用户名: 密码: 验证码:
激光冲击不锈钢抗腐蚀性能及微观强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冲击强化是一种新型的材料表面强化技术,具有高压、高能、超快和超高应变率等特点,具有常规加工方法无可比拟的优点,具有显著的技术优势。尽管激光冲击强化金属构件能够显著提高机械性能疲劳寿命,然而目前对于低层错能金属表层激光冲击细化晶粒的微观结构演变、性能结构关系以及抗应力腐蚀作用机理尚缺乏系统的研究,仍然缺乏统一的认识和深入的理解。
     本文以ANSI304不锈钢为研究对象,对激光冲击强化不锈钢表面完整性、微观结构演变和晶粒细化机制、抗应力腐蚀性能以及激光复合处理工艺进行了若干基础研究和探索,获得了以下主要结论和创新性成果:
     (1)系统研究了多次激光冲击诱导ANSI304不锈钢塑性变形层不同区域的微观组织结构,获得了深度方向激光冲击诱导的微观结构演变规律,首次深入系统地揭示了以多方向机械孪晶细化表层原始粗晶为主的激光冲击强化低层错能金属晶粒细化机制和微观强化机理:
     单次激光冲击ANSI304不锈钢在表面形成厚度约为900μm的塑性变形层,并且随着离冲击表面距离越远,晶粒大小逐渐增大,细化原始晶粒是以片状机械孪晶为主要形式;多次激光冲击使奥氏体不锈钢塑性变形层的晶粒明显细化,在激光冲击ANSI304不锈钢的上表面,晶粒尺寸约为100-200nm。在观测试验结果的基础上,多次激光冲击ANSI304不锈钢微观结构演变规律和晶粒细化机制为:(ⅰ)高密度的机械挛晶将原始粗晶细分为层片状挛晶/基体片;(ⅱ)多次冲击能够形成不同方向的机械挛晶将粗晶细化为斜方形、三角形形状的结构,最小可以观察到亚微米量级;(ⅲ)具有取向差结构经过再结晶演变成细化的晶粒。研究成果发表在国际知名期刊Acta Materialia (2010,58(16):5354-5362)上,评审专家认为:‘'Combined with prior reporting of the work on high-stacking fault energy FCC aluminum, the work on low stacking fault energy stainless steel makes this an important collection that will be widely used(……形成一个完整的面心立方金属激光冲击晶粒细化的微观强化机理)”,该部分研究成果在国际上产生良好的影响。
     (2)设计了不同晶粒尺寸和残余应力状态的三种不同U型弯曲试样,测试和表征了143±1℃42%MgCl2溶液条件下腐蚀裂纹萌生时间、裂纹形貌、残余应力以及微观结构,获得了残余压应力和晶粒细化共同作用的激光冲击不锈钢抗应力腐蚀的作用机制:
     三种不同U型弯曲试样在143±1℃42%MgCl2溶液内应力腐蚀裂纹萌生时间、裂纹形貌、残余应力以及微观结构的试验结果表明:大面积搭接激光冲击能够诱导高幅残余压应力并且细化ANSI304不锈钢表层晶粒,未处理U型试样的开裂时间约为16小时,先冲后弯U型试样的开裂时间约为110小时,而先弯后冲试样300小时浸泡都未出现腐蚀裂纹,晶粒细化和残余应力是提高ANSI304奥氏体抗腐蚀能力的两大主要因素,其中残余压应力占主导作用,晶粒细化也是抑制应力裂纹萌生和扩展的主要因素。研究成果发表在国际知名期刊Corrosion Science (2012,60:145-152)上,评审专家认为"The effect of laser shock peening on mitigation of SCC by inducing compressive stress and refined grains is very interesting. This submission is well written and of high quality.(激光冲击导致的应力腐蚀裂纹延缓和减轻是非常有趣的,论文具有高质量…)”。
     (3)实验研究了激光冲击对ANSI304不锈钢表面微观形貌、纳米硬度、弹性模量、残余应力和摩擦磨损性能的影响,研究结果表明激光冲击不锈钢不能明显诱导马氏体相变,获得了单次激光冲击ANSI304不锈钢表面残余应力变化和深度方向的分布规律以及激光冲击ANSI304不锈钢的复合结构特征,并揭示了复合结构的形成机理:
     多次激光冲击ANSI304不锈钢不能诱导马氏体相变,其主要原因是因为激光冲击强化不锈钢过程不涉及热效应过程;激光冲击并没有提高ANSI304不锈钢的磨损性能和降低摩擦系数,相反在某些条件下激光冲击ANSI304不锈钢反而降低了不锈钢表面的磨损性能和增加了摩擦系数的不稳定性。系统研究了多次激光冲击对ANSI304不锈钢表面微观几何特征的影响,激光冲击明显增大表面波纹度,并造成波纹度尺度的双向加工纹理,纹理方向为顺搭接方向,在继承前一工艺的小微观尺度结构特征的基础上,叠加并形成新的大微观尺度结构的复合结构特征,并揭示了激光冲击ANSI304不锈钢表面复合结构的形成机理。研究成果发表在国际知名期刊Materials Science and Engineering:A (2011,528(13-14):4783-4788)上
     (4)研究和分析了激光热力复合处理ANSI304不锈钢的宏观性能和断口形貌,探索激光热力复合处理工艺规律,揭示了多次激光冲击不锈钢焊接件的韧窝形成过程,这将开辟结构金属的激光热力复合再制造理论和技术的研究:
     多次激光冲击强化将ANSI304不锈钢焊接接头的屈服强度提高21.79%,延伸率增长5.48%,其主要原因可能是激光冲击导致焊接接头的断裂面更明亮、无分层,韧窝分布更均匀;多次激光冲击不锈钢焊接件的韧窝形成过程为:(ⅰ)微空洞成核;(ⅱ)受外力作用微空洞生长;(ⅲ)微空洞连接;(ⅳ)在外在强载荷作用下的韧性断裂形成韧窝。采用激光雕刻和激光冲击复合处理制备了ANSI304不锈钢非光滑表面,其微观硬度、残余应力和表面粗糙度都有大幅度的提高或改善,这对提高非光滑表面的磨损性能是非常有益的。研究成果发表在国际知名期刊Materials Science and Engineering:A (2011,528(13-14):4652-4657)和Chinese Journal of Mechanical Engineering (2012,25(2):285-292)上,并获得两件授权发明专利
Laser shock processing (LSP) is a new and promising surface treatment technique, which has four notable feature:high-pressure, high-energy, ultra-fast and ultra-high strain-rate, so it has uncomparable advantages compared with conventional techniques. Although LSP can improve mechanical properties and fatigue lives of metallic components, a clear scenery between micro-structure and macro-properties of the refined layer, especially micro-structural evolution and improvement mechanism of stress corrosion resistance of low SFE metals, is still pending.
