用户名: 密码: 验证码:
坝基岩体质量量化分级及图形展示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体结构是我国工程地质界在评价岩体工程性质方面取得的重要成果,“岩体结构控制论”是岩体力学的基础理论。本文结合溪洛渡水电工程,以丰富的统计、测试资料为基础,以岩体结构为主线,深入研究了坝基岩体结构、岩体质量的空间变化特征,在岩体结构分类指标定量化、坝基岩体质量量化分级及岩体质量指标空间数据库的建立、岩体质量图形展示技术方面取得了一定的进展。
     由于受原生建造、后期构造改造和浅表生作用的影响,岩体中常发育多组裂隙,形成相互交切的结构面网络系统,使岩体结构复杂化。本文在对比分析目前两种常用的结构面测量方法优缺点基础上,首次提出了一种改进的结构面测量方法—节理详细精测法,并利用大量的统计结果,研究合理的间距取值方法,根据间距无偏差测量的最小有效测线长度理论,选择5m作为统计区间长度,获得了节理间距、条数、总长度随洞深的连续变化值。节理间距作为划分岩体结构类型的主要指标,因条件限制,在某些地段(如河床部位)不可能获得,因此必须采用其它容易获得的指标代替,但目前对多指标之间的对应性、可转换性研究较少。本文研究了用表征岩体完整程度的指标—完整性系数、RQD及5m洞段节理条数J_D(与体积节理数类似)划分岩体结构类型的可行性。对两岸坝肩部位,节理间距、完整性系数、5m洞段节理条数这三项指标划分的岩体结构类型基本一致;河床坝基部位主要用RQD指标来判断岩体结构类型。风化营力的作用使岩体中次生裂隙增多从而导致岩体完整性、岩体结构的变化,本文以波速比为纽带,研究了两岸坝肩部位岩体结构量化指标与风化分带的关系。
     借鉴国内外岩体质量分类的成功经验,以岩体结构作为分级(分类)的基础,选择岩体结构量化指标作为岩体质量量化分级的主要因素,提出了坝基岩体质量量化分级方案。利用实测资料,研究了单指标(节理间距、完整性系数、5m洞段节理条数)划分岩体质量等级的对应性,验证了单指标(完整性系数K_V、节理间距D)和双指标(K_V×D×1000)划分岩体质量等级的一致性。
     大型水电工程往往积累有丰富的勘探资料,如何科学地管理这些资料并将其直观、准确地反映在工程地质图件上,即将岩体结构类型及岩体质量空间变化特征以图形展示,是当前研究的重点和难点之一。本文利用大地坐标系建立了能纳入坝址平洞、钻孔、地表露头等有关岩体质量分级要素的空间数据库,利用坝基岩体质量渐变特征,将有限的勘探测试成果扩展到它们能控制的空间上,并编制了配套的切图软件,实现了岩体质量的可视化,利用岩体质量等级分区图可以获得两岸坝肩部位各级岩体的埋深情况和河床不同高程段各类岩体所占的面积比例,为水工建筑物的合理布置提供重要资料。这种研究坝基岩体质量的思路、方法可以推广到其它水电工程。
Great achievements have been made in rock mass structure research to evaluate engineering properties of rock mass in engineering geological domain of our country, and rock mass structure cybernetics becomes the basic theory of rock mass mechanics. Basing on the abundant statistic and testing data of Xiluodu Hydroelectric project, the spatial characters of rock mass structure and quality in dam foundation are detailed studied. Some progress is made in the following aspects: quantification of rock mass structure indexes, quantized quality classification of dam foundation rock mass, establishment of spatial database of rock mass quality indices and the diagrammatic representation of rock mass quality.
