用户名: 密码: 验证码:
钢管混凝土柱在地震作用下的累积损伤性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗震设防目标之一就是确保结构在地震作用下不会倒塌,尽量减少人员的伤亡和财产的损失。地震时,结构受到低周往复荷载的作用,使得结构构件的塑性铰区域产生不可恢复的塑性变形。当地震烈度远远超过了结构的抗震设防烈度时,结构会发生首次超越破坏;大部分结构从产生微小的局部破裂到全部倒塌都需要一个过程,在弹塑性变形下结构往复循环几次乃至十几次才会倒塌,也就是发生累积损伤破坏。因此,需要考察地震后结构及其构件的累积损伤程度,判断是否能够继续使用或者是修复后可以继续使用这些结构,还是需要推倒重建。这项工作对于保障人民的生命和财产安全,减少地震损失具有重要的意义。
     钢管混凝土作为组合结构的一种组合设计形式,具有良好的力学性能和抗震性能,在地震区建筑中得到了广泛应用。对钢管混凝土抗震性能的研究一直是国内外的研究热点,许多研究者通过抗震试验对钢管混凝土的抗震性能进行了探讨。但是大部分研究者的侧重点都是放在钢管混凝土的承载力、滞回性能以及建立滞回模型的研究上,很少考虑低周往复荷载下钢管混凝土的疲劳损伤,以及由于疲劳损伤的累积而导致的钢管混凝土的累积损伤破坏。本文针对钢管混凝土压弯构件在低周往复荷载下的力学性能和疲劳累积损伤问题进行了较为系统的试验研究和理论分析。
     试验结果表明钢管混凝土具有良好的抗震滞回性能和耗能能力,即使钢管混凝土产生了较大的变形也不会发生严重的承载力退化现象。钢管混凝土柱滞回曲线的荷载和刚度退化随着侧移率的增大而加快,说明在较大的变形条件下,往复变形一次对钢管混凝土造成的损伤也大;随着侧移率的减小,钢管混凝土的滞回耗能能力明显增强。应变分析也表明,钢管混凝土柱塑性铰区的钢管在屈服后随着侧移率的增大应变增长迅速;而在等幅循环荷载的作用下,钢管的应变增长缓慢,但永久塑性变形随着循环次数的增加在不断增长。试验研究表明,承受低周往复荷载作用的钢管混凝土柱在破坏时钢管断裂处的应变并没有达到单调拉伸时的极限应变,钢管是在拉应力和压应力的反复作用下产生了疲劳损伤,当钢管的损伤累积到一定程度时,最终发生疲劳断裂。
     根据试验结果,本文建立了反映钢管混凝土柱低周疲劳寿命的改进Manson-Coffin关系模型,得出了钢管混凝土柱变形和疲劳寿命的关系曲线;与试验数据相比,理论曲线能够比较合理地反映这几类钢管混凝土柱在不同变形条件下的疲劳寿命。在试验数据的基础上,建立了基于循环耗能的低周疲劳模型;与试验得出的耗能能力系数相比,耗能能力曲线能够较准确的反映钢管混凝土在低周往复荷载作用下,由于疲劳损伤的累积而导致的力学性能的退化。综合Miner的线性累积损伤理论和钢管混凝土柱的循环耗能规律,建立了钢管混凝土柱的基于耗能的改进线性累积损伤模型;与Miner模型的评估结果相比,基于每次循环耗能所得出的钢管混凝土柱的累积损伤指数具有更高的精度,特别是对于承受变幅位移的钢管混凝土柱来说,由模型可以得到等合理地损伤指数,说明这种累积损伤模型能够用于地震作用后的钢管混凝土的累积损伤评估。
     基于连续介质损伤力学的基本理论和钢管混凝土的弹塑性分析,建立了钢管混凝土构件在单调荷载和低周往复荷载下的简化损伤梁单元模型。钢管混凝土构件被简化成由中间的弹性梁和两端的集中耗能铰构成的模型,引入损伤参数,分别描述钢管混凝土两端耗能铰的损伤和轴向损伤过程,推导了考虑损伤参数的钢管混凝土构件的柔度矩阵和应变余能方程,给出了钢管混凝土损伤构件在单调荷载和低周往复荷载下的损伤演化过程。该损伤模型形式简单,具有明确的物理和力学意义,比较适合用于地震作用下的钢管混凝土柱的损伤分析。
The main purpose of seismic design is to prevent structures from collapse during earthquake to reduce loss of lives and property. Under seismic actions, the induced unrecoverable deformation in critical regions of structures could be attributed to plasticity caused by repeated cyclic loading in the post-yield strain range. There are usually two damage criteria for collapsed structures after earthquake, one is the first passage failure, and the other is cumulative damage failure. Structure collapse is under control of the first criterion when earthquake intensity is well beyond the seismic design level. But for most of collapsed structures, failure is a process from local damage to progressive collapse after a number of cycles. The cumulative damage process can be described as: When a structural is subjected to cyclic loading, it can be assumed that every cycle, whose amplitude exceeds certain threshold amplitude, will cause microstructural changes that bring the structure closer to a state of failure. Although these microstructural changes may not alter visibly the overall response, they constitute damage that accumulates from cycle to cycle. Once the accumulated damage exceeds a specific limit value, failure will take place. So it’s necessary to investigate the performance of post-earthquake structures. Usually it is related with some ranges of damage, such as elastic limit, minor damage, repair limit, collapse prevention, et al. This kind of research is quite important for assuring life and property safety.
     As a type of composite structure, concrete filled steel tubes (CFT) are becoming more widely used in structural applications due to the fact that higher compressive strength and favorable ductile performance is achieved through composite action that is mobilized between the steel tube and concrete core. To investigate the seismic behavior of CFT members, numerous cyclic tests have been carried out in the past decade. Nearly all of them are based on standard loading protocols to obtain the cyclic capacity without considering the effects of amplitude and number of cycles on damage accumulation. In this dissertation, the primary focus is on low-cycle fatigue behaviors and the cumulative damage of CFT columns under simulated seismic loading is studied in detail.