     In this thesis, ANSI304stainless steel is regarded as the study subject. Four different topics were involved, i.e. the surface integrity (including residual stress, nano-hardness, elastic modulus, surface topography) of ANSI304stainless steel before and after LSP, the micro-structural evolution and grain refinement mechanism induced by LSP, stress corrosion resistance of ANSI304stainless steel induced by LSP, and laser hybrid processing of ANSI304stainless steel. Some important conclusions and innovative achievements of this work were listed as follows:
     Firstly, we investigated micro-structures of ANSI304stainless steel during multiple LSP impacts were systematically, and presented micro-structural evolution along depth direction. The thesis proposed and entirely revealed grain refinement mechanism induced by plastic deformation during multiple LSP impacts on low SFE metal (such as ANSI304stainless steel) by the fact that multi-direction mechanical twins dividing the coarse grain based on the microstructure observations for the first time. Micro-structural evolution and grain refinement in ANSI304stainless steel subjected to multiple laser shock processing (LSP) impacts were investigated by means of cross-sectional optical microscopy and transmission electron microscopy observations. The plastic strain-induced grain refinement mechanism of the face-centered cubic (FCC) materials with very low stacking fault energy was identified. The micro-structure was obviously refined due to the ultra-high plastic strain induced by multiple LSP impacts. The minimum grain size in the top surface was about50-200nm. Multidirectional mechanical twin matrix (MT)-MT intersections led to grain subdivision at the top surface during multiple LSP impacts. Furthermore, a novel structure with submicron triangular blocks was found at the top surface subjected to three LSP impacts. The grain refinement process along the depth direction after multiple LSP impacts can be described as follows:(ⅰ) formation of planar dislocation arrays (PDAs) and stacking faults along multiple directions due to the pile up of dislocation lines;(ⅱ) formation of submicron triangular blocks (or irregularly shaped blocks) by the intersection of MT-MT (or MT-PDA or PDA-PDA) along multiple directions;(iii) transformation of MTs into subgrain boundaries;(iv) evolution by continuous dynamic recrystallization of subgrain boundaries to refined grain boundaries. The experimental results and analyses indicate that a high strain with an ultra-high strain rate play a crucial role in the grain refinement process of fcc materials subjected to multiple LSP impacts. The achievements have been published in the international well-known journal Acta Materialia (2010,58(16):5354-5362). The reviews thought that combined with prior reporting of the work on high-stacking fault energy FCC aluminum, the work on low stacking fault energy stainless steel made this an important collection that will be widely used. These researches has a good influence in the field of laser processing.
