用户名: 密码: 验证码:
高强钢磁控电阻点焊机理与工艺方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能、环保、安全是当今汽车工业的发展主旨。为了在实现车身轻量化的同时满足乘员安全性要求,以双相钢为典型代表的先进高强钢材料在白车身结构中的使用比例正日益上升。目前,电阻点焊技术仍是车身制造中的主要连接手段,据统计,平均每辆白车身上约有3000~5000个焊点。然而,高强钢的大量使用,却给电阻点焊工艺带来了一系列挑战。区别于传统低碳钢,高强钢中普遍含有较高的碳当量与较多的合金元素,在快速加热、冷却的焊接过程中,极易形成大量淬硬、粗大的板条状马氏体组织,导致接头韧性、疲劳寿命降低,容易发生接头界面断裂失效。传统基于工艺参数调整或焊后热处理的质量控制方法,能够快速增大熔核直径或部分弱化接头组织的淬硬性,但往往以能耗的大幅攀升或生产效率的降低为代价。作为一项节能、高效的工艺方法,电磁搅拌控制(简称磁控)技术通过外加磁场对熔化金属的搅拌作用,影响并改变工件内部的温度场分布与冷却结晶过程。迄今,磁控技术已成功应用于连续铸造、电弧焊等领域。
     基于上述背景,本文提出将磁控技术与传统电阻点焊过程相结合的磁控电阻点焊工艺方法,旨在通过外加磁场与焊接电流的交互作用产生洛仑兹力,改变熔核内的流动传热模式。针对这一研究目标,本文从磁场施加模式入手,探讨了外部磁场的最优施加方向与分布模式,在此基础上搭建了磁控电阻点焊原型实验平台;并进一步建立了综合描述力、电、热、磁、流五个物理场变化的磁控电阻点焊过程数值模型,从“电磁搅拌改变熔化金属流动模式”的本质行为揭示了外加磁场对电阻点焊过程传质传热行为的控制机理;通过对点焊接头的宏观、微观形貌分析、以及静态、动态力学性能测试,明确了磁控技术对高强钢电阻点焊焊接质量的改善效果,并基于对磁控电阻点焊熔核形成规律的研究建立了质量评价准则;最后对典型车用超高强钢的电阻点焊接头进行了磁控效果实验验证,并从工程应用角度出发,进一步开发完善了磁控实验系统。本文为磁控电阻点焊工艺方法在车身制造中的推广应用奠定了理论基础。全文的主要研究内容如下:
     1)外部磁场施加模式与磁控电阻点焊原型实验平台
     理论分析了多种外部磁场作用模式下,电阻点焊过程的电、磁场分布特性、熔化金属流动模式、以及形核状态,从而明确了磁控电阻点焊方法所施加的外部磁场需满足三方面条件:平行于工件/工件接触面、围绕电极臂中心线呈中心轴对称形式分布、以工件/工件接触面呈镜面对称形式分布。在此基础上,建立了以一对轴向充磁环形钕铁硼永磁体为外部磁场源的磁控电阻点焊原型实验平台。
     2)磁控电阻点焊过程多物理场数值建模与传质传热行为演化机理
     基于ANSYS11.0/Multiphysics软件平台,通过二次开发与耦合策略制定,实现了结构场、电场、热场、磁场、流场之间的交互载荷传递与数据转换,建立了综合描述磁控电阻点焊物理过程的数值模型。从“电磁搅拌改变熔化金属流动模式”的本质揭示了外加磁场对电阻点焊过程传质传热行为的控制机理。结果表明,在磁控电阻点焊过程中,熔化金属不仅在通过电极中心轴的径向平面内流动,同时也在外加周向磁场力的驱使下表现出强烈的冲刷熔核径向边缘的离心运动趋势;且随着焊接时间的增加,该周向离心运动模式逐渐占据主导。与传统点焊相比,磁控电阻点焊过程中的磁流体流速更快;熔核内高温带呈长条状沿直径方向均匀分布;最终形成的熔核形状呈现“两头厚、中间薄”的花生壳状。
     3)磁控技术对高强钢电阻点焊焊接质量问题的改善机理
     通过对DP590、DP780的实验研究发现,与传统电阻点焊的椭圆体状熔核相比,磁控电阻点焊的花生壳状熔核呈现“更宽、更扁”的变化趋势;点焊接头的微观组织更均匀,淬硬性降低。对于1.25mm DP780钢板,在外加磁场作用下,接头的拉剪力增幅约12.0%,失效时刻所对应的最大位移增幅约15.9%,接头的高周疲劳性能有所提升。当焊接电流处于发生界面断裂与母材撕裂的临界值附近时,外加磁场能够有效改善电阻点焊接头的失效模式,且失效断口表面存在更多吸能性强的韧窝组织。
     4)磁控电阻点焊熔核尺寸评价准则与典型工程应用
     针对磁控电阻点焊的熔核形状特点,以接头拉剪强度为衡量标准,建立了熔核尺寸评价准则:当焊透率大于25%时,熔核直径越长,接头强度越高;当焊透率处于15%~25%时,熔核直径与焊透率同时成为衡量接头强度的主要尺寸参数;当焊透率小于15%时,焊接质量均不合格。基于此评价准则,通过进一步实验研究发现:为了获得相同质量的点焊接头,采用磁控技术能够将所需的焊接电流降低约300~500A,并适用于DP1000等超高强钢。此外,基于励磁线圈的电磁搅拌系统的开发在一定程度上提升了磁控电阻点焊技术在车身制造中的可应用性。
     综上所述,本文系统性地研究了外加磁场对电阻点焊过程的控制机理,形成了面向车用先进高强钢的磁控电阻点焊工艺方法,为磁控技术在电阻点焊质量控制领域的应用奠定了理论基础。
Nowadays, energy-saving, environmental protection, and safety have become thedevelopment theme of the automobile industry. In order to pursuit lightweight body aswell as meet occupant safety requirements, the proportion of advanced high strengthsteels, like dual phase steels, has been rising in body-in-white. By far, resistance spotwelding (RSW) is still the major joining method used in car body fabrication. It hasbeen reported that on average nearly3000to5000spot welds are made for each carbody. However, the traditional RSW technology has been faced with a lot ofchallenges due to the popularity of advanced high strength steels. Compared with thetraditional mild steels, advanced high strength steels usually contain higher carbonequivalent and more alloying elements, which lead to a large amount of coarse lathmartensites during the rapid heating and cooling of the RSW process. Those