高回波顶随时间变化的趋势基本一致,垂直液态水含量的高值中心对应强的组合反射率中心和高回波顶。西南低涡的发展、移动能促进云团回波的打通合并,最大垂直液态水含量的急增使云团能迅速积聚能量,雷达回波强度和范围进一步扩大。
     (4) TRMM卫星探测的西南低涡降水云结构特征是:水平方向降水云系主要位于低涡的右前方,红外亮温图上混合云系结构特征明显,云顶温度越低,对流活动越强。红外亮温云区远大于微波亮温云区,微波亮温低值区与降水区有很好的对应,微波亮温值越低,降水强度越强。垂直方向在低涡发展的不同阶段,始终是可降冰粒子含量最高,可降水粒子含量次之,第三是云水粒子含量,云冰粒子含量最少。可降冰粒子贯穿整个低层到高层,主要集中在10.0km以下,在凝结层附近达最大值,可降水和云水粒子主要分布在5.0km高度以下,云冰粒子主要集中在8.0km高度以上,且云中上升运动越强,云冰粒子在对流层中高层的含量越大。
     (5) TRMM卫星探测的西南低涡降水结构特征是:水平方向低涡降水区域主要位于低涡北部和东北部,降水云团由孤立块状云团逐渐发展成一条东北-西南走向的降水雨带,雨带中层云降水包围对流降水,整个雨带中层云样本比例高达90%,雨强范围主要集中在0-5mm·h-1内,较小雨强(<10mm h-1)占总降水比例的60%以上;对流降水主要集中在10-20mm·h-1内,对总降水量的贡献达到30%以上,随着对流降水发展,对流降水雨谱中较大雨强(>30mm h-1)对总降水量的贡献也随之增加。垂直方向在低涡成熟阶段,最大雨顶高度能达到17km,强降水中心瞬时强度超过50mm h-1,出现在5km附近,层云包围对流降水的结构明显,低涡发展和减弱阶段,雨顶高度基本维持在10km附近,并且在5km附近层云的亮带结构明显。低涡再发展时,整个雨带中降水强度再次加强,但雨顶高度和降水强度远远小于低涡成熟时,此时低涡区内强降水中心附近出现明显的螺旋雨带结构。
     (6) TRMM卫星资料得到的西南低涡平均降水廓线特征是:对流降水廓线能体现出低涡降水的发展演变过程,低涡发展成熟阶段,10-18km高度降水明显增多,该阶段云中大量降水粒子被抬升至高层形成固态降水粒子。对流降水和层云降水的最大降雨量均出现在6km以下,说明本次降水过程云粒子的碰并增长过程起主要作用。无论对流降水还是层云降水在5km以下降水随高度变化都有增加也有减少,这可能与该高度内复杂的微物理过程和四川地区复杂地形影响有关。另外,低涡降水的潜热廓线特征是:四个不同阶段低涡降水的潜热释放始终在7km附近出现最大值。低涡成熟阶段,各层潜热释放最强,首先在7km以下高度迅速增大至第一个峰值,最大潜热释放接近8000K h-1,之后在7-9km高度范围潜热迅速减小,在9-12km高度随高度略有回升,在14km高度以上又迅速增大,这些变化可能与云中(顶)的相变过程有关。其它低涡发展阶段,各层潜热释放总值相差不大,低涡减弱阶段比其它两个阶段略低。
Southwest low vortex is a meso-scale system, its strong development and movement can bring heavyrainfall etc severe weather to most regions of our country. In this paper, by using automatic weather stationrainfall data in Sichuan, NECP1°×1°reanalysis data, radar mosaic products of SWAN system andTRMM satellite data, combining synoptic meteorology and physical diagnostic methods, we study thesouthwest low vortex’s large scale circulation background, its development and movement mechanism, itsdynamic and thermodynamic structure characteristics, its radar echo characteristics, its precipitation andprecipitation clouds of macro-and micro-structure characteristics. The main conclusions are as follows:
     (1) The large scale circulation background of this low vortex heavy rain occurrence are typical500hPa“saddle field” circulation and the high-low altitude configuration of “north trough and south vortex”,typhoon “Conson” and low-level jet have important influence on the evolution of the vortex and thevapor transport. The heavy rainfall concentration period of the two rainfall centers-Leshan andBazhong/Dazhou are consistent with the activity period of vortex in these areas. The vorticityadvection transportation near the vortex areas at700hPa plays an important role in the development ofvortex. When the positive vorticity advection centers strengthen, the southwest vortex developsstrongly, on the contrary, the vortex does not develop. The vortex will only move where coldadvection in the back and warm advection in the front both appear at850hPa, the movement directionare the center zero line direction of clod and warm advection intersection, the stronger the temperatureadvection transport, the faster the vortex move, on the contrary, the slower.