     Secondly, we designed three types of the U-bend samples with diferent grain size and residual stress state, measured and characterized crack initiation time, crack appearance, residual stress and micro-structure for three types of U-bend samples. Based on these results, we gained the influence mechanism in combination with high-level compressive residual stress and grain refinement of LSP on stress corrosion resistance of ANSI304stainless steel. After immersion in the boiling42%MgCl2solution at143±1℃, the first type of sample cracks after an average value of16.06h, while the second type of sample cracks after an average value of110.43h. However, the third type of sample is tested for a total of300h without visible cracks in the LSPed surface, which is attributed to the combined effects of both high-level compressive residual stress and grain refinement induced by massive LP impacts. The improvement of the SCC resistance is caused by compressive residual stress and grain refinement during LP process. The compressive residual stress has a dominated beneficial effect on the SCC resistance, while tensile residual stresses has a negative effect on the SCC resistance. In addition, the refined grain can also effectively retard the SCC initiation. The above-mentioned results have been published in the international well-known journal Corrosion Science (2012,60:145-152). The reviews thought that "The effect of laser shock peening on mitigation of SCC by inducing compressive stress and refined grains is very interesting. This submission is well written and of high quality"
     Thirdly, we experimentally studied the effects of LSP on surface appearance, nano-hardness, residual stress and wear performance of ANSI304stainless steel. Results showed that LSP cannot induce martensite phase transformation of ANSI304stainless steel. We obtained residual stress distribution in the sample surface and along depth direction after a single LSP impact, and revealed the formation mechanism of hybrid structure induced by LSP. Multiple LSP impacts cannot obviously induce martensite phase transformation of ANSI304stainless steel, which is due to the fact that the process of multiple LSP impacts isnot involved in laser thermal effect. Multiple LSP impacts cannot effectively improve wear performance and decrease friction coefficient of sample surface. We investigated the effects of LSP on surface geometric features of ANSI304 stainless steel. Results showed that LSP can obviously increase surface waviness, and induce dual-direction process texture. Hence, LSP can generate hybrid surface structure on the surface of ANSI304stainless steel. The above-mentioned results have been published in the international well-known journal Materials Science and Engineering:A (2011,528(13-14):4783-4788).
     Finally, we studied and analyzed macro-peoperties and fracture morphologies of the treated stainless steel welded joint by LSP, and explored laser hybrid processing, and revealed the formation process of dimple in the surface of welded joint treated by multiple LSP impacts. Yield strength of welded joint treated by multiple LSP impacts was increased by21.79%, and elongation was improved by5.48%, which was attribute to more uniformly dimples and brighter without delamination splitting in the fracture surface of the welded joint induced by multiple LSP impacts. Based on the micro-structure features observed at the fracture surface, the following procedures are involved in the dimple formation process:(1) the nucleation of the microvoids;(2) the growth of these microvoids due to the effects of external force;(3) the coalescence of the microvoids;(4) the ductile fracture of the laser welded ANSI304stainless steel by multiple LSP impacts. In addition, we fabricated non-smooth surface of ANSI304stainless steel by laser engraving and LSP, and the non-smooth surface has excellent surface performances, such as micro-hardness, residual stress and surface roughness. The above-mentioned results have been published in the international well-known journal Materials Science and Engineering:A (2011,528(13-14):4652-4657) and Chinese Journal of Mechanical Engineering (2012,25(2):285-292). Three invention patents have been issued in China.
     In summary, important innovative research results had been acquired in many aspects of this thesis, including the technological principles of LSP on ANSI304stainless steel, the micro-structure evolution, the micro-structural strengthening mechanism of LSP on ANSI304stainless steel by refining the coarse grain, the stress corrosion resistance, and the laser thermal-mechanical hybrid processing, etc.
引文
[1]R. Song, D. Ponge D. Raabe, J.G. Speer, D.K. Matlock. Overview of processing, microstructure and mechanical properties of ultrafine grained BCC steels. Materials Science and Engineering A,2006,441(1-2):1-17.
    [2]X. Scherpereel, P. Peyre, R. Fabbro et al. Modifications of mechanical and electrochemical properties of stainless steels surfaces by laser shock processing. The International Society for Optical Engineering,1997,3097:546-557.
    [3]A. King, A. Steuwer, C. Woodward, P.J. Withers. Effects of fatigue and fretting on residual stresses introduced by laser shock peening. Materials Science and Engineering A,2006, (435-436):12-18.
    [4]N.R. Tao, M.L. Sui, J. Lu, and K. Lu. Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostructured Materials,1999,11(4):433-440.
    [5]H. Lee, D. Kim, J.S. Jung, Y.S. Pyoun, K. Shin. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corrosion Science,2009,51(12): 2826-2830.
    [6]G. Liu, J. Lu, K. Lu. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Materials Science and Engineering:A,2000,286(1): 91-95.
    [7]T. Puclin, W.A. Kaczmarek, B.W. Ninham. Dissolution of ZrSiO4 after mechanical milling with Al2O3. Materials Chemistry and Physics,1995,40(2):105-109.
    [8]H. Huang, J. Ding, P.G. McCormick. Microstructural evolution of 304 stainless steel during mechanical milling. Materials Science and Engineering:A,1996,216(1-2): 178-184.
    [9]E. Hellstern, H.J. Fecht, Z. Fu, W.L. Johnson. Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. Journal of Applied Physics,1989,65,305.
    [10]C.C. Koch. Synthesis of nanostructured materials by mechanical milling:problems and opportunities. Nanostructured Materials,1997,9(1-8):13-22.
    [11]A.W. Weeber, H. Bakker. Amorphization by ball milling. A review. Physica B: Condensed Matter,1988,153(1-3):93-135.
    [12]M. Umemoto, Z.G. Liu, X.J. Hao, K. Masuyama, K. Tsuchiya. Formation of nanocrystalline ferrite through rolling and ball milling. Materials Science Forum, 2000,360-362:167-174.
    [13]H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia,2003,51(7):1871-1881.
    [14]T. Roland, D. Retraint, K. Lu, J. Lu. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Materialia,2006,54(11):1949-1954.
    [15]F.A. Guo, Y.L. Ji, N. Trannoy, J. Lu. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment. Materials Science and Engineering:B,2006, 130(1-3):24-30.