     Experiments show that CFT columns exhibit stable hysteresis behavior and energy-dissipation capacity. There is no seriously degradation in stiffness, strength, and ductility for CFT columns designed with code even under large plastic deformation. But for CFT columns under cyclic loading with constant amplitude, degradation in hysteresis curves under larger lateral deformation become more quickly, and energy-dissipation capacity decreases too. It proves that larger deformation at CFT columns exerts more damage on it. Test data from strain gauge shows that strain grows quickly at plastic hinge area of CFT columns when drift ratio increases. The unrecoverable plastic strain of steel tube at the maximum deformation increased gradually as the number of cycles adds when under symmetrical constant cyclic loading. Test data reveals that the maximum strain of steel tube reaching fracture state is much lower than that of same kind of steel under monotonic test. The reason is that cyclic tension and comparison stress on steel tube have exerted fatigue damage on it. As damage is cumulated to certain state, the steel tube of CFT columns is fractured by tension.
     Based on the test, fatigue lives of CFT columns with thicker steel tube and thinner ones are quite different at small deformation. Experimental results showed that CFT specimens with thicker steel tube perform much better than the counterpart specimens with thinner steel tube corresponding to small deformation, whereas the opposite trend was true for cyclic tests under larger deformation. The cyclic drift amplitude has a significant effect on the energy dissipation capacity of CFT columns. Increasing the plastic drift amplitude reduces the energy dissipation capacity of the specimens. The imposed loading path has an effect on the total energy absorption capacity of CFT columns, but it has marginal effect on the cumulative damage of the column. The damage per cycle on CFT columns varies even if the component is subjected to constant drift amplitude. Test results indicate that a linear relationship exists for the energy-based damage parameter and cycle number in a log-log coordinate space. A fatigue life equation was obtained for CFT columns based on the Manson-Coffin relationship. The curves about deformation and fatigue life are gained with the new model. Comparative study showed that the proposed equation provides a reasonable estimation to the fatigue lives of testing results from literature with acceptable conservatism in most of the cases. The cumulative damage behaviors are studied with the famous damage model Miner’s rule. Finally a modified fatigue life equation and an energy based cumulative damage model are obtained for CFT columns. Compared with other damage models, the proposed model has the advantage of being simple to apply and permits seismic performance assessment for any arbitrary loading history.
     Based on the concepts of continuum damage mechanics and standard inelastic analysis of CFT columns, a lumped damage model is provided for modeling the hysteretic behavior of CFT columns. The CFT columns are modeled as the assemblage of an elastic beam-column and two inelastic hinges. Three sets of damage variables, which measure the state of damage of the member, are introduced. An expression for the flexibility matrices and the complementary strain energy of a member are proposed as a function of these internal variables. The damage evolution laws for damaged CFT member under monotonic loading and cyclic loading are formed. The model is verified by simulating experimental data, and satisfying results are gained. The model is welldefined in physics and mechanic, and also it is very simple in nature which makes it convenient for damage analysis of CFT columns.
引文
[1]蔡绍怀.钢管混凝土结构的计算与应用.北京:中国建筑出版社.1989:1-15.
    [2]钟善桐.钢管混凝土结构.哈尔滨:黑龙江科学技术出版社.1994:1-29.
    [3]韩林海.钢管混凝土结构.北京:科学出版社.2000:1-20.
    [4]蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社, 2003, 4-5
    [5]韩林海.钢管混凝土结构-理论与实践.北京:科学出版社.2004:1-63.
    [6] M. Tomii, K. Sakino, Y. Xiao, et al.. Earthquake Resisting Hysteretic Behavior of Reinforced ConcreteShort Columns Confined by Steel Tube [A]. Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures [C] , Harbin , China , August 1985 ,119~125.
    [7] Y. Xiao, M. Tomii, K. Sakino. Experimental Study on Design Method to Prevent Shear Failure of Reinforced Concrete Short Circular Columns by Confining in Steel Tube [J]. Transactions of Japan Concrete Institute, Vol. 8, 1986, 535~542.
    [8]肖岩.套管钢筋混凝土柱结构的发展和展望[J].土木工程学报,2004,37(4):8-12,69.
    [9] Y. Xiao, W.H. He, X.Y. Mao, et al.. Confinement Design of CFT Columns for Improved Seismic Performance. [C] Proceedings of the International Workshop on Steel and Concrete Composite Construction (IWSCCC-2003), Taipei, R. China, October 8-9, 2003, pp.217-226.
    [10]肖岩,何文辉,毛小勇.约束钢管混凝土柱的开发研究[J].建筑结构学报. 2004,25(6):59-66.
    [11] Y. Xiao, W.H. He and K.G. Choi. Confined Concrete Filled Tubular (CCFT) Columns [J]. ASCE Journal of Structural Engineering, Vol.131, No.3, March 2005, pp.488-497.
    [12] X.Y. Mao and Y. Xiao. Seismic Behavior of Confined Square CFT Columns [J].Vol.28, No.10, August, 2006, pp.1378-1386.
    [13]蔡绍怀.我国钢管混凝土结构技术的最新进展.土木工程学报.1999, 32(8):16-26.
    [14]韩林海,贺军利,吴海江,韩庆发.圆形截面钢管混凝土柱耐火性能的实验研究[J].土木工程学报.2000,33(3):31-36.
    [15]韩林海,徐蕾.带保护层方钢管混凝土柱耐火性能试验研究[J].土木工程学报.2000,33(6):69-75.
    [16] Lin-Hai Han. Fire Resistance of Concrete Filled Steel Tubular Columns. Advanced in Structural Engineering.1998, 2(1):35-39.
    [17]中国工程建设标准化协会标准. CECS28:90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [18] R.W. Furlong. Design of Steel-Encased Concrete-Beam Column. Journal of Structure Division. ASCE, 1968, 94(ST1): 267-281.