hard butbrittle microstructures will weaken the ductility and fatigue performance of the RSWjoints, and raise the probability of interfacial failure under external loads. It has beenpractically proven that process-parameters adjustment or post-weld heat treatment isable to increase the nugget diameter or partially reduce the brittleness. Nevertheless,these traditional quality control methods also raise energy consumption and reduceproduction efficiency. As an emerging technology featuring both low energyconsumption and high efficiency, magnetically-assisted (MA) control method base onthe electromagnetic stirring of molten metals has been successfully applied incontinues casting and arc welding by affecting the temperature distribution and thecrystallization during the heating and cooling process.
     In the present dissertation, a novel magnetically-assisted resistance spot weldingmethod (MA-RSW) has been proposed to affect the nugget formation process by theLorentz force generated from the interactions of an externally applied magnetic fieldand the conduction current. To achieve the research purpose, the mode of the externalmagnetic field was theoretically discussed, based on which an experimental platform of the MA-RSW process was established. Besides, a finite element model,considering the coupling of structural, electric, thermal, magnetic, and flow fieldsduring the MA-RSW process, has been proposed for the first time. The controlmechanism of the external magnetic field on the transport phenomena during theMA-RSW process were revealed by exploring the evolution of fluid flow under theelectromagnetic stirring effect. Moreover, the nugget shape, weld microstructures,joint mechanism performance in terms of quasi-static strength and fatigue life, wereall experimentally studied, based on which a nugget size evaluation criteria wasestablished for the MA-RSW joints. Furthermore, the quality improvement effect bythe MA-RSW method was experimentally validated on typical ultra-high strengthsteel used in car body manufacturing. In addition, the original MA-RSW experimentalplatform was further explored to improve its practicality. The present dissertationcontributes to the application of the MA-RSW method in automobile industrial. Thedissertation is composed of the following four parts:
     1) Mode of the external magnetic field and experimental setup of theMA-RSW process
     Electromagnetic field distributions, fluid flow patterns of the molten metal, andthe corresponding nugget shapes were theoretically analyzed and compared amongdifferent modes of the external magnetic field. The optimal mode was eventuallyconcluded as: parallel to the interface of sheet/sheet, axisymmetric about the centralaxis of the electrode arm, and symmetric about the interface of sheet/sheet. Base onthe theoretical analyses, an experimental platform of the MA-RSW process wasestablished with a pair of ring-shaped axially magnetized NdFeB permanent magnetsacting as the external magnetic source.