    [16]N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia,2002,50(18):4603-4616.
    [17]S.D. Lu, Z.B. Wang, K. Lu. Strain-induced microstructure refinement in a tool steel subjected to surface mechanical attrition treatment. Journal of Materials Science & Technology,2010,26(3):258-263.
    [18]L. Zhou, G. Liu, X.L. Ma, K. Lu. Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment. Acta Materialia,2008,56(1):78-87.
    [19]T. Hu, C.S. Wen, G.Y. Sun, S.L. Wu, C.L. Chu, Z.W. Wu, G.Y. Li, J. Lu, K.W. Yeung, P.K. Chu. Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surface and Coatings Technology,2010,205(2):506-510.
    [20]H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu. Surface alloying of an Mg alloy subjected to surface mechanical attrition treatment. Surface and Coatings Technology,2008, 202(16):3947-3953.
    [21]张洪旺.AISI304不锈钢的表面自纳米化及混合表面纳米化研究.大连:大连海事学院博士论文,2003.
    [22]R.Z. Valiev, T.G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science,2006,51: 881-981.
    [23]C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, Z.F. Zhang. Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP. Materials Science and Engineering:A,2008,485(1-2):643-650.
    [24]G.I. Raab. Plastic flow at equal channel angular processing in parallel channels. Materials Science and Engineering:A,2005,410-411:230-233.
    [25]姚振强.先进激光制造技术研究新进展.机械工程学报,2003,39(12):57-61.
    [26]L.A. Hackel, H.L. Chen. Laser Peening-A processing tool to strengthen metals or alloys to improve fatigue lifetime and retard stress-induced corrosion cracking. NIF Report:UCRL-ID-155327,2003.
    [27]M.R. Hill, A.T. DeWald, A.G. Demrna. Laser peening technology. Advanced Materials & Processes,2003,161(8):65-67.
    [28]B.M. Davis, S.R. Mannava, T.J. Rockstroh. Performance of Gen IV LSP for thick section airfoil damage tolerance. AIAA.2004,2062:1-10.
    [29]R.D. Tenaglia, D.F. Lahrman. Shock tactics. Nature Photonics,2009,3:267-269.
    [30]L.A. Hackel. Shaping the future-Laser peening technology has come of age. The Shot Peener,2005,19(3):8-12.
    [31]S.K. Zou, Z.W. Cao, Y. Zhao, M. Qian. Laser peening of aluminum alloy 7050 with fastener holes. Chinese Optics Letters,2008,6(2):116-119.
    [32]周建忠.金属板料激光冲击成形加载机制及变形特性研究[D].镇江:江苏大学博士学位论文,2003.
    [33]花银群.金属材料的复合强化机理研究[D].镇江:江苏大学博士学位论文,2003.
    [34]顾永玉.金属板料激光冲击成形的理论研究[D].镇江:江苏大学博士学位论文,2007.
    [35]任旭东.基于激光冲击机理的裂纹面闭合与疲劳性能改善特性研究[D].镇江:江苏大学博士学位论文,2009.
    [36]张凌峰.激光冲击波诱导的材料相变与增韧机制研究[D].镇江:江苏大学博士学位论文,2006.
    [37]陈菊芳.AM50镁合金表面激光改性研究[D].镇江:江苏大学博士学位论文,2008.
    [38]鲁金忠.激光冲击强化铝合金力学性能及微观塑性变形机理研究[D].镇江:江苏大学博士学位论文,2010.
    [39]张永康,周建忠,殷苏民,吴鸿兴,左敦稳.激光冲击波加载下金属材料高应变率成形强化工艺与装置.江苏省科技成果鉴定证书,2005,苏科鉴字[2005]第1240号.
    [40]X.Q. Wu, Z.P. Duan, H.W. Song, Y.P. Wei, X. Wang, C.G. Huang. Shock pressure induced by glass-confined laser shock peening:Experiments, modeling and simulation. Journal of Applied Physics,2011,110:053112.
    [41]R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont. Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics,1990, 68(2):775-784.
    [42]P. Peyre, R. Fabbro, L. Berthe, C. Dubouchet. Laser shock processing of materials, physical processes involved and examples of applications. Journal of Laser Application,1996,8:135-141.
    [43]B.X. Wu, Y.C. Shin. Laser pulse transmission through the water breakdown plasma in laser shock peening. Applied Physics Letters,2006,88:041116.
    [44]T. Thorslund, F.J. Kahlen, A. Kar. Temperatures, pressures and stresses during laser shock processing. Optics and Lasers in Engineering,2003,39:51-71.
    [45]M. Morales, J.A. Porro, M. Blasco, C. Molpeceres, J.L. Ocana. Numerical simulation of plasma dynamics in laser shock processing experiments. Applied Surface Science,2009,255(10):5181-5185.
    [46]顾永玉,张永康,张兴权,史建国.约束层对激光驱动冲击波压力影响机理的理论研究.物理学报,2006,55(11):5885-5890
    [47]Y.K. Zhang, Y.Y. Gu, X.Q. Zhang, J.G. Shi, J. Zhou. Study of mechanism of overlay acting on laser shock waves. Journal of Applied Physics,2006,100:103517-1.