    Under the influence of original formation, tectonic reconstruction, superficial and epigene-action, network of structure planes was created in rock mass, accordingly complicated the rock mass structure. After contrasting and analyzing the two common used measure method of discontinuity, a modified method that is elaborate method of joint surveying is put forward for the first time. Rational method to get spacing of joints is researched utilizing lots of statistical results. According to the theory of minimal valid length of scanline, 5m is chose as appropriate statistical section length to obtain the successive values of those indices indicating rock mass structure, they are spacing, number and total length of joint. Although joint spacing is an important index in rock mass structure classification, it can't be obtained in some regions such as riverbed, so the practicability of using those indexes which characterizing the integrity degree of rock mass to class the rock mass structure is studied, and good coincidence is shown in rock mass structure classification by joint spacing, integrity coefficient and number of joints in dam abutment. In riverbed, RQD is an appropriate index of rock mass structure classification. Because the weathering agent causes the change of integrity and structure of rock mass, the relationship between rock mass structure indexes and weathering zoning is discussed through wave velocity ratio.
    Drawing lessons from internal and external successful experiences in rock mass quality classification, the scheme of quantized quality classification of dam foundation rock mass is put forward choosing quantization indices of rock mass structure as primary factors, and the consistency of single index and combined index on determine rock mass quality grade is also verified by measured data.
    In order to scientifically manage exploration data, three-dimensional database composed of rock mass quality indices is established under the geodetic reference frame. Those indices are obtained from adits, drill holes and outcrops. To efficiently make use of exploration data, finite testing results are spread to the extent which they can control in term of the characters of gradual change of rock mass quality. In addition, corresponding software is programmed, which makes the visualization of rock mass quality come true. From the zonal map, the burying depth and area percentage of rock mass which belong to different grades in dam abutment and riverbed can be obtained respectively. So embedded depth can be determined preliminarily according to the requirement of high arch dam for foundation rock mass. Then important data are provided for rational layout of hydraulic structures. This thought and method of studying dam foundation rock mass quality can be extended to other water-power projects.
引文
[1]赵纯厚,朱振宏,周端庄.世界江河与大坝.北京:中国水利水电出版社,2000.
    [2]陈宗粱 .世界超级高坝.北京:中国电力出版社,1998.
    [3]汝乃华,姜忠胜.大坝事故与安全·拱坝.北京:中国水利水电出版社,1995.
    [4]张倬元,王士天,王兰生.工程地质分析原理.北京:地质出版社,1994.
    [5]柳赋铮.岩体基本质量和工程岩体分级.长江科学院院报.1991,增刊.
    [6]王维纲,单守智.岩石分级的理论与实践. 工程地质学报.1994,2(3).
    [7]张咸恭,王思敬,张倬元等.中国工程地质学.北京:科学出版社,2000.
    [8]吴永华.某坝址岩石风化带声速特征.全国首届工程地质学术会议论文选集 .北京:科学出版社,1993.
    [9]潘祖弼.风化岩体中的波速特征.工程勘察科学技术.1985,(4).
    [10]杜时贵,程俊杰,王思敬.岩体的基本构成——结构面和结构体.工程地质学报.2000,8(增刊).
    [11]《工程地质手册》编写委员会,工程地质手册(第三版).北京:中国建筑工业出版社,1992.
    [12]孙玉科.大型岩体工程中的工程地质力学问题.中国科学基金.1994,(4).
    [13]孙玉科,李建国.岩质边坡稳定的工程地质研究.地质科学.1965,(4).
    [14]谷德振.岩体工程地质力学基础.北京:科学出版社,1979.
    [15]王思敬,杨志法,刘竹华.地下工程岩体稳定分析.北京:科学出版社,1984.
    [16]孙广忠.岩体结构力学.北京:科学出版社,1988.
    [17]孙广忠.论“岩体结构控制论”.工程地质学报.1993年9月,创刊号.
    [18]孙广忠.岩体力学的进展——岩体结构力学.岩石力学与工程学报.1991,10(2).
    [19]孙广忠.论地质工程的基础理论.工程地质学报.1996,4(4).
    [20]孙玉科.岩体结构力学——岩体工程地质力学的新发展.工程地质学报.1997,5(4).
    [21]王兰生,李天斌.浅生时效变形结构.地质灾害与环境保护.1991,2(1).
    [22]王兰生,李天斌,赵其华.浅生时效构造与人类工程.北京:地质出版社,1994.