    [19] J. Garder, R. Jacobson. Structural Behavior of Concrete Filled Steel Tubes. ACI Journal of Structure Dividion.1967, No. 64-68:404-413.
    [20] N.J. Garder. Use of spiral welded steel tubes in pipe columns [J]. Journal of American Concrete Institute, 1968, 65(11): 937-942.
    [21] Tarics, A.G. (1972). Concrete-filled steel columns for multistory construction. Modern Steel Constr., 12: 12-15.
    [22]陈宝春.钢管混凝土拱桥(第二版).北京:人民交通出版社. 2007:1-34.
    [23] Architectural Institute of Japan (AIJ)., 1997. Recommendations for design and construction of concrete filled steel tubular structures [S]. Architectural Institute of Japan (AIJ), Tokyo, Japan.
    [24] Eurocode 4, 1994. Design of composite steel and concrete structures, Part1. 1:General rules and rules for buildings(together with United Kingdom National Application Document)[S]. DD ENV 1994-1-1:British Standards Institution,London W1A2BS.
    [25] ACI 318-99, 1999. Building code requirements for structural concrete and commentary[S].Farmington Hills(MI),American Concrete Institute, Detroit, USA
    [26] AISC-LRFD, 1999. Load and resistance factor design specification for structural steel buildings , 2nd ed. [S]. American Institute of Steel Construction(AISC), Chicago, USA.
    [27]中华人民共和国国家建筑材料工业局标准. JCJ 01-89.钢管混凝土结构设计与施工规程[S].上海:同济大学出版社,1989.
    [28]中国人民共和国电力行业标准. DL/T 5085-1999.钢-混凝土组合结构设计规程[S].北京:中国电力出版社,1999.
    [29]中华人民共和国国家标准. GJB 4142-2000.战时军港抢修早强型组合结构技术规程[S].北京:中国人民解放军总后勤部,2000
    [30]中国工程建设标准化协会标准. CECS159:2004.矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2006.
    [31]中国工程建设标准化协会标准. CECS188:2005.钢管混凝土叠合柱结构技术规程[S].北京:中国计划出版社,2006.
    [32] V.K. Kloppel and W. Goder. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula. Der Stahlbau, 1957a, 26(1): 1-10.
    [33] V.K. Kloppel and W. Goder. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula. Der Stahlbau, 1957b, 26(2): 44-50.
    [34] J. Gardner and E.R. Jacobson. Structural behavior of concrete filled steel tubes. ACI Structural Journal, 1967, 64(7): 404-413.
    [35] R.W. Furlong. Strength of steel-encased concrete beam-columns. Journal of Structure Division, ASCE, 1967, 93(ST5): 113-124.
    [36] R.B. Knowles and R. Park. Strength of concrete filled steel tubular columns. Journal of Structure Division, ASCE, 1969, 95(ST12): 2565-2587.
    [37] R.B. Knowles and R. Park. Axial load design for concrete filled steel tubes. Journal of Structure Division, ASCE, 1970, 96(ST10): 2125-2153.
    [38] SSRC Task Group 20. A specification for the design of steel-concrete composite columns. Engineering Journal, AISC, 1979, 16(4): 101-145.
    [39] M. Tomii, K. Yoshimaro, and Y. Morishita. Experimental studies on concrete filled steel tubular stub column under concentric loading. Proceedings of the International Colloquium on Stability of Structures under Static and Dynamic Loads, SSRC/ASCE. Washington, USA, 1977: 718-741.
    [40] M. Tomii and K. Sakino. Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns [J]. Transaction of AIJ, No. 275, Tokyo, Japan, 1979a: 55-63.
    [41] M. Tomii and K. Sakino. Elasto-plastic behavior of concrete filled square steel tubular beam-columns [J]. Transaction of AIJ, No. 280, Tokyo, Japan, 1979b: 111-120.
    [42] K. Masuo, M. Adachi, K. Kawabata, M. Kobayashi and M. Konishi. Buckling behavior of concrete filled circular steel tubular columns using light-weight concrete. Proceedings of the Third International Conference on Steel-Concrete Composite Structures, ASCCS, Fukuoka, Japan, 1991: 95-100.
    [43] L.K. Luksha and A.P. Nesterovich. Strength testing of larger-diameter concrete filled steel tubular member. Proceedings of the Third International Conference on Steel-Concrete Composite Structures, ASCCS, Fukuoka, Japan, 1991: 67-70.
    [44] H.B. Ge and T. Usami. Strength of concrete-filled thin-walled steel box columns: experiment. Journal of Structural Engineering, 1992, 118(11): 3006-3054.
    [45] H.B. Ge and T. Usami. Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research, 1994, 30: 607-612.
    [46]汤关祚,招柄泉,竺惠仙,沈希明. .钢管混凝土基本力学性能研究.建筑结构学报.1982,13(1):13-31.
    [47]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算.建筑结构学报,1984,5(6):13-29.
    [48]蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算.建筑结构学报,1985a,6(1):32-40.
    [49]蔡绍怀,顾万黎.钢管混凝土抗弯强度的试验研究.建筑技术通讯(建筑结构),1985b,(3):28-29.
    [50]李继读.钢管混凝土轴压承载力的研究.工业建筑,1985,(2):25-31.
    [51]顾维平,蔡少怀,冯文林.钢管高强混凝土长柱性能与承载力的研究.建筑科学.1991(3):3-8.
    [52]蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算[J].建筑结构学报,1985,6(4):32-41.
    [53]吕西林,余勇,陈以一,K. Tanak,S. Sasaki.轴心受压方钢管混凝土短柱的性能研究:I试验.建筑结构,1999,10:41-43.
    [54]张素梅,周明.方钢管约束下混凝土的抗压强度.哈尔滨建筑大学学报(增刊),1999,(3):14-18.
    [55]谭克峰,蒲心诚,蔡绍怀.钢管超高强混凝土的性能和极限承载力研究.建筑结构学报,1999,20(1):10-15.