    [48]Y.K. Zhang, S.Y. Zhang. Study of visual inspection and control methods of effectiveness of laser shock-processing. Applied Physics A,1997,65:419-423.
    [49]C.S. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai. Laser shock processing and its effects on microstructure and properties of metal alloys:a review. International Journal of Fatigue,2002,24(10):1021-1036.
    [50]C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, A. Banderas, J. Porro, M. Morales. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Applied Surface Science, 2006,252(18):6201-6205.
    [51]G. Gomez-Rosas, C. Rubio-Gonzalez, J.L. Ocana, C. Molpeceres, J.A. Porro, W. Chi-Moreno, M. Morales. High level compressive residual stresses produced in aluminum alloys by laser shock processing. Applied Surface Science,2005,252(4): 883-887.
    [52]Y. Sano, M. Kimura, N. Mukai. High-power lasers in manufacturing. Osaka, Japan, 2000,294.
    [53]胡永祥.激光冲击处理工艺过程数值建模与冲击效应研究[D].上海:上海交通大学博士学位论文,2008年.
    [54]J.P. Chu, J.M. Rigsbee, G. Banas, H.E. Elsayed-Ali. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel. Materials Science and Engineering A,1999,260(1-2):260-268.
    [55]F.Z. Dai, J.Z. Lu, Y.K. Zhang, K.Y. Luo, Q.W. Wang, L. Zhang, X.J. Hua. Effect of initial surface topography on the surface status of LY2 aluminum alloy treated by laser shock processing. Vaccum,2012,86(10):1482-1487
    [56]J.Z. Lu, K.Y. Luo, F.Z. Dai, J.W. Zhong, L.Z. Xu, C.J. Yang, L. Zhang, Q.W. Wang, J.S. Zhong, D.K. Yang, Y.K. Zhang. Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel. Materials Science and Engineering:A,2012,536:57-63.
    [57]H. Lim, P. Kim, H. Jeong, S. Jeong. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening. Journal of Materials Processing Technology,2012,212(6):1347-1354.
    [58]H.L. Chen, J. Rankin, L. Hackel, G. Frederick, J. Hickling, S. Findlan. Laser peening of alloy 600 to improve intergranular stress corrosion cracking resistance in power plants.6th International EPRI Conference on Welding and Repair Technology for Power Plants, June 17,2004, Sandestin, Florida.
    [59]Y.K. Zhang, J. You, J.Z. Lu, C.Y. Cui, Y.F. Jiang, X.D. Ren. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy. Surface and Coatings Technology,2010,204(24):3947-3953.
    [60]M.A. Meyers, Y.B. Xu, Q. Xue. Micro-structural evolution in adiabatic localization in stainless steel. Atca Materialia,2003,51:1307-1325.
    [61]M.C. Mataya, M.J. Carr. Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Metallurgical and Materials Transactions A,1982, 132:1263-1269.
    [62]J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Materialia,2010, 58(11):3984-3994.
    [63]B.N. Mordyuk, Y.V. Milman, M.O. Iefimov, G.I. Prokopenko. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel. Surface and Coatings Technology,2008,202(19):4875-4883.
    [64]X.Q. Zhu, M. Zhou, Q.X. Dai, G.J. Cheng. Deformation modes in stainless steel during laser shock peening. Journal of Manufacturing Science and Engineering, 2009,131:054503.
    [65]R.D. Tenaglia, D.F. Lahrman. Preventing fatigue failures with laser peening. The AMPTIAC Quarterly,2003,7(2):3-7.
    [66]J. Rankin, L. Hackel, J. Harrison. Effect of laser peening on fatigue life in an arrestment hook shank application for naval aircraft. The 2nd International Laser Peening Conference, April 18-21, San Francisco, CA.
    [67]Jim Harrison. Laser peening prevents fatigue and stress related corrosion failures. TAPPI PLACE 2012 Conference, May 06-09,2012.
    [68]Y. Sano, N. Mukai, I. Chida, T. Uehara, M. Yoda. Applications of laser peening without protective coating to enhance structural integrity of metallic components. The 2nd International Conference on Laser Peening, April 18-21,2010, San Francisco.
    [69]Y.K. Zhang, J.Z. Lu, X.D. Ren, H.B. Yao. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy. Materials & Design,2009,30(5):1697-1703.
    [70]K.Y. Luo, J.Z. Lu, L.F. Zhang, J.W. Zhong, H.B. Guan, X.M. Qian. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing. Materials & Design,2010,31(6):2599-2603.
    [71]J.Z. Lu, L. Zhang, A.X. Feng, Y.F. Jiang, G.G. Cheng. Effects of laser shock processing on mechanical properties of Fe-Ni alloy. Materials & Design,2009, 30(9):3673-3678.
    [72]Y. Cheng, C. Cheng. Scaling, dimensional analysis, and indentation measurements. Materials Science and Engineering R,2004,44:91-149.
    [73]M.A. Hasan, A. Kim, H.J. Lee. Measuring the cell wall mechanical properties of Al-alloy foams using the nanoindentation method. Composite Structures,2008, 83(2):180-188.