     2) Finite element modeling and the evolution mechanism of the transportphenomena during the MA-RSW process
     Coupling of the structural, electric, thermal, magnetic, and flow fields of theMA-RSW process were fulfilled by the proposed finite element model based onfurther development of the ANSYS11.0/Multiphysics platform. Control mechanismof the external magnetic field on the transport phenomena of the molten metal duringnugget formation of the MA-RSW process was revealed by exploring the evolution offluid flow under the electromagnetic stirring effect. Results showed that during theMA-RSW process, the molten metal would not only flow in the radial planes throughthe central axis of the electrode arm, but also show a strong trend of centrifugalmovement by rushing to the nugget edge along the diameter direction under the effectof the circumferential external magnetic force, which would become the dominantfluid flow mode in the middle-late welding stage. Compared with the traditional RSWprocess, the maximum flow speed of molten metal during the MA-RSW process was much higher. The band-shaped high-temperature zone within the MA-RSW nuggetuniformly distributed along the nugget diameter direction. The eventually formedMA-RSW nugget was peanut-shell-shaped with the two ends thicker than the center.
     3) Quality of the resistance spot welded advanced high strength steels underthe effect of the external magnetic field
     It has been found from the experimental study on DP590and DP780thatcompared with the traditional ellipsoid RSW nugget, the peanut-shell-shapedMA-RSW nugget was wider and thinner. Besides, the weld microstructures were moreuniform with brittleness reduction. For spot welded1.25mm thick DP780steel sheetsunder the effect of the external magnetic field, the tensile-shear force and themaximum displacement at failure were increase by about12.0%and15.9%,respectively, and the fatigue performance was also improved, especially in high cycleconditions. Moreover, under the effect of the external magnetic field, the fracturemodes of the welding joints were improved when the welding current was close to thecritical value required to prevent interfacial fractures. Besides, more dimples, whichare capable of energy absorption, were found at the fracture surfaces.
     4) Size evaluation criteria for MA-RSW nuggets and typical engineeringapplications of the MA-RSW method
     For the shape characteristics of the MA-RSW nugget, a quality evaluationcriteria was established based on the relationship between nugget size andtensile-shear force as follows: for MA-RSW joints with the penetration more than25%, the wider the nugget diameter is, the higher that joint strength will be; forMA-RSW joints with the penetration between15%to25%, both the nugget diameterand the penetration are the major size attributes evaluating weld quality; forMA-RSW joints with the penetration less than15%, the strength will be tremendouslyreduced and the weld quality is poor. Further study based on the size evaluationcriteria found that under proper welding parameters the MA-RSW process could be analternative way to guarantee weld quality as well as reduce energy consumption bynearly300~500A welding current reduction. Moreover, the MA-RSW method wasexperimentally validated on ultra-high strength steel DP1000and the experimentalplatform of the MA-RSW system was further developed to improve the flexibility andcontrollability.
     In summary, the present dissertation has systematically studied the controlmechanism of the external magnetic field on RSW process with advanced highstrength steels, which has laid a firm foundation of the application of the MA-RSWmethod in the RSW field.