    [56]谭克峰,蒲心诚,蔡绍怀.钢管超高强混凝土长柱及偏压柱的性能和极限承载力研究.建筑结构学报,2000,21(2):12-19.
    [57]余志武,丁发兴,林松.钢管高性能混凝土短柱受力性能研究.建筑结构学报,2002,23(2):41-47.
    [58]王力尚,钱稼茹.钢管高强混凝土柱轴心受压承载力试验研究.建筑结构,2003,37(7):46-49.
    [59] M. Wakabayashi. Review of Research on CFST in Japan, Proceeding of the 2nd International Specialty Conference on CFSTS, Harbin, 1989.
    [60]杨有福,韩林海,范喜哲.钢管混凝土动力性能研究现状.哈尔滨建筑大学学报,2000,33(5):40-46.
    [61]卢辉.钢管混凝土动力性能研究新进展.世界地震工程,2007,23(4):119-128.
    [62] Y. Ichinohe, T. Matsutani, M. Nakajima., et al. Elasto– plastic behavior of concrete filled circular columns. In: Proceedings of the Third International Conference on Steel– Concrete Composite Structures. 1991, 131– 136.
    [63] T. Yamakawa, K. Sakino, Y.Yamada. A study on elastoplastic of R/C short columns doubly confined in steel tube and hoops. In: Proceedings of the Third International Conference on Steel– Concrete Composite Structures. 1991, 665–670.
    [64] M.A. Bradford. Design strength of slender concrete filled rectangular steel tubes. ACI Structure Journal.1996, 93(2):229-235.
    [65] S.M. Park, B.G. Choi, Y.K. Tae. An experimental study on behavior of steel– tube columns filled with reinforced concrete connected to H– Beams. In: Proceedings of the Fifth Pacific Structural Steel Conference. 1998, 937– 942.
    [66] T. Fujinaga, C. Matsui, K. Tsuda, Y. Yamaji. Limiting Axial Compressive Force and Structural Performance of Concrete Filled Steel Circular Tubular Beam-Column. Proceedings of the fifth Pacific Steel Conference. Seoul, Korea, 1998: 979-984.
    [67] P.F. Boyd, W.F. Cofer, D.I. Mclean. Seismic performance of steel-encased concrete columns under flexural loading. ACI Structural Journal.1999, 92(3):355-364.
    [68] K. Lahlou, M. Lachemi, P.C. Aitein. Confined high-strength concrete under dynamic compressive loading [J]. Journal of Structural Engineering, ASCE, 1999, 125(10): 1100-1108.
    [69] A. Elremaily, A. Azizinamini. Behavior and Strength of Circular concrete-filled tube columns. Journal of Constructional Steel Research, 2002,58(12):1567-1591.
    [70] Amir Fam, Frank S. Qie, Sami Rizkalla. Concrete-Filled Steel Tubes Subjected to Axial Compression and Lateral Cyclic Loads. ASCE Journal of Structural Engineering, 2004, 130(2), 631-640.
    [71] Julia Marson, Michel Bruneau (2004).“Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail,”Journal of Bridge Engineering, ASCE, Vol. 9(1), 14-23.
    [72] M. Elchalakani, X.L. Zhao, R. Grzebieta. Concrete-filled steel circular tubes subjected to constant amplitude cyclic pure bending [J]. Engineering Structures, 2004, 26: 2125-2135.
    [73]姜维山等.钢管混凝土柱压弯剪试验与有限环分析.第一届钢-混凝土组合结构年会资料,1987.
    [74]黄莎莎.钢管混凝土在反复周期水平荷载作用下滞后性能的研究[硕士学位论文].哈尔滨建筑工程学院,1987年.
    [75]陈肇元等.钢管混凝土柱作为防护结构构件的性能.科学研究报告集,1986.
    [76]程源等.钢管混凝土基本构件动力性能的试验研究.科学研究报告集,1986.
    [77]屠永清.钢管混凝土压弯构件恢复力特性的研究[D].哈尔滨建筑大学博士学位论文, 1994.
    [78]韩林海,陶忠,闫维波.圆钢管混凝土构件弯矩-曲率滞回特性研究[J].地震工程与工程振动,2000,20(3):50-59.
    [79]韩林海,陶忠,闫维波.圆钢管混凝土构件荷载-位移滞回性能分析[J].地震工程与工程振动,2001,21(1):64-73.
    [80] M.L. Lin, K.C. Tsai. Behavior of Double-Skinned Composite Steel Tubular Columns Subjected to Combined Axial and Flexural Loads. Proceeding of the First International Conference on Steel and Composite Structures, Pusan, Korea, 2001: 1145-1152.
    [81] M. Tomii and K. Sakino. Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shearing force and constant axial force. [J]. Transaction of AIJ, No. 281, Tokyo, Japan, 1979c: 81-92.
    [82] K. Sakino, M. Tommi. Hysteretic Behavior of Concrete Filled Square Steel Tubular Beam-Columns Failed in Flexure. Transaction of Japan Concrete Institute, 1981, 3:439-446.
    [83] K. Sakino, H. Ishibashi. Experimental Studies on Concrete Filled Square Steel Tubular Short Columns Subjected to Cyclic Shearing Force and Constant Axial Force. Transaction of the Architectural Institute of Japan (Tokyo), No.353, July 1985, pp:81-89.
    [84] Y. Morishita, M. Tommi. Experimental Study on Bond Strength between Square Steel Tubes and Encased Concrete Core under Cyclic Shearing Force and Constant Axial Force, Transaction of Japan Concrete Institute,1982,4:363-370.