    [74]A.X. Feng,Y.K. Zhang. Study on the Testing Technology of main residual stress of metal sheet based on soft X-ray diffraction stress analyzer. Key Engineering Materials,2005,315-316(11):264-268
    [75]B.S. Yilbas, A.F. Arif. Laser shock processing of aluminium:model and experimental study. Journal of Physics D:Applied Physics,2007,40:6740-6747.
    [76]W.W. Zhang, L. Yao. Microscale laser shock peening of thin films, Part 2:high spatial resolution material characterization. Journal of Manufacturing Science and Engineering,2004,126(2):18-24.
    [77]X.W. Wang, J.Y. Wang, P. Wu, H.W. Zhang. The investigation of internal friction and elastic modulus in surface nanostructured materials. Materials Science and Engineering:A,2004,370:158-162.
    [78]J.F. San, Z.C. Wang, S.H. Li, J.J. Liu. Nano-hardness and wear properties of C-implanted Nylon 6. Surface and Coatings Technology,2006,200 (18-19): 5245-5252.
    [79]R.T. Bhatt, S.R. Choi, L.M. Cosgriff, D.S. Fox, K.N. Lee. Impact resistance of uncoated SiC/SiC composites. Materials Science and Engineering:A,2008, 476(1-2):20-28.
    [80]X. Chen, R. Wang, N. Yao, A.G. Evans, J.W. Hutchinson, R.W. Bruce. Foreign object damage in a thermal barrier system:mechanisms and simulations. Materials Science and Engineering:A,2003,352(1-2):221-231.
    [81]M. Turski, S. Clitheroe, A.D. Evans, C. Rodopoulos, D.J. Hughes, P.J. Withers. Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments. Applied Physics A:Materials Science & Processing, 2010,99(3):549-556.
    [82]I. Altenberger, B. Scholtes, U. Martin, H. Oettel. Thermal residual stresses in NiAl-AlN-Al2O3 composites measured by neutron diffraction. Materials Science and Engineering:A,1999,264(1-2):1-16.
    [83]S.P. Wang, Y.J. Li, M. Yao, R.Z. Wang. Compressive residual stress introduced by shot peening. Journal Materials Processing Technology,1998,73(1-3):64-73.
    [84]J. Lindemann, C. Buque, F. Appel. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia,2006,54(4):155-1164.
    [85]B.P. Fairand, A.H. Clauer, R.G. Jung, B.A. Wilcox. Quantitative assessment of laser-induced stress waves generated at confined surfaces. Applied Physics Letters, 1974,25(8):431-433.
    [86]C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, A. Banderas, J. Porro, M. Morales. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Applied Surface Science, 2006,252(18):6201-6205.
    [87]A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta Materialia,2004,50(12):1445-1449
    [88]M. Su's-Ryszkowska, T. Wejrzanowski, Z. Pakiela, K.J. Kurzydlowski. Microstructure of ECAP severely deformed iron and its mechanical properties. Materials Science and Engineering:A,2004,369(1-2):151-156.
    [89]H. Lee, D. Kim, J. Jung, Y. Pyoun, K. Shin. Influence of peening on the corrosion properties of AISI304 stainless steel. Corrosion Science,2009,51(12):2826-2830.
    [90]P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Beranger, C. Lemaitre, Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance, Materials Science and Engineering:A, 2000,280:294-302.
    [91]U. Sanchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, J. Porro. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing. Wear,2006,260(7-8):847-854.
    [92]张庆茂,刘文今.激光强化铸铁活塞环的磨损性能.中国有色金属学报,2006,16(3):447-452.
    [93]D. Kuhlmann-Wilsdorf, J.H. Merwe. Theory of dislocation cell blocks at the large strain are usually discontinuous. Materials Science and Engineering,1982,55: 79-83.
    [94]A. Belyakov, K. Tsuzaki, H. Miura, T. Sakai. Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Materialia, 2003,51(3):847-861.
    [95]A.D. Schino, J.M. Kenny. Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Material Letters,2003,57(21): 3182-3185.
    [96]H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Materialia,2007,55(3):975-982.
    [97]M. Wen, G. Liu, J.F. Gu, W.M. Guan, J. Lu. Dislocation evolution in titanium during surface severe plastic deformation. Applied Surface Science,2009,255(12): 6097-6102.
    [98]U. Andrade, M.A. Meyers, K.S. Vecchio. Model description of crystal growth in inhomogeneous media. Acta Metallurgica et Materialia,1994,42:3183-3193.
    [99]J. Flaquer, J.G. Sevillano. A mathematical model for crystal growth rate hysteresis induced by dynam assistant. Journal of Materials Science,1984,19:423-427.
    [100]J.A. Hines, K.S. Vecchio, S. Ahzi. A model for. microstructural evolution in adiabatic shear bands. Metallurgical and Materials Transactions A,1998,29,191-203.
    [101]Q. Li, Y.B. Xu, Z.H. Lai, L.T. Shen, Y.L. Bai. Dynamic recrystallization induced by plastic deformation at high strain rate in a Monel alloy. Materials Science and Engineering A,2000,276(1-2):250-256.
    [102]S.R. Chen, U.F. Kocks. Recrystallization in copper polycrystals. Scripta Metallurgica et Materialia,1992,27:1587-1592.
    [103]H.J. McQueen, S. Bergerson. Dynamic recrystalization of copper during hot torsion. Metal Science,1972,6(1):25-29.