引文
[1] Nishimoto Akihiro, Hosoya Yoshihiro, Nakaoka Kazuhide. New type of dual-phasesteel sheet for automobile outer body panels. Transactions of the Iron and Steel Instituteof Japan,1981,21(11):778-782.
    [2] Murali D. Tumuluru. Resistance spot welding of coated high-strength dual-phase steels.Welding Journal,2006(8):31-37.
    [3] V. H. Lopez-cortez and F. A. Reyes-valdes. Understanding resistance spot welding ofadvanced high-strength steels. Welding Journal,2008,87(12):36-40.
    [4] ULSAB-AVC Consortium, Technical Transfer Dispatch#6(Body Structure Materials),May26,2001.
    [5] Future Steel Vehicle, Final Engineering Report, phase2, April20,2011.
    [6] Wu S.K.A. Methodology for optimal door fit in automobile body manufacturing. Ph.dDissertation by the University of Michigan,1991.
    [7] D. Ceglack and J. Shi. A knowledge-based diagnostic approach for launch of auto bodyassembly process. Journal of Engineering for Industry,1994,116(12):491-499.
    [8] Hu. S. J, Stream of variation theory for automotive body assembly. Annals of the CIRP,1997,46(1):1-6.
    [9] Okita Tomoyoshi, Hosoya Yoshihiro and Nakaoka Kazuhide, Manufacturing process ofhot rolled dual phase steel. Journal of the Iron and Steel Institute of Japan,1982,68(9):1313-1322.
    [10] W. L. Chuko and J. E. Gould. Development of appropriate resistance spot weldingpractice for transformation-hardened steels. Welding Journal,2002,81(1):1-8.
    [11] J. E. Gould, S. P. Khurana and T. Li. Predictions of microstructures when weldingautomotive advanced high-Strength steels. Welding Journal,2006,85(1):111-116.
    [12] M. I. Khan, M. L. Kuntz, E. Biro and Y. Zhou. Microstructure and mechanicalproperties of resistance spot welded advanced high strength steels. MaterialsTransactions,2008,49(7):1629-1637.
    [13] X. Sun. Effects of fusion zone size on strength and failure modes of advancedhigh-strength steel spot welds. AWS Detroit Section’s Sheet Metal Welding ConferenceXII, Livonia, Mich., May9-12,2006.
    [14] M. Marya and X. Q. Gayden. Development of requirements for resistance spot weldingdual-phase(DP600) steels part1: the causes of interfacial fracture. Welding Journal,2005(11):172-181.
    [15] M. Marya and X. Q. Gayden. Development of requirements for resistance spot weldingdual-phase(DP600) steels part2: statistical analyses and process maps. Welding Journal,2005(12):197-204.
    [16] B. Yan, H. Zhu, S. H. Lalam, et al.. Spot weld fatigue of dual phase steels. SAETechnical Paper Series,2004-01-0511.
    [17] M. Kuo and J. Chiang. Weldability study of resistance spot welds and minimum weldbutton size methodology development for DP steel. SAE Technical paper series,2004-01-0169.
    [18]中国机械工程学会焊接学会.电阻焊(III)专业委员会,电阻焊理论与实践,机械工业出版社,北京,1994.
    [19] Marya, M., Wang, K., Hector, L. G., et al., Tensile-shear forces and fracture modes insingle and multiple weld specimens in dual-phase steels. ASME Journal ofManufacturing Science and Engineering,2006,128(1):287-298.
    [20]赵熹华,姜以宏.点焊熔核“柱状+等轴”组织形成机理分析.金属科学与工艺,1989,8(3,4):146-152.
    [21]赵熹华,程亭杰,徐国成等.点焊熔核的孕育处理研究.焊接学报,1996,16(4):2004-247.
    [22] Yasuharu Sakuma and Yasuo Takahashi. Spot-weldability of galvannealed steel sheetswith a tensile strength of590MPa. Society of Automotive Engineers of Japan,2002,23:142-144.
    [23] W. Peterson. Method to minimize the occurrence of interfacial fractures in HSS spotwelds. AWS Detroit Section’s Sheet Metal Welding Conference XII, Livonia, Mich.,May9-12,2006:1-3.