    [85] C. Matsui, K. Keira, A. Kawano, et al. Development of concrete filled steel tubular structures with inner ribs. In: Proceedings of the Third International Conference on Steel– Concrete Composite Structures. 1991, 201-206
    [86] T. Okamoto, T. Maeno, Hisatoku, et al. A Design and construction practice of rectangular steel tube columns infilled with ultra– high strength concrete cast by centrifugal force. In: Proceedings of the Third International Conference on Steel– Concrete Composite Structures. 1991, 237-242
    [87] M.J.N. Priestley, F. Seible, Y. Xiao, et al. Steel jacket retrofit to improve shear strength of concrete columns. In: Proceedings of the Third International Conference on Steel– Concrete Composite Structures. 1991, 695–700.
    [88] J. Kawaguchi, S. Morino, H. Atsumi, S. Yamamoto. Strength deterioration behavior of concrete-filled steel tubular beam-column. Composite construction in steel and concrete II: Proceedings of an Engineering Foundation Conference, Trout Lodge, Potosi, Missouri, June 14-19, 1992: 825-839.
    [89] K. Nakanishi, T. Kitada, H. Nakai. Experimental study of deterioration of ultimate strength and ductility of damage concrete filled steel box column. In: Proceedings of the 4th ASCCS International Conference on Steel– Concrete Composite Structures. 1994, 127– 130.
    [90] K. Nakanishi, T. Kitada, H. Nakai. Experimental study on ultimate strength and ductility of concrete-filled steel columns under strong earthquake [J]. Journal of Constructional Steel Research, 1999, 51(3): 297-319.
    [91] Y.P. Sun, K. Sakino. Method of Improving the ductility of RC columns under high axial load by using steel tube. In: Proceedings of the 4th ASCCS International Conference on Steel– Concrete Composite Structures. 1994, 139– 142
    [92] T. Usami, H.B. Ge. Ductility of Concrete-filled steel box columns under cyclic loading. Journal of Structural Engineering, ASCE, 1994, 120(7):2021-2040.
    [93] H.B. Ge, T. Usami. Cyclic Tests of Concrete filled steel box columns. Journal of Structural Engineering, ASCE, 1996, 122(10):1169-1177.
    [94] T. Usami, H.B. Ge, K. Morishita. Pesudo-dynamic test of partially concrete– filled steel bridge pier models. In: International Conference Report. On Composite Construction-Conventional and Innovative, 1997, 627– 632.
    [95] H.B. Ge, K.A.S. Susantha, Y. Satake, T. Usami. Seismic demand predictions of concrete-filled steel box ccolumn [J]. Engineering Structures, 2003, 25 (3): 337-345.
    [96] T. Fujimoto, A. Mukai, I. Nishyama, E. Inai, et al.. Shear-flexural behavior of concrete filled steel tubular beam-columns using high strength materials [J]. Journal of Struct. Constr. Engng., 1998, 509(1): 167-174. (In Japanese)
    [97] A. Kawano, C. Matsui, T. Daidouji, Y. Ogawa. Experimental study on buckling behavior and dissipated energy of concrete-filled rectangular tubular members under cyclic axial loading [J]. Journal of Struct. Constr. Engng., 1998, 504(Jun.): 111-117. (In Japanese)
    [98] C.H. Kang, T.S. Moon. Behavior of Concrete-Filled Steel Tubular Beam-Column under Combined Axial and Lateral Forces. Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998:961-966.
    [99] X.L. Zhao, R.H. Grzebieta. Void-Filled SHS Beams Subjected to Large Deformation Cyclic Bending. Journal of Structural Engineering, ASCE, 1999, 125(9): 1020-1027.
    [100] A.H. Varma, J.M. Ricles, R. Sause, L.W. Lu. Seismic behavior and modeling of high-strength composite concrete-filled tube (CFT) Beam-columns [J]. Journal of Constructional Steel Research, 2002, 58(5 /8): 725-758.
    [101] H.L. Hsu, H.L. Yu. Seismic performance of concrete-filled tubed with restrained plastic hinge zones [J]. Journal of Constructional Steel Research, 2003, 59(5): 578-608.
    [102]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构,2000,21(2):2-11.
    [103]陶忠.方钢管混凝土构件力学性能若干关键问题的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2001.
    [104]游经团.矩形钢管混凝土压弯构件滞回性能研究[D].福州:福州大学硕士学位论文,2002.
    [105]杨有福.矩形钢管混凝土构件力学性能的若干关键问题研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003.
    [106] L-H. Han, Y-F. Yang and Z. Tao. Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading [J]. Thin-walled Structures, 2003, 41(9): 801-833.
    [107] C. Matsui, I. Mitani, A. Kawan, et al. AIJ design method for CFST structures. In: Concrete Filled Steel Tubes a Comparison of International Codes and Practices. Seminar by ASCCS, Insbruck, 1997.
    [108] T. Matsutani, J. Ishida, K. Katagihara, et al. A study on high-rise building with concrete-filled steel tubular columns. In: Proceedings of the Third International Conference on Steel - Concrete Composite Structures. 1991, 171– 176.
    [109] J.F. Hajjar, B.C. Gourley. A Cyclic Nonlinear Model for Concrete-filled tubes. I: Formulation. Journal of Structural Engineering, ASCE, 1997, 123(6):736-744..
    [110] J.F. Hajjar, B.C. Gourley, M.C. Olson. A Cyclic Nonlinear Model for Concrete-filled tubes. II: Verification. Journal of Structural Engineering, ASCE, 1997, 123(6):745-754.
    [111] S.P. Chiew, S.T. Lie, and C.W. Dai. Moment resistance of steel I-beam to CFT column connections [J]. Journal 0f Structural Engineering, ASCE, 2001, 127(10): 1164-1172.
    [112]陈洪涛,钟善桐,张素梅.钢管混凝土中混凝土的三向本构关系[J].哈尔宾建筑大学学报,2000,33(6): 13-16.
    [113]陈洪涛,钟善桐,张素梅.钢管混凝土结构双重非线性分析[J].哈尔宾建筑大学学报,2001, 34(6): 32-35.
    [114] A.S. SusanthaK, H.B. Ge, T. Usami. Uniaxial stress strain relationship of concrete confined by various shaped steel tubes [J]. Engineering Structures, 2001, 23(10): 1331-1347.