    [23]李天斌.岩体浅生时效变形破坏机制的研究.成都地质学院硕士学位论文,1988.
    [24]李天斌,王兰生,徐进.一种垂向卸荷型浅生时效构造的地质力学模拟.山地学报.2000,18(2).
    [25]Bingham C. Distributions on the sphere and on the projective plan. [Ph D Dissertation] Yale University, 1964.
    [26]Shanley R J,Mathtab M A. Delineation and analysis of clusters in orientation data, Mathematical Geology. 1976,8(1).
    [27]Kulatilake P. H. S. W.,et al. Joint network modelling with a Validation exercise in Stripa Mine Sweden. Int. J.Rock Mech. Min. Sci.&Geomech. Abstr. 1993,30(1).
    [28]陈剑平等.随机不连续面三维网络计算机模拟原理.长春:东北师范大学出版社,1995.
    [29]汪小刚,贾志欣,陈祖煜.岩石结构面网络模拟原理在节理岩体连通率研究中的应用.水利水电技术.1998,29(10).
    [30]Amitava Ghosh&Jaak J.K.Daemen.岩石不连续面的分维特征.Engineering Geology.1993,34.
    [31]徐光黎.岩石结构面几何特征的分形与分维.水文地质工程地质,1993,20(2).
    [32]平田隆幸.断层与分数维.地震地质译丛,1991(1).
    [33]张继春,钮强,徐小荷.岩体节理间距分布的分形模型研究.金属矿山.1994,2.
    [34]黄国明,黄润秋.节理岩体分形描述.中国煤田地质.1998,10(3).
    [35]丁多文.岩体结构分形及应用研究.岩土力学.1993,14(3).
    [36]刘建国,彭功勋,韩文峰.岩体裂隙网络的分形特征.兰州大学学报(自然科学版).2000.36(4).
    
    
    [37]陈菲娴,陈乃明,史震古.岩体节理网络的多重分形研究.南昌大学学报(工科版).1997,19(2).
    [38]秦四清,张倬元,王士天等.节理岩体的分维特征及其工程地质意义.工程地质学报.1993,1(2).
    [39]Sen Zekai.Fractal Dimension and Rock Quality Charts.Bulletin of the Association of Engineering Geologsts. 1992,29(1).
    [40]陈剑平,王清,肖树芳.岩体裂隙网络分数维计算机模拟.工程地质学报.1995,3(3).
    [41]夏元友,朱瑞赓.关于分形理论在结构岩体的应用研究.岩石力学与工程学报.1997,16(4).
    [42]张咸恭.工程地质学(上册).北京:地质出版社,1978.
    [43]韩爱果.地下洞室岩体结构、围岩质量的量化及稳定性分析——以金沙江向家坝水电站右岸地下洞室为例.成都理工学院硕士学位论文,1999.
    [44]Z.T.Bieniawski.Engineering Classification of Jointed Rock Mass.Trans.S.Africa Inst.Civ.Engrs.1973,15(12).
    [45]周思孟.复杂岩体若干岩石力学问题.北京:中国水利水电出版社,1998.
    [46]中华人民共和国水利部主编.工程岩体分级标准(GB50218—94).北京:中国计划出版社,1995.
    [47]中华人民共和国水利部主编.水利水电工程地质勘察规范(GB50287—99)北京:中国计划出版社,1999.
    [48]胡卸文,黄润秋.水利水电工程中的岩体质量分类探讨.成都理工学院学报.1996,23(3).
    [49]长江流域规划办公室.岩石坝基工程地质.北京:水利电力出版社,1982.
    [50]余仁福,李天扶.龙羊峡水电站坝基岩体质量分类及力学参数选择.工程地质.1989,2.
    [51]邹成杰.坝基岩体工程地质分类的初步研究.工程地质.1989,1.
    [52]廖明亮.桐子林水电站坝基岩体质量分级研究及其应用.水电站设计.1996,12(4).
    [53]徐卫亚,喻和平,谢守益等.清江隔河岩坝基工程岩体质量评价研究.工程地质学报.1999,7(2).