    [24] V. H. Baltazar Hernandez, M. L. Kuntz, M. I. Khan, et al.. Influence of microstructureand weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds.Science and Technology of Welding and Joining,2008,13(8):769-776.
    [25] GM/NAO,2006, High Strength Steel Applications Manual. Chapter2High strengthsteel versus mild steel:2-60.
    [26] Armando Joaquin and Adrian N. A. Elliott. Reduction of shrinkage voids in resistancespot welds of advanced-high strength steels. Sheet Metal Welding Conference XII,2006.
    [27] K. S. Oh and Y. W. Chang. Macrosegregation behavior in continuously cast high carbonsteel blooms and billets at the final stage of solidification in combination stirring. ISIJInternational,1995,35(7):866-875.
    [28] M. H. Sha, T. M. Wang, J. Li, et al. Numerical simulation of horizontal continuouscasting process of round copper billet with electromagnetic stirring. InternationalJournal of Cast Metals Research,2011,24:197-202.
    [29] Arvind Kumar and Pradip Dutta. A scaling analysis of alloy solidification in presenceof electromagnetic stirring. Journal of Physics D: Applied Physics,2006,39:3058-3066.
    [30] J. Luo, Q. Luo, Y. H. Lin, et al., A new approach for fluid flow model in gas tungstenarc weld pool using longitudinal electromagnetic control. Welding Journal,2003,82(8):202-206.
    [31] J. Luo, Q. Luo, X. J. Wang, et al.. EMS-CO2welding: a new approach to improvedroplet transfer characteristics and welding formation. Materials and ManufacturingProcesses,2010,25(11):1233-1241.
    [32] Yunhai Su, Zhengjun Liu and Duo Liu. Effect of magnetic field on microstructure andproperties of magnesium alloy welded joint with GTAW. Advanced Materials Research,2011,189-193:3507-3510.
    [33] V. A. Popov. Effect of the magnetic field on the formation of the joint in resistance spotwelding. Welding International,1993,7(11):905-907.
    [34] Y. Watanabe, T. Takeda and H. Sato. Effect of magnetic field on weld zone byspot-welding in stainless steel. ISIJ International,2006,46:1292-1296.
    [35]张忠典,王亚荣,李双双.外加径向恒定磁场改善高强钢点焊质量.第十一次全国焊接会议论文集(第1册).北京:机械工业出版社,2005:406-409.
    [36] American National Standard,1997. Weld button criteria, recommended practices fortest methods for evaluating the resistance spot welding behavior of automotive sheetsteel materials. ANSI/AWS/SAE/D8.9-97, Section6.7
    [37]杨黎峰,赵熹华.电阻点焊过程数值模拟关键技术研究与进展.航天制造技术,2004(2):50-54.
    [38] G. R. Archer. Calculation for temperature response in spot welds. Welding Journal,1960,39(8):327-330.
    [39] Z. Han, J. Orozco and J. E. Indacoches. Resistance spot welding: a heat transfer study.Welding Journal,1989,68(2):363-370.
    [40] A. E. Houchens, R. E. Page and W. H. Yang. Numerical modeling of resistance spotwelding: Numerical Modeling of Manufacturing Process,98th Winter Annual ASMEMeeting,1977, Atlanta, Georgia:117-129.
    [41] H. S. Cho. A study of the thermal behavior in resistance spot welds. Welding Journal,1989,68(6):2368-2448.
    [42]程方杰,单平.铝合金电阻点焊的形核特点.焊接学报,2003,24(2):35-43.
    [43]曹彪,姜以塞.点焊熔核形成过程有限元模型.机械工程学报,1995,31(2):99-104.
    [44] Browne D. and J. Source. Computer simulation of resistance spot welding in aluminum:part I. Welding Journal,1995,74(10):339-345.
    [45] ANSYS,2011. Version12. Canonsburg: ANSYS Inc.