    [115] S.B.B. Aval, M.A. Saadeghvaziri, A.A. Golafshani. Comprehensive composite inelastic fiber element for cyclic analysis of concrete-filled steel tube column. Journal of Engineering Mechanics, ASCE, 2002, 128(4)428-437.
    [116]钟善桐.钢管混凝土结构.北京:清华大学出版社,2002.
    [117]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ 101-96).北京:中国建筑工业出版社,1997,9-23
    [118] Stain W. Zagajeski. Hyetertic behavior of reinforced concrete columns subjected to high axial and cyclic shear forces.见:陕西建筑设计院、西北电力设计院译.钢筋混凝土柱在大轴力及循环剪力作用下的滞后性能.西安, 1981.
    [119]中华人民共和国国家标准GB/T2975-1998.钢及钢产品力学性能实验取样位置及试样制备.北京:国家质量技术监督局,1998,6-7
    [120]中华人民共和国国家标准GB/T228-2002.金属材料室温拉伸实验方法.北京:中国计划出版社,2002,7-8
    [121] ATC-24(1992). Guidelines for cyclic seismic testing of components of steel structure. Helmut Krawinkler, Applied Technology Council, Redwood, CA.
    [122] F.E. Richart, A. Brandtzaeg, and R.J. Brown. The Failure of Plain and Spairally Reinforced Concrete in Compression. Bulletin 190. University of Illinois Engineering Experimental Station, Champaign, Ill., 1929.
    [123] S. A. Sheikh and S.M. Uzumeri. Analytical Model for Concrete Confinement in Tied Columns [J]. ASCE, 1 982, 108(12): 2703-2722.
    [124] R. Park, M.J. N. Priestley and W. D. Gill. Ductility of Square-confined Concrete Columns [J]. ASCE, 1982, 108(4): 929-951.
    [125]过镇海,王传志,张秀琴.混凝土的多轴强度试验和破坏准则研究.清华大学抗震抗爆工程研究室科学研究报告集,第六集,清华大学出版社,1996,1~51.
    [126]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].工业建筑,1985,(12):16-20.
    [127]过镇海,张秀琴,张达成,王如琦.混凝土的应力-应变全曲线的试验研究[J].建筑结构学报,1982,3(1):3-14.
    [128] J.B. Mander, M.J.N. Priestley, R. Park. Theoretical Stress-strain Model for Confined Concrete [J]. Journal of Structural Engineering, ASCE, 1988, 114(8):1804-1825.
    [129] S.M. Saatcioglu and S. R. Razvi. Strength and Ductility of Confined Concrete [J]. ASCE, 1992, (6): 1 590 - 1 607.
    [130]韩林海,钟善桐.利用内时理论描述钢管混凝土在复杂受力状态下核心混凝土的本构关系.哈尔滨建筑工程学院学报,1993,26(2):48-54.
    [131] K. Sakino and Y. Sun. Stress-Strain Curve of Concrete Confined by Rectilinear Hoop. Journal of Structural Construction Engineering of AIJ, No.461, July, 1994, 95~104.
    [132] M. Shams and M.A. Saadeghvaziri. Nonlinear Response of Concrete-Filled Steel Tubular Columns under Axial Loading. ACI Structural Journal, V.96, No.6, 1999, 1009~1017.
    [133] K. Susantha, Hanbin Ge, and Tsutomu Usami. Uniaxial Stress-Strain Relationship of Concrete Confined by Various Shaped Steel Tubes. Engineering Structures, V.23, 2001, 1331~1347.
    [134] T. Balan, F. Filippou and E. Popov. Hysteretic Model of Ordinary and High-Strength Reinforcing Steel. ASCE, Journal of Structural Engineering, Vol. 124, No.3, 1998, 228-297.
    [135] M. Nakashima and M. Wakabyashi. Analysis and Design Steel Braces and Braced Frames in Building Structures, in Stability and Ductility of Steel Structures under Cyclic Loading. Y. Fukumoto and G.C. Lee (Eds), CRC Press, Boca Raton, FL. 1992, 309-321.
    [136] E.P. Popov and H. Peterson. Cyclic Metal Plasticity: Experimental and Theory. Journal of Engineering Mechanic. ASCE, 1978, 104(6):1371-1388.
    [137] C. Shen, et al. A Two-Surface Model for Steel with yield Plateau. J. Struc. Engng/Warthquake Engng. JSCE, 1992, 8(4): 179-188.
    [138] C. Shen, et al. Cyclic Behaviour of Structural Steel, I: experiments, J. Engng Mech., ASCE, 1995, 121(11):1158-1164.
    [139] C. Shen, et al. Cyclic Behaviour of Structural Steel, II: theory, J. Engng Mech., ASCE, 1995, 121(11):1165-1172.
    [140]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社, 1985:58-59.
    [141] I. Nishiyama, S. Morino, K. Sakino, et al.. Summary of Research on Concrete Filled Structural Steel Tube Column system Carried out under the US-JapanCooperative Research Program on Composite and Hybrid Structures. Building Research Institute Research Paper No.147, ISSN 0453-4972, Japan, 2002.
    [142] H.K. Hilsdorf, C.E. Kesler. Fatigue strength of concrete under varying flexural stresses. ACI Journal, 1966, Proceedings Vol.63 (10): 1059-1076.
    [143]周志祥,钟明全.混凝土在变幅疲劳荷载下累积损伤理论的探讨[C].国家自然科学基金青年专家研讨会论文,结构工程科学,哈尔滨,1992:88-95.
    [144] M.A. Miner. Cumulative damage in fatigue. J. Appl. Mech., (1945), 12 (3): A159~A164.
    [145] M.S. Williams, R.G. Sexsmith. Seismic Damage Indicesfor Concrete Structures: A State-of-Art Review. Earthquake Spectra, 1995, 11(3): 320~349.
    [146] R. Tepfers, T. Kutti. Fatigue strength of plain, ordinary and lightweight concrete. ACI Journal, 1979, 76(5): 635-652.