    [104]N.R. Tao, K. Lu. Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scripta Materialia,2009,60(12):1039-1043.
    [105]X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Materialia,2005,53(3): 681-691.
    [106]K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu. Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Materialia,2006,54(19):5281-5291.
    [107]W.L. Li, N.R. Tao, K. Lu. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Materialia,2008,59(5):546-549.
    [108]Y.S. Li, N.R. Tao, K. Lu. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Materialia,2008,56(2):230-241.
    [109]T. Venugopal, K.P. Rao, B.S. Murty. Mechanical and electrical properties of Cu-Ta nanocomposites prepared by high-energy ball milling. Acta Materialia,2007,55(13): 4439-4445.
    [110]Y. Lin, J. Lu, L. Wang, T. Xu, Q. Xue. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Materialia,2006,54(20):5599-5605.
    [111]M. Eddahbi, J.A. del Valle, M.T. Perez-Prado, O.A. Ruano. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Materials Science and Engineering A,2005,410-411:308-311.
    [112]Y.B. Wang, M. Louie, Y. Cao, X.Z. Liao, H.J. Li, S.P. Ringer, Y.T. Zhu. High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materialia,2010,62(4):214-217.
    [113]B.H. Sencer, G.S. Was, M. Sagisaka, Y. Isobe, G.M. Bond, F.A. Garner. Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels. Journal of Nuclear Materials,2003, 323(1):18-28.
    [114]F.A. Garner, M.B. Toloczko. Irradiation creep and void swelling of austenitic stainless steels at low displacement rates in light water energy systems. Journal of Nuclear Materials,1997,251:252-261.
    [115]J.E. Pawel, A.F. Rowcli, G.E. Lucas, S.J. Zinkle. Irradiation performance of stainless steels for ITER application. Journal of Nuclear Materials,1996,239:126-131.
    [116]J.E. Pawel, A.F. Rowcli, D.J. Alexander, M.L. Grossbeck, K. Shiba. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels. Journal of Nuclear Materials,1996,233-237:202-206.
    [117]A.F Rowcli, S.J. Zinkle, J.F. Stubbins, D.J. Edwards, D. J. Alexander. Austenitic stainless steels and high strength copper alloys for fusion components. Journal of Nuclear Materials,1998,258-263:183-192.
    [118]G.E. Lucas, M. Billone, J.E. Powel, M.L. Hamilton. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures. Journal of Nuclear Materials,1996,233-237:207-212.
    [119]V.A. Beryakov, S.A. Fabristsiev, I.V. Mazul, A.F. Rowcli. Status of international collaborative efforts on selected ITER materials. Journal of Nuclear Materials, 2000,283:962-967.
    [120]N. Hashimoto, S.J. Zinkle, A.F. Rowcli, J.P. Robertson, S. Jitsukawa. Deformation mechanisms in 316 stainless steel irradiated at 60℃ and 330℃. Journal of Nuclear Materials,2000,283:528-534.
    [121]L.K. Mansur. Materials research and development for the spallation neutron source mercury target. Journal of Nuclear Materials,2003,318:14-25.
    [122]陆世英,王欣增等.不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢[M].北京:原子能出版社,1985.
    [123]Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, Y. Ochi, Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A,2006,417:334-340.
    [124]ASTM Standard G36-94. (2000). Standard practice for evaluating stress corrosion cracking resistance of metals and alloys in a boiling magnesium chloride solution. American Society for Testing and Materials.
    [125]L. Harold, R.H. Michael. The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy. Materials Science and Engineering A,2008,477: 208-216.
    [126]Y.F. Al-Obaid. The effect of shot peening on stress corrosion cracking behaviour of 2205-duplex stainless steel. Engineering Fracture Mechanics,1995,51:19-25.
    [127]S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar. Stress corrosion cracking of A17075 alloy processed by equal channel angular pressing. International Journal of Engineering Science and Technology,2010,2:53-61.
    [128]C. Cheung, U. Erb. Application of grain boundary engineering concepts to alleviate intergranular cracking in Alloys 600 and 690. Materials Science and Engineering A, 1994,185:39-43.
    [129]J. Yan, M. Gao, X.Y. Zeng. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Optics and Lasers in Engineering,2010,48 (4):512-517.
    [130]H. Yamakiri, S. Sasaki, T. Kurita, N. Kasashima. Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water. Tribology International,2011,44(5):579-584.
    [131]A. Lamraoui, S. Costil, C. Langlade, C. Coddet. Laser surface texturing (LST) treatment before thermal spraying:A new process to improve the substrate-coating adherence. Surface and Coatings Technology,2010,205(S1):S164-S167.
    [132]A.P. Mackwood, R.C. Crafer. Thermal modelling of laser welding and related processes:a literature review. Optics & Laser Technology,2005,37(2):99-115.
    [133]X. Cao, M. Jahazi, J.P. Immarigeon, W. Wallace. A review of laser welding techniques for magnesium alloys. Journal of Materials Processing Technology, 2006,171(2):188-204.
    [134]Y.B. Chen, Z.L. Lei, L.Q. Li, L. Wu. Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Science and Technology of Welding & Joining,2006,11:403-411.