    [46]刘嘉苓,文慕冰,陈乾惕.双相钢的特征与生产工艺.钢铁研究,1985(3):88-94.
    [47]吴宝榕.双相钢-物理和力学冶金.冶金工业出版社,1988年.
    [48]林忠钦,胡敏.轿车白车身点焊装配过程有限元分析.焊接学报,2001,22(1):36-40
    [49] Chuko W. and Gould J. E.. Development of appropriate resistance spot welding practicefor transformation-hardened steels. Report to the American Iron and Steel Institute,2002.
    [50] Zhou M., Hu S. J. and Zhang H.. Critical specimen sizes for tensile-shear testing ofsteel sheets. Welding Journal,1999,78:305-312.
    [51] Tomasz Wierzbicki. New research program on fracture of advanced high strengthsteels(AHSS). The Impact and Crashworthiness Lab, MIT, Aug2006.
    [52] H. Zhang and J. Senkara. Resistance Welding Fundamentals and Applications. CRCPress/Taylor&Francis Group, Boca Raton, London, New York,2005.
    [53] M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, et. Al.. Effect of weld nugget size onoverload failure mode of resistance spot welds. Science and Technology of Welding andJoining,2007,12(3):217-225.
    [54] M. Pouranvari and S. P. H. Marashi. Factors affecting mechanical properties ofresistance spot welds. Materials Science and Technology,2010,26(9):1137-1144.
    [55] Y. J. Chao. Failure mode of spot welds: interfacial versus pullout. Science andTechnology of Welding and Joining,2003,8(2):133-137.
    [56] P. Salvini, V. Vullo, F. Vivio, P. Guarino. One shot failure modes in spot weldedstructures. Welding International,2005,19(4):297-304.
    [57] Kurt Hofman. AC or DC for resistance welding dual-phase600. Welding Journal,2005(1):46-48.
    [58] J. A. Greenwood. Temperature in spot welding. British Welding Journal,1961(9):316-322.
    [59] K. E. Bentley and J. A. Greenwood. Temperature distributions in spot welds. WeldingResearch Aboroad,1964(2):42-48.
    [60] Warren Rice and E. J. Funk. An analytical investigation of the temperature distributionduring resistance welding. Welding Journal,1967,46(4):175-186.
    [61] Nied. H. A. The fmite element modeling of the resistance spot welding process.Welding Journal,1984,63:123-132.
    [62] C. L. Tasi, O. A. Jammal and J. C. Papritan. Modeling of resistance spot weld nuggetgrowth. Welding Journal,1992,71(2):47-54.
    [63]龙昕,汪建华.电阻点焊温度场分布的数值模拟.上海交通大学,2001,35(3):416-419.
    [64] Khan J. A., Xu L. J., Chao Y. J., Broach K.. Numerical simulation of resistance spotweld process. Numerical Heat Transfer, Part A,2000,37:425-446.
    [65]徐国成,赵熹华.弹簧钢点焊熔核温度场的有限元模型.吉林工业大学自然科学学报,2000,30(10):12-16.
    [66] Wei P. S., Wang S. C. and Lin M. S.. Transport phenomena during resistance spotWelding. ASME Journal of Heat Transfer,1996,118(3):762-773.
    [67] S. C. Wang, P. S. Wei. Modeling dynamic electrical resistance during resistance spotwelding. ASME Journal of Heat Transfer,2001,123(6):576-585.
    [68] Wei P. S., Wu T. H. and Hsieh S. S.. Phase change effects on transport processes inresistance spot welding. Science and Technology of Welding and Joining,2010,15(6):448-456.
    [69] Wei P. S., Wu T. H.. Effects of electrical current on transport processes in resistancespot welding. J. Mech.,2011,27(1):19-26.
    [70] Wei P. S. and Wu T. H.. Magnetic property effect on transport processes in resistancespot welding. J. Phys. D: Appl. Phys,2011,44:325501.
    [71]王春生,陈勇,韩凤武.陆培德.王洪亮.三层不锈钢板电阻点焊温度场数值模拟.机械工程学报,2004,40(1):191-194.