    [54]周志东,胡卸文,张倬元等.西南某水电站坝肩岩体质量分级方法选取探讨.成都理工学院学报.1999,26(1).
    [55]胡卸文,黄润秋.西南某电站坝区岩体强度参数选取的工程地质研究.水文地质工程地质.1996,23(1).
    [56]胡卸文,黄润秋,徐志文.澜沧江某电站岩体质量分类的力学参数选取探讨.工程地质学报.1996,4(2).
    [57]徐卫亚.三峡工程坝基岩体结构研究.勘察科学技术.1993,(6).
    [58]李云林.三峡工程坝基岩体力学参数选择分析.长江科学院院报.1996,13(3).
    [59]“七五”国家科技攻关17—03—03专题科研组.水电站设计.1991,7(2).
    [60]何启标.李家峡水电站坝基岩体质量分级.水利水电技术.1992(10).
    [61]胡卸文,黄润秋.西南某电站坝区岩体质量分级与评价.水利发电学报.1996,(2).
    [62]柴贺军,黄地龙,黄润秋.地质结构面三维扩展模型研究.水文地质工程地质.1999,26(4).
    [63]蒋晗,徐卫亚,谢守益.三维数字模型超单元生成法在工程岩体质量评价的应用.工程地质学报.2000,8(1).
    [64]聂德新,张咸恭,韩文峰等.天然围压下软弱层带物理力学性质及规律性研究.山的呼唤—工程地质学与可持续发展.北京:地震出版社.1999.
    [65]GM Rea,DX Nie,AG Han Ct at.Applying strength restoration effect to evaluate stability of large scale landslides,Eighth Intermational Congres Intemational Association for Engineering Ggenlogy and the Environment,procedings,1998,Vol.3,p1343-1347.
    [66]张倬元,聂德新,刘家铎等.金沙江向家坝水电站坝址岩石及软弱夹层研究.成都:成都科技大学出版社,1993.
    [67]张咸恭,聂德新,韩文峰.断层泥的物理性质及分布特征的工程地质研究.全国第三次工程地质大会论文选集.成都:成都科技大学出版社,1988.
    
    
    [68]聂德新,张咸恭,韩文峰.软弱岩带工程地质评价的几个问题.第四届全国工程地质大会论文选集(二).海洋出版社,1992.
    [69]聂德新.坝基岩体抗滑稳定分析中软弱层带抗剪参数偏低的主要原因分析.全国第三次工程地质大会论文选集.成都:成都科技大学出版社,1988.
    [70]聂德新.地应力对夹泥抗剪强度的影响.1983年全国水电中青年科技干部报告会论文选集.北京:水利电力出版社,1983.
    [71]聂德新,符文熹,任光明等.天然围压下软弱层带的工程特性及当前研究中存在的问题分析.工程地质学报.1999,7(4).
    [72]Nie Dexin,Zhang Xiangong.Han Wenfeng. Studies on the Correlation between the Effect of Confining Pressure and the Physical and Mechanical Properties of Weak Intercalation. 6th International IAEG Congress Proceedings, 1990.
    [73]任光明,聂德新.软弱层带夹泥物理力学特征的仿真研究.工程地质学报.1999,7(1).
    [74]聂德新,张咸恭.天然地应力及渗流环境下软弱层带工程特性研究.工程地质学报.2000,8(增刊).
    [75]李攀峰.金沙江溪洛渡水电站坝区地应力场及地下洞室群围岩稳定性数值模拟.成都理工学院硕士学位论文,2001.
    [76]International society for rock mechanics, suggested methods for the quantitative description of discontinuities in rock masses, Int. J, of rock mechanics and mining science. 1978,15(6),319~368.
    [77]孔德坊.工程岩土学.北京:地质出版社,1992.
    [78]Barton N..Review of a new shear strength criterion for rock joints. Eng. Geol. 1973, 7: 579~602.
    [79]Barton N., Choubey V. The shear strength of rock joints in theory and practice. Rock Mech. 1977, 10: 1~54.