    [135]Q. Huang, J. Hagstroem, H. Skoog, G. Kullberg. Effect of laser parameter variation on sheet metal welding. International Journal of Joining Materialia,1991,3(3): 79-88.
    [136]G. Padmanaban, V. Balasubramanian. Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy. Optics & Laser Technology,2010,42(8):1253-1260.
    [137]郭永利,梁工英,李路,左铁钏.铝合金的激光熔覆修复.中国激光,2008,35(2):297-302.
    [138]D. P'ng, P. Molian. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils. Materials Science and Engineering A,2008,486(1-2):680-685.
    [139]S.H. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki. Microstructural characterisation of stir zone containing residual ferrite in friction stir welded 304 austenitic stainless steel. Science and Technology of Welding & Joining, 2005,10(5):550-556.
    [140]Y. Kawahito, M. Mizutani, S. Katayama. High quality welding of stainless steel with 10 kW high power fibre laser. Science and Technology of Welding & Joining,2009, 14(4):288-294.
    [141]O. Hatamleh, J. Lyons, R. Forman. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints. International Journal of Fatigue,2007,29(3):421-434.
    [142]M. Iordachescu, A. Valiente, L. Caballero, D. Iordachescu, J.L. Ocana, J.A. Porro. Laser shock processing influence on local properties and overall tensile behavior of friction stir welded joints. Surface and Coatings Technology,2012,206(8-9): 2422-2429.
    [143]O. Hatamleh. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA2195 joints. International Journal of Fatigue,2009,31(5):974-988.
    [144]C.S. Li, Q.X. Dai, K.M. Chen. Study on tensile properties of new type austenitic stainless steel at room temperature. Hot Working Technology,2006,35(20):16-20.
    [145]E. Dudrova, M. Kabatova. Fractography of sintered iron and steels. Powder Metallurgy Progress,2008,8(2):59-75.
    [146]S.H. Wang, M.D. Wei, L.W. Tsay. Tensile properties of LBW welds in Ti-6A1-4V alloy at evaluated temperatures below 450 ℃. Materials Letters,2003,57(12): 1815-1823.
    [147]钟群鹏.断口学[M].北京:高等教育出版社,2006.
    [148]T.S. Srivatsan. An investigation of the cyclic fatigue and fracture behavior of aluminum alloy 7055. Materials & Design,2002,23(2):141-151.
    [149]T.S. Srivatsan, S. Anand, S. Sriram, V.K. Vasudevan. The high-cycle fatigue and fracture behavior of aluminum alloy 7055. Materials Science and Engineering A, 2000,281(1-2):292-304.
    [150]J. Takamura, S. Miura. Grain boundary-hardening due to piled-up dislocations. Journal of the physical society of Japan,1958,13(12):1421-1423.
    [151]X. Tong, H. Zhou, L.Q. Ren, Z.H. Zhang, R.D. Cui, W. Zhang. Thermal fatigue characteristics of gray cast iron with non-smooth surface treated by laser alloying of Cr powder. Surface and Coatings Technology,2008,202(12):2527-2534.
    [152]L.O. Ren, S.J. Wang, X.M. Tian, Z.W. Han, L.N. Yan, Z.M. Qiu. Non-smooth morphologies of typical plant leaf surfaces and their anti-adhesion effects. Journal ofBionic Engineering,2007,4(1):33-40.
    [153]H. Zhou, X. Tong, Z.H. Zhang, X.Z. Li, L.Q. Ren. The thermal fatigue resistance of cast iron with biomimetic non-smooth surface processed by laser with different parameters. Materials Science and Engineering:A,2006,428(1-2):141-147.
    [154]H.Y. Shan, H. Zhou, N. Sun, L.Q. Ren, L. Chen, X.Z. Li. Study on adhesion resistance behavior of sample with striated non-smooth surface by laser processing technique. Journal of Materials Processing Technology,2008,199(1-3):221-229.
    [155]Z.H. Zhang, H. Zhou, L.Q. Ren, X. Tong, H.Y. Shan, X.Z. Li. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters. Applied Surface Science,2008,254(8): 2548-2555.
    [156]H. Zhou, L. Chen, W. Wang, L.Q. Ren, H.Y. Shan, Z.H. Zhang. Abrasive particle wear behavior of 3Cr2W8V steel processed to bionic non-smooth surface by laser. Materials Science and Engineering:A,2005,412(1-2):323-327.
    [157]X. Tong, H. Zhou, W.W. Chen, W. Jiang, X.Z. Li, L.Q. Ren, Z.H. Zhang. Effects of pre-placed coating thickness on thermal fatigue resistance of cast iron with biomimetic non-smooth surface treated by laser alloying. Optics & Laser Technology,2009,41(6):671-678.
    [158]M. Suraratchai, J. Limido, C. Mabru, R. Chieragatti. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. International Journal of Fatigue,2008,30(12):2119-2126.
    [159]T. C. Kishore. On the roughness dependence of wear of steels:A new approach. Journal of Materials Science Letters,1993,12(12):952-954.
    [160]B.A. Shaw, C. Aylott, P. O'Hara, K. Brimble. The role of residual stress on the fatigue strength of high performance gearing. International Journal of Fatigue, 2003,25(9-11):1279-1283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700