     (2) The dynamic and thermodynamic structure characteristics are: the positive vorticity areas appearbelow500hPa height, positive vorticity centers are at700hPa height, the negative vorticity areasappear in the middle and upper troposphere; the convergence zone are below600hPa, correspondingbetter with the positive vorticity district, strong convergence center appear in the lower troposphere,below850hPa, the divergence areas are above600hPa. The positive vorticity center in lowertroposphere layer appearing period has a good correlation with the period of heavy rainfall appeared.The convergence center in lower troposphere and the divergence center in higher troposphere basicallyboth appear a little earlier than the heavy precipitation center come, this is a good indication. Theheavy rainfall period has a good correspondence to the strongly rising period, the vertical velocitycenter are at600-500hPa, the strongest can develop to300hPa nearby. Stratification are unstablebelow850hPa, the time interval between the maximum convective unstable stratification appear and the heavy rainfall come show the occurrence of high intensity precipitation required a certain time ofunstable energy accumulation. In addition, the vapor flux convergence center at850hPa has a goodcorrespondence to the strong precipitation center.
     (3) COTREC wind radar mosaic products in SWAN system capture the cyclonic circulation(or shear)feature repeatedly in the vortex regions, so this cyclonic circulation features can be well reflected thedisturbance characteristics of vortex. The radar echo characteristics show it mainly stratus-convectivemixed rainfall pattern, the development and movement of strong echo center has a good correlationwith the development and movement of vortex. The max vertical liquid water content values are nothigh, water vapor is mainly form the low-level warm and moist airflow transportation. Moreover, themaximum vertical liquid water content, the maximum combination reflection index and the highestecho top are basically had the same evolution trend, high value center of vertical liquid water contentcorrespond with strong combination reflection index and high echo top. The development andmovement of vortex can promote clouds echo to merger, the surge of maximum vertical liquid watercontent make clouds rapidly accumulate energy, so that the radar echo intensity and scope can expandfurther.
     (4) The characteristics of vortex precipitation clouds in TRMM are: in the horizontal direction theprecipitation clouds mainly locate in right front of vortex, it is obvious mixed clouds structure in theinfrared brightness temperature map, the lower the cloud top temperature are, the stronger theconvective activity is. Infrared brightness temperature map is much larger than the microwavebrightness temperature map, the low value areas in the microwave brightness temperature correspondwell to the rainfall areas, the lower the microwave brightness temperature value are, the stronger theprecipitation intensity is. In the vertical direction, it is always the highest content of ice particles,followed by precipitation particle content, the third is cloud water particle content and cloud iceparticle content is at least. Ice particles can throughout the low level to the high level, mainlyconcentrate below10.0km, the maximum appear in the condensation layer, precipitation particles andcloud water particles mainly distribute below5.0km, cloud ice particles are mainly above8.0km, thestronger the upward motion are, the greater cloud ice particles content in the higher troposphere are.
     (5) The characteristics of vortex precipitation in TRMM are: in the horizontal direction, vortexprecipitation regions locate in the north and northeast of vortex, precipitation clouds develop fromisolated cloud block to a precipitation rain band in the northeast-southwest direction, the stratiformrain surrounded convective rain in the rain band, the stratiform sample are up to90%in the whole rainband, the range of rainfall intensity is mainly concentrated in the0-5mm·h-1, smaller rain(<10mm·h-1)are more than60%of total precipitation, convective precipitation mainly concentrate in the range of10-20mm·h-1, with more than30%contribution to the total precipitation, with the development of convective precipitation, the contribution to the total rainfall of larger precipitation intensity(>30mm·h-1) in the convective precipitation spectrum increase. In the vertical direction, the maximum raintop height can reach17km in the mature stage of vortex, the instantaneous intensity of heavyprecipitation center is over50mm·h-1, appear in the5km, it is obvious stratiform rain surroundconvective rain structure, the rain top basically maintain near10km height in the development andreduced stage of southwest, and the bright band structure of stratiform rain is clear near5km Whenvortex develop again, the precipitation intensity in the whole rain band strengthen again, but the raintop height and precipitation intensity are far less than vortex mature stage, and it is obvious spiral rainband structure near heavy precipitation center in the vortex region.