    [147] H. Matsushita and Y. Toskumitsu. A study on compressive fatigue strength of concrete considered survival probability. Proc. of JSCE, 1979, 198: 127-138.
    [148]王瑞敏,赵国藩,宋玉普.混凝土的受压疲劳性能研究[J].土木工程学报,1991,24(4):38-47.
    [149]陈瑜海.用Weibull理论研究脆性材料的损伤概率[J].水利学报,1996,(6): 45-48.
    [150]张立翔,赵造东,李庆斌.混凝土P ? D?ε曲线及其特性研究[J].工程力学,2002,19(5):87-91.
    [151]赵造东,张立翔,王时越.水工混凝土S-N和P-S-N曲线特性研究[J].固体力学学报,2002,23(2):197-202.
    [152]赵造东,张立翔,王时越.谱荷载下剩余强度衰减的混凝土疲劳寿命可靠性分析[J].力学与实践,2002,24(1): 28-30.
    [153]高路彬.混凝土变形与损伤的分析[J] .力学进展,1993,23 (4):510-519.
    [154]水运工程混凝土试验规程[S].北京:人民交通出版社,1999.
    [155]结构试验方法标准[S].北京:中国建筑工业出版社,1997.
    [156] GB50204-92,混凝土结构工程施工及验收规范[S].沈阳:辽宁科技出版社,1992.
    [157]钢纤维混凝土试验方法[M].北京:中国计划出版社,1996.
    [158]宋玉普,赵东拂,谭丽坤.混凝土强度及疲劳寿命试验样本容量分析[J].大连理工大学学报,2002,42(4):464-466.
    [159]龚士弘,盛光敏.微钒钛高抗震建筑结构钢在抗震设计中的应用[J].钢铁钒钛,1995,16(4):8-13.
    [160] Y.J. Park and A.S. Ang. Mechanistic seismic damage model for reinforcedconcrete [J]. J. Struct. Eng., ASCE, 1985, 111(4): 722~739.
    [161] F.C. Filippou, E.P. Popov, and V.V. Bertero. Analytical studies of hysteretic behavior of RC Joints [J]. J. Struct. Div., ASCE, 1986, 112, 1605-1622.
    [162] T. Takeda, M. Sozen, and N.N. Nielsen. Reinforced concrete response to simulated earthquakes [J]. J. Struct. Div., ASCE, 1987, 96: 2557-2573.
    [163] M.S.L. Roufaicl and C. Meyer. Analytical modeling of hysteretic behavior of R/C frames [J]. J. Struct. Div., ASCE, 1987, 113(3), 429-443.
    [164] M.L. Wang and S.P. Shan. Reinforced concrete hysteresis model based on the damage concept [J]. Earthquake Engrg. and Struct. Dynamic, 1987, 15: 993-1003.
    [165] S.K. Kunnath, A.M. Reinhorn and Y.J. Park. Analytical modeling of inelastic seismic response of R/C structure [J]. J. Struct. Div., ASCE, 1990, 116(4), 996-1017.
    [166] Julio Florez-Lopez. Simplified model of unilateral damage for RC frames [J]. J. Struct. Engrg., ASCE, 1995, 121(12), 1765-1772.
    [167] P. Perera, A. Carnicero, E. Alarcon, et al.. A fatigue damage model for seismic response of RC structures [J]. Computers and Structures, 2000, 78: 293-302.
    [168] G.H. Powell and R. Allahabadi. Seismic damage prediction by deterministic methods: Concepts and procedures [J]. Earthquake Eng. Struct. Dyn., 1988, 16: 719-734.
    [169] H. Krawinkler and M. Zohrei. Cumulative damage in steel structure subjected to earthquake ground motions. Computer and Structures,1983, 16 (4): 531~541.
    [170] Y.J. Park and A.S. Ang. Seismic Damage Analysis reinforced Concrete Buildings [J]. Journal of Structure Engineering, ASCE, 1985 111(4): 740~757.
    [171]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3): 52-58.
    [172] Y.H. Chai, K.M. Romstad, S.M. Bird, Energy-based linear damage model for high-intensity seismic loading [J]. Journal of Structural Engineering, ASCE, 1995, 121(5): 857-864.
    [173]牛获涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,l6(4): 44-54.
    [174]刘伯权,刘鸣.钢筋混凝土柱的破坏与能量吸收[J].地震工程与工程振动,1998,18(3): 14-18.
    [175]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11): 42-49.
    [176]窦立军.钢管混凝土压弯构件荷载-挠度曲线全过程分析及低周疲劳性能试验研究.哈尔滨:哈尔滨建筑大学硕士论文,1991.
    [177]邱法维,杨卫东,欧进萍.钢管混凝土柱滞回耗能和累积损伤的实验研究.哈尔滨建筑大学学报,1996,29(3): 41-45.
    [178] S.S. Manson. Behavior of materials under conditions of thermal stress [J]. Heat Transfer Symposium, University of Michigan Engineering Research Institute, Ann Arbor, Mich., engineering prospective, 1953, Engng. Frac. Mech., 9-75.
    [179] L.F. Coffin. A study of effects of cyclic thermal stresses on ductile metal [J]. Transactions of the American Society of Mechanical Engineers, New York, 75, 1954, pp. 931-950.
    [180] H. Krawinkler, M. Zohrei, B. Lashkari-Irvani, et al.. Recommendations for experimental studies on the seismic behavior of steel components and materials [R]. Hohn A. Blume Center Report No. 61, Department of Civil Engineering, Stanford University, Stanford, California, 1983.
    [181] J.B. Mander, G. Pekcan, S.S. Chen. Low-Cycle variable Amplitude Fatigue Modeling of Top-and-Seat Angle Connections [J]. Engineering Journal, second quarter, 1995, pp.54-62.
    [182]刘伯权,徐云中,白绍良.钢筋混凝土柱在等幅对称位移循环加载下的低周疲劳性能[J].重庆建筑大学学报,1996,18(2): 34-42.