    [72]李永兵.感应磁场作用下电阻点焊熔核形成过程研究.上海交通大学博士学位论文,2005.
    [73] Li Y. B., Lin Z. Q., Hu S. J., et al.. Numerical analysis of magnetic fluid dynamicsbehaviors during resistance spot welding. J. Appl. Phys.,2007,101(5):053506.
    [74] Li Y. B., Lin Z. Q., Lai X. M., et al.. Induced electromagnetic stirring behavior in aresistance spot weld nugget. Sci. China Tech. Sci.,2010,53(5):1271-1277.
    [75] Li Y. B., Lin Z. Q., Shen Q., et al.. Numerical analysis of transport phenomena inresistance spot welding process. ASME J. Manuf. Sci. Eng.,2011,133:031019.
    [76] H. S. Marr. Electromagnetic stirring: stepping stone to improved continuously castproducts. ISIJ Int.,1979(2):39-40.
    [77]李子全,吴炳尧.等温温度和微量合金化对电磁搅拌AZ-27流变组织的影响.铸造,1997(12):6-10.
    [78]周土平,曲英,韩至成.钢的电磁铸造.钢铁,1994,29(12):71-74.
    [79]詹美燕,李元元,陈维平.电磁搅拌铸造及其在镁合金上的应用.轻合金加工技术,2007,35(8):6-8.
    [80] Arvind Kumar and Pradip Dutta. A scaling analysis of alloy solidification in presenceof electromagnetic stirring. J. Phys. D: Appl. Phys.,2006(39):3058-3066.
    [81] M.-H. Sha, T.-M. Wang, J. Li, T.-J. Li and J.-Z. Jin. Numerical simulation of horizontalcontinuous casting process of round copper billet with electromagnetic stirring.International Journal of Cast Metals Research,2011,24(3/4):197-202.
    [82] Villafuerte J. C. and Kerr H. W.. Electromagnetic stirring and grain refinement instainless steel GTA welds. Welding Journal,1990,69(1):1-13.
    [83] B. P. Pearce and H. W. Kerr. Grain refinement in magnetically GTA welds of Aluminumalloys stirred. Metallurgical Transactions B.,1981,12B(9):480-486.
    [84] J. C. Villafuerte and H. W. Kerr. Electromagnetic stirring and grain refinement instainless steel GTA welds. Welding Journal,1990,69:1-4.
    [85] T. Watanabe, H. Nakamura and K. Ei. Grain refinement by TIG welding withelectromagnetic stirring—a study of solidification control of austenitic stainless steelweld metal. Welding International,1989(4):312-317.
    [86] Li Y. B., Lin Z. Q., Chen G. L., et al.. Study on moving GTA weld pool in an externallyapplied longitudinal magnetic field with experimental and finite element methods.Modelling Simul. Mater. Sci. Eng.,2001,10(6):781-798.
    [87]江淑园,郑晓芳,陈焕明,刘志凌.外加磁场对CO2焊飞溅的控制机理.焊接学报,2004,25(3):65-67.
    [88]华爱兵,陈树君.殷树言.张晓亮.横向旋转磁场对TIG焊焊缝成形的影响.焊接学报,2008,29(1):5-8.
    [89]孙俊生,武传松.电磁力及其对MIG焊接熔池流场的影响.物理学报,2001,50(2):209-219.
    [90]程秉乾,舒幼生,胡望雨.电磁学专题研究.北京:高等教育出版社,2001.
    [91] Jamil A. Khan, Lijun Xu, Yuh-Jin Chao and Kirkland Broach. Numerical simulation ofresistance spot weld process. Numerical Heat Transfer, Part A,2000,37:425-446.
    [92]赵熹华.压力焊.北京:机械工业出版社,1988:28-37.
    [93]李永兵,林忠钦,来新民,陈关龙.电阻点焊熔核形成过程磁流体动力学分析.焊接学报,2006,27(7):41-44.
    [94] M. Edward.1986. Electricity and Magnetism. Berkeley Physics Course, Non BasicStock Line.