     (6) TRMM data obtained the average precipitation profile feature of vortex are: convective precipitationprofiles can reflect the development and evolution of vortex precipitation, in the mature stage,precipitation increased significantly in the upper troposphere(10-18km), many precipitation particlesare uplifted to the high-level to form the solid precipitation particles. The maximum rainfall valueappear below6km, it explains coagulation growth process in clouds play a major role in thisprecipitation process. Convective and stratiform rain have increasing also reducing with altitude raisedbelow5km, it may has relation with the micro-physical processes in that height and the complexterrain of Sichuan region. The latent heat profile feature of vortex is: the maximum latent heat releasealways appear near7km height in four stages. The latent heat release strongest in each layer in themature stage of vortex, it increases rapidly to a peak value below7km, close to8000K h-1, thendecreases rapidly in the range of7-9km, the latent heat release has a slight rebound in the range of9-12km with altitude increasing, and increase rapidly again above14km, these change may be relatedto the phase change process in the cloud(top). The total latent heat release value in each layer at theother stage have little difference, the total value in vortex mitigation phase is slightly lower than theother two phases.
引文
[1]陶诗言等.中国之暴雨[M].北京:科学出版社,1980:36.
    [2]丁一汇.高等天气学(第二版)[M].北京:气象出版社,2005:431.
    [3]王作述等.一次西南低涡暴雨的数值试验研究[C].暴雨科学、业务试验和天气动力学理论的研究.北京:气象出版社,1996.257-267.
    [4]卢敬华.西南低涡概论[M].北京:气象出版社,1986.
    [5]钱正安,顾弘道,颜宏等.四川“81.7”特大暴雨和西南涡的数值模拟[J].气象学报,2007,48(4):415-423.
    [6]程麟生,郭华英“.81.7”四川暴雨期和西南涡生成和发展的涡源诊断[J].大气科学,1988,12(1):18-26.
    [7]赵思雄,傅慎明.2004年9月川渝大暴雨期间西南低涡结构及其环境场分析[J].大气科学,2007,31(6):1059-1075.
    [8]宗志平,张小玲.2004年9月2-6日川渝持续性暴雨过程初步分析[J].气象,2005,31(5):37-41.
    [9]何光碧,陈静等.低涡与急流对“04.9”川东暴雨影响的分析与数值模拟[J].高原气象,2005,24(6):1012-1023.
    [10]陈忠明,闵文彬等.一次持续性强暴雨过程的平均特征[J].应用气象学报,2006,17(3):273-279.
    [11]顾清源,肖递祥,祁生秀.西南低涡生成过程中形成“7.8达州大暴雨”的机理分析[J].四川气象,2005,25(3):1-4.
    [12]李跃清等.西南低涡暴雨的边界层诊断分析[J].四川气象,1993(3):21-25.
    [13]赵平等.西南低涡结构及潜热加热分析[J].成都气象学报,1991(2):16-21.
    [14]李国平,刘行军.西南低涡暴雨的诊断的湿位涡诊断分析[J].应用气象学报,1994,5(3):354-360.
    [15]陈栋,李跃清,黄荣辉.在“鞍”型大尺度环流背景下西南低涡发展的物理过程分析及其对川东暴雨发生的作用[J].大气科学,2007,31(2):185-201.
    [16]陈忠明,徐茂良,闵文彬等.1998年夏季西南低涡活动与长江上游暴雨[J].高原气象,2003,22(2):162-167.
    [17]姜勇强,张维桓,周祖刚等.2000年7月西南低涡暴雨的分析与数值模拟[J].高原气象,2004,23(1):55-61.
    [18]刘富明,杜文杰.触发四川盆地暴雨的高原涡的形成和东移[M].下半年青藏高原对我国天气的影响.北京:科学出版社,1987.123–134.
    [19]缪强.青藏高原天气系统与背风坡浅薄天气系统耦合相互作用的特征分析[J].四川气象,1999,19(3):18–22.
    [20]陈忠明,闽文彬等.高原涡与西南涡耦合作用的个例诊断[J].高原气象.2004,23(1):75-80.
    [21]肖红茹,顾清源等.一次大暴雨过程中高原低涡与西南低涡相互作用机制探讨[J].暴雨灾害.2009,28(1):14-20.
    [22]周春花,顾清源,何光碧.高原涡与西南涡相互作用暴雨天气过程的诊断分析[J].气象科技.2009.37(5),538-544.
    [23]陈忠明,黄福均,何光碧.热带气旋与西南低涡相互作用的个例研究[J].大气科学,2002,26(3):353-360.
    [24]周国宾,沈桐立,韩余.重庆“9.4”特大暴雨天气过程数值模拟分析[J].气象科学,2006,26(5):572-577.