    [183]刘伯权,白绍良,徐云中等.钢筋混凝土柱低周疲劳性能的试验研究[J].地震工程与工程振动,1998,18(4): 82-89.
    [184]白绍良,张友为,黄宗明.不同轴压比下钢筋混凝土柱的低周疲劳性能[J].重庆建筑大学学报,1997,19(3): 1-6.
    [185] A. El-Bahy, S.K. Kunnath, W. Stone, et al.. Cumulative seismic damage of circular bridge columns: Benchmark and low-cycle fatigue tests [J]. ACI Struct. J., 1999, Vol. 96(4), 633-641.
    [186] A. El-Bahy, S.K. Kunnath, W. Stone, et al.. Cumulative seismic damage of circular bridge columns: Variable amplitude tests [J]. ACI Struct. J., 1999, Vol. 96(5), 711-719.
    [187] S.M. Marco and W.J. Starkey. A concept of fatigue damage [J]. Trans., ASME, 1954, 76: 627-632.
    [188] D.L. Henry. A theory of fatigue damage accumulation in steel [J]. Trans. ASME, 1955, 77: 913-918.
    [189] H.T. Cortan and T.L. Dolan. Cumulative fatigue damage [J]. Proceeding of the International Conference on Fatigue of Metals, IME and ASME, 1956.
    [190] R.R. Gatts. Application of a cumulative damage concept to fatigue [J]. ASME Journal of Basic Engineering, 1961, 83: 529-540.
    [191] S.A. Subramanyan. Cumulative damage rule based on the knee-point of the S-N curve [J]. Journal of Engineering Materials and Technology, 1976, 98(4): 316-321.
    [192] J. Lemaitre, J.L. Chaboche. A non-linear model of creep-fatigue damage cumulation and interaction. Proceeding of I.U.T.A.M. Symposium on Mechanics of Visco-elastic Media and BodiesGothenburg, Sweden, Springer, Berlin, 1974.
    [193] J. Lemaitre. Application of damage concepts to predict creep-fatigue failure [J]. J. Eng. Mat. Tech., ASME, 1979, 101 (1): 202-209.
    [194] J. Lemaitre著.倪金刚,陶春虎译.损伤力学教程[M].科学出版社,1996.
    [195]赵永翔,王金诺,高庆.概率循环应力—应变曲线及其估计方法[J].机械工程学报, 2000,36(8):102-106.
    [196] J. Zhao, J. Tang, and H.C. Wu. A reliability assessment method in strain-based fatigue life analysis [J]. J. Press. Vess. Tech. ASME, 1998, 120: 99-104.
    [197]赵永翔.应变疲劳可靠性分析的现状及展望[J].机械工程学报, 2001, 37(11): 1-6.
    [198] L.M.卡恰诺夫著.杜善义,王殿富译.连续介质损伤力学引论[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [199]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [200] J. Lemaitre. A course on damage mechanics [M]. New York: Springer-Verlag, 1992.
    [201]余天庆,钱济成.损伤理论及其应用[M].国防工业出版社,1993.
    [202] A. Cipollina, A. Lopez-Inojosa, J. Florez-Lopez. A simplified damage mechanics approach to nonlinear analysis of frames [J]. Computter & Structures, 1995, 54 (6): 1113-1126.
    [203] J. Florez-Lopez. Frame analysis and continuum damage mechanics [J]. J. Eur. Mech., 1998, 17(2): 269-284.
    [204] M.E. Perdomo, A. Ramirez, J. Florez-Lopez. Simulation of damage in RC frames with variable axial forces [J]. Earthquake Engineering and Structure Dynamics, 1999, 28: 311-328.
    [205] P. Inglessis, G. Go′mez, G. Quintero, et al.. Model of damage for steel frame members. Engineering Structures [J], 1999, 21(10): 954–964.
    [206] M.E. Marante, J. Florez-Lopez. Model of damage for RC elements subjected tobiaxial bending [J]. Engineering Structures, 2002, 24(9): 1141-1152.
    [207]吴波,李惠,李玉华.结构损伤分析的力学方法[J].地震工程与工程振动,1997,17(1):14-22.
    [208]刘阳冰,刘晶波.基于弹塑性损伤单元的RC框架结构的全过程分析[J].地震工程与工程振动,2006,26(6):56-63.
    [209]喻磊,姚谦峰,张荫.基于集中损伤力学的钢筋混凝土框架结构非线性分析[J].西安建筑科技大学学报,2006,38(4): 518-522.
    [210] J. Lemaitre, J. Dufailly. Damage measurements [J]. Engineering Fracture Mechanics, 1987, 28(5/6): 643–661.
    [211] J.J. Marigo. Modeling of brittle and fatigue damage for elastic material by growth of mocrovoids [J]. Engineering Fracture Mechanics, 1985, 21(4): 861-876.
    [212] H.G. Powell. Theory for nonlinear elastic structures [J]. ASCE Journal of Structural Division, 1969, 95 (ST12): 2687-2701.
    [213] Z.P. Bazant, L. Cedolin, Stability of Structures [M]. New York: Oxford University Press, 1991.
    [214] J.W. Ju. On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects [J]. International Journal of Solids and Structures, 1989, 25(7): 803-833.
    [215]陈惠发,A.F.萨里普.土木工程材料的本构方程[M].武汉:华中科技大学出版社,2001.
    [216] I.N. Rabotnov. On the equations of state for creep [J]. Progress in Applied Mechanics, the Prager Anniversary, 1963, 8: 307-315.
    [217] M. El-Attar, A. Ghobarah. Performance based evaluation of reinforced concrete buildings [J]. Eur. Earthquake Eng., 1998, 12(2): 22–29.
    [218] E. Alarcon, A. Recuero, R. Perera, et al.. A repairability index for reinforced concrete members based on fracture mechanics [J]. Engineering Structures, 2001, 23: 687-697.
    [219]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700