    [95] H. Murakawa and Y Ueda. Mechanical study on the effect of the initial gap upon theweldability of spot weld joint, Transactions of JWRI,1989,18(1):51-58.
    [96]秦荣.计算结构力学.北京,科学出版社,2001.
    [97]史建林.电阻点焊过程的试验研究及数值模拟.西安交通大学硕士学位论文,2000.
    [98]龙昕.电阻点焊过程的数值模拟.上海交通大学博士后士学位论文,2000.
    [99]贾瑞皋,薛庆忠.电磁学.北京,高等教育出版社,2003.
    [100] P. S. Wei and F. B. Yeh. Factors affecting nugget growth with mushy-zone phase changeduring resistance spot welding. ASME Journal of Heat Transfer,1991,113(8):643-649.
    [101]王蔷,李国定,龚克.电磁场理论基础.北京,清华大学出版社,2001.
    [102] Noshadi V., Schneider W., and Kuznetsov A. V.. Internal flow and shell solidification inhorizontal continuous casting processes. Proceedings of the Eighth InternationalConference on Modeling of Casting, Welding, and Advanced Solidification ProcessesVIII, San Diego, CA, June7–12,1998:655–662.
    [103]武传松,曹振宁,吴林.熔透情况下三维TIG焊接熔池流场与热场的数值分析.金属学报,1992,28(10):427-432.
    [104]李永兵,王雅生,陈关龙,林忠钦.外加纵向磁场移动焊接熔池流场和传热耦合分析.西安交通大学学报,2003,37(5):483-487.
    [105]徐建成,徐建民.圆环形永磁片产生的磁场的解析计算及其磁化强弱的检查.有色金属,2006,58(1):77-80.
    [106]曹昌祺.电动力学(第二版).北京:人民教育出版社,1979.
    [107]赵学端,廖其奠.粘性流体力学(第2版).北京:机械工业出版社,1993.
    [108]王启杰.对流传热传质分析.西安:西安交通大学出版社,1991.
    [109] Z. G. Hou, Ill-Soo Kim, Y. X. Wang, C. Z. Li and C. Y. Chen. Finite element analysisfor the mechanical features of resistance spot welding process. Journal of MaterialsProcessing Technology,2007,185:160-165.
    [110] M. Wang, H. T. Zhang, H. Pan and M. Lei. Numerical simulation of nugget formationin resistance spot welding of DP590dual-phase steel. Shanghai Jiaotong Daxue Xuebao,2009,43:56-60.
    [111] ASM International. Metals handbook, desk edition,1998.
    [112] GB/T13560-2009,烧结钕铁硼永磁材料.
    [113]沈琦,李永兵,李锐华,陈关龙.永磁体作用下电阻点焊熔核中的电磁场分布规律.上海交通大学学报,2011,45(1):25-29.
    [114]舒玮,王学敏,李书端,贺信莱.焊接热影响区针状铁素体的形核长大及其对组织的细化作用.金属学报,2011,47(4):435-441.
    [115]万响亮.针状铁素体形成对焊接接头组织细化的影响.武汉科技大学硕士学位论文,2010.
    [116]许君.双相钢点焊接头疲劳特性及寿命预测研究.上海交通大学博士学位论文,2008.
    [117]田胜元,萧曰嵘.实验设计与数据处理.北京:中国建筑工业出版社,1988.
    [118]隋允康,张轩,宇慧平.结构形状优化响应面方法的改进与应用.北京工业大学学报,2008,34(1):31-37.
    [119]李永兵,林忠钦,李锐华,来新民,陈关龙.磁控电阻点焊系统,国家发明专利,200910056333.5.
    [120] C. V. Nielsen, K. S. Friis, W. Zhang, et al.. Three-sheet spot welding of advancedhigh-strength steels. Welding Journal,2010,90(2):32-40.
    [121] Zhang Xiaoyun, Chen Guanlong, Zhang Yansong, Lai Xinmin. Improvement ofresistance spot weldability for dual-phase(DP600) steels using servo gun. Journal ofMaterials Processing Technology,2009,209:2671-2675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700