    [25]李国平.青藏高原动力气象学(第二版)[M].北京:气象出版社,2007:23-26.
    [26]彭新东,程麟生.高原东侧低涡切变线发展的个例数值研究:Ⅱ中尺度数值模拟[J].兰州大学学报(自然科学),1994,30(1):124-131.
    [27]解明恩,琚建华,卜玉康.西南低涡Ekman层流场特征分析[J].高原气象,1992,11(2):144-151.
    [28]邹波,陈忠明.一次西南低涡发生发展的中尺度诊断[J].高原气象,2000,19(2):141-149
    [29]琚建华,卜玉康,解明恩.西南低涡大气边界层结构的数值模拟Ⅰ:Ekman流场特征分析[J].云南大学学报(自然科学版),1993,15(4):351-359.
    [30]卜玉康,琚建华,先泽进.西南低涡大气边界层结构的数值模拟Ⅱ[J].云南大学学报(自然科学版),1993,15(4):360-366.
    [31]韦统建,薛建军.影响江淮地区的西南低涡中尺度结构特征[J].高原气象,1996,14(4):456-463.
    [32]陈忠明,谬强,闵文彬.一次强烈发展西南低涡的中尺度结构分析[J].应用气象学报,1998,9(3):273-282.
    [33] Wang Wei,Kuo Ying-hua,Thomas T W.A diabatically driven mesoscale vortex in the lee of the TibetanPlateau[J].Mon Wea Rev,1993,121:2542-2561.
    [34]顾清源,周春花等.一次西南低涡特大暴雨过程的中尺度特征分析[J].气象,2008,34(4):39-47.
    [35]胡燕萍,肖刚等.“2004.7”沙澧河流域特大暴雨成因分析[J].气象,2005(12):32-35.
    [36]李世刚,梁涛等.“07.5”湖北大暴雨的中尺度系统及降水成因分析[J].暴雨灾害,2007(03):230-235.
    [37]康岚,冯汉中,屠妮妮等.一次川渝大暴雨中尺度分析[J].气象,2008,34(10):40-49.
    [38]李明,张涛,魏杰平.2008年初夏孝感一次大暴雨天气过程的分析与诊断[J].暴雨灾害,2009,28(1):51-57.
    [39]张腾飞,张杰,马联翔.一次西南涡影响云南强降水过程分析.[J].气象科学,2006,26(4):376-383.
    [40]董光英,梁涛,汪高明,等.一次西南涡东移诱发的罕见暴雨诊断分析.暴雨灾害[J].2009,28(3):229-234.
    [41]傅慎明,赵思维等.一类低涡切变型华南前汛期致洪暴雨的分析研究[J].大气科学,2010,34(2):235-252.
    [42]陈忠明,刘富明.“93.7.29”长江上游突发性特大暴雨过程研究[J].四川气象,1999(3):1-5.
    [43]赵思雄,傅慎明.2004年9月川渝大暴雨期间西南低涡结构及其环境场分析[J].大气科学,2007,31(6):1059-1075.
    [44]李德俊,李跃清等.利用TRMM卫星资料对“07.7”川南特大暴雨的诊断研究[J].暴雨灾害,2009,28(3):235-240.
    [45]李德俊,李跃清等.基于TRMM卫星探测对宜宾夏季两次暴雨过程的比较分析[J]气象学报,2010,68(4):559-568.
    [46] Short D A,Nakamura K., TRMM radar observations of shallow Precipitation over the tropicaloceans[J]. J. Climate,2000,13(23):4107-4124.
    [47] Schumacher C,Houze R A.Stratiform rain in the tropics as seen by the TRMM precipitation radar [J].JClimate,2003,16(11):1739-1756.
    [48] CHRISTOPHER S Bretherton,MATTHEW E Peters,LARISSA E Back.Relationships between watervapor path and precipitation over the tropical oceans[J].J Climate,2004,17(7):1517-1528.
    [49]李锐,傅云飞,赵萍.利用热带测雨卫星的测雨雷达资料对1997/1998年El Nino后期热带太平洋降水结构的研究.大气科学[J].2005,29(2):225-235.
    [50] Lonfat M,Marks F D and Chen S. Characterization of the rain distribution in tropical cyclones usingTRMM/TMI-PR.AGU2000Spring Meeting,Wshington,D.C.,May30-June3,2000.Supplement toEOS[J].Transactions,American Geophysical Union,81(19): S237-S238, H42B-162000.
    [51] Lee T F,Turk F J,Hawkins J,et al. Interpretation of TRMM TMI Images of Tropical Cyclones[J].EarthInteractions,2002,6(3):1-17.
    [52]丁伟钰,万齐林,端义宏.TRMM降水率资料的三维变分同化及其对“杜鹃”(0313)台风预报的改进[J].大气科学,2005,29(4):600-608.
    [53]牛晓蕾等, TRMM资料分析热带气旋的降水与水汽、潜热的关系[J].热带气象学报.2006,22(2):113-120.
    [54]毛冬艳,程明虎.用TRMM资料研究1999年Sam台风[J].气象科技,2001,29(2):37-40.
    [55]傅云飞,刘栋,王雨等.热带测雨卫星综合探测结果之“云娜”台风降水云与非降水云特征[J].气象学报,2007,65(3):316-328.
    [56]何会中,程明虎,周凤仙.0302号(鲸鱼)台风降水和水离子空间分布的三维结构特征[J].大气科学,2006,30(3):491-503.
    [57]傅云飞,宇如聪,崔春光等.基于热带测雨卫星探测的东亚降水云结构特征的研究[J].暴雨灾害,2007,26(1):9-20.
    [58]郑媛媛,傅云飞,刘勇等.热带降水测量卫星对淮河一次暴雨降水结构与闪电活动的研究[J].气象学报.2004,62(6):790-802.
    [59]何文英,陈洪滨.TRMM卫星对一次冰雹降水过程的观测分析研究[J].气象学报,2006,64(3):364-377.
    [60]傅云飞,宇如聪,徐幼平等,TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报,2003,61(4):421-431.
    [61]赵姝慧,周毓荃.冷锋云系降水中尺度结构的一次TRMM卫星观测和特征分析[J].南京气象学院学报.2009,32(1):100-107.
    [62] Adler R F,G J Huffman,D T Bolvin,et al.Tropical rainfall distributions determined using TRMMcombined with other rain gauge information[J].J Appl Meteor,2000,39(6):207-223.
    [63]冯锦明,刘黎平等.青藏高原地面Doppler雷达与TRMM星载雷达测云比较[J].高原气象,2001,20(4),345-353.
    [64] Fu Y, G Liu, G. Wu, et al. Tower mast of precipitation over he cent ral Tibetan Plateau summer [J].Geophysi Res Lett,2006, VOL.33, L05802.
    [65]傅云飞,李宏图,自勇. TRMM卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象,2007,26(1):98-106.
    [66]傅云飞,刘奇等.基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J].高原山地气象研究,2008,28(1):8-17.
    [67] Fu Yunfei, Liu Guosheng, Possible Misidentification of rain Type by TRMM PR over TibetanPlateau[J]. Journal of Applied Meteorology and Climatology,2007,46(5):667-672.
    [68]白爱娟等.TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J].地球物理学报,2008,51(3):704-714.
    [69] Yueqing Li, Dejun Li, Song Yang et al, Characteristics of the precipitation over the eastern edge ofthe Tibetan Plateau[J]. Meteorol Atmos Phys,2010,106(1-2):49-56.
    [70] Simpson J,Adler R F,North G R.A proposed Tropical Rainfall Measuring Mission(TRMM) satellite[J].Bull Amer Meteor Soc,1988,69:278-295.
    [71] Tao W K,Simpson J,Sui C H,et al.Retrieval algorithms for estimating the vertical profiles of Latentheat release:their applications for TRMM[J].J.Meteor.Soc.,Japan,1993,71:685-700.
    [72] Olson W S,Bauer P,Viltard N E,et al.A melting-layer model for passive/active microwave remotesensing applications[J].J.Appl.Meteorol.,2001,40:1145-1163.
    [73] KawanishiT,Kuroiwa H,Ishido Y,et al On-orbit test and calibration results of TRMM precipitationradar[J]. In:Proceedings of SPIE on Microwave Remote Sensing of the Atmosphere and EnvironmentBeijing China,1998.94-101.
    [74] Kummerow C,Barnes W,Kozu T,Shiue J,Simpson J.The Tropical Rainfall Measuring Mission(TRMM)Sensor Package[J]. J Atmos Oceanic Technol,1998,15(3):809-817.
    [75] Kozu T, Iguchi T,Meneghini R, et al Preliminary test results of a rain rate profiling algorithm for theTRMM precipitation radar[J]. In:Proceedings of SPIE on Microwave Remote Sensing of the Atomophereand Environment.Beijing China,1998.86-93.
    [76] Awaka J,Iguchi T,Okamoto K.Early results on rain type classification by the Tropical RainfallMeasuring Mission(TRMM) precipitation radar[J].Por.8thURSI commission F OpenSymp,Averior,Portugal,1998.134-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700