    [80]杜时贵.岩体结构面粗糙度系数研究进展.现代地质,1995,9(4).
    [81]Mandelbrot B.B. The Fractal Geometry of Nature. New York. W. H. Freeman, 1982.
    [82]Tse R.,Cruden D M. Estimating joint roughness coefficients. Int. J Rock Mech Min Sci&Geomech Abstr. 1979,16,303~307.
    [83]JAMES R.CARR &JAMES B. WARRINER. Fractal dimension and joints roughness coefficient. Bulletin of the Association of Engineering Geologists. 1989,26(2).253~263.
    [84]王建锋.岩体结构面粗糙度系数研究进展.地质科技情报.1991,10(1).
    [85]谢和平等.节理粗糙度系数的分形估算.地质科学译从.1992,9.
    [86]谢和平.岩体介质的分形孔隙和分形粒子.力学进展.1993,23(2).
    [87]周创兵.节理面粗糙度系数与分形维数的关系.武汉水利电力大学学报.1996,29(5).
    [88]秦四清,张倬元,王士天等.节理粗糙度曲线的分维特征.成都地质学院学报.1993,20(4).
    [89]孙洪泉,谢和平.岩石节理粗糙度的分形理论与方法综述.矿业世界.1995,(1).
    [90]杜时贵.简易纵剖面仪及其在岩体结构面粗糙度系数JRC研究中的应用.地质科技情报.1992,11(1).
    [91]杜时贵,潘别桐.黄河小浪底水库风雨沟西侧边坡稳定性研究.地球科学—中国地质大学学报.1992,17.
    [92]杜时贵.直边法估测JRC的实践检验.工程地质—传统与未来.成都:成都科技大学出版社,1993.
    [93]杜时贵.岩体结构面粗糙度系数JRC的定向统计研究.工程地质学报.1994,2(3)).
    [94]杜时贵.岩体结构面粗糙度系数研究进展.现代地质.1995,9(4).
    [95]吴继敏,陈志坚.国外岩体裂隙面形态特征评价方法综述.水利水电科技进展.1997,17(3).
    [96]黄国明,黄润秋.岩体节理表面几何特性描述.水文地质工程地质.1999,26(5).
    [97]Keith C.Clarke. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area. Computers &Geosciences. 1986,12(5).
    
    
    [98]赵坚.岩石节理吻合系数及其对节理特性的影响.岩石力学与工程学报.1997,16(6).
    [99]Zhao J. Joint surface matching and shear strength .Part A:Joint matching coefficient(JMC).Int. J. of Rock Mechanics and Mining Science. Geomech.Abstr.
    [100]潘别桐,井如兰.岩体结构概率模型模拟和应用.沈阳:东北工学院出版社,1989.
    [101]袁绍国,王震.节理测量误差的来源及其分析.包头钢铁学院学报,1998,17(4).
    [102]Robertson A.G The Interpretation of Geological Factors for Use in Slope Stability. In:Proc Syrup on the Theo. Background to the Planning of Open Pit Mines with Special Ref to Slope Stability. 1970.55~71.
    [103]潘别桐,徐光黎.岩体节理几何特征的研究现状及趋向.工程勘察,1989,(5).
    [104]袁绍国,王震.节理迹长线测量与面测量的精度对比.中国矿业.1999,8(1).
    [105]袁绍国.三维节理岩体结构的计算机模拟.矿山.1985,(2).
    [106]袁绍国,王震,贾国泉.节理长度分布形式对迹长测量误差的影响.包头钢铁学院学报,2000,19(2).
    [107]Haiqing Wu, David D.Pollard.节理间距与岩层厚关系的实验研究.Joint spacing and layer thicldess. 1995,1(6).
    [108]Miller S M. A statistical method to evaluate homogeneity of structural populations. Mathematical Geology. 1983,15(2).
    [109]陈剑平,王清,肖树芳.岩体结构统计均质区的划分.地质灾害与环境保护.1996,7(1).
    [110]张定国,范青松.三峡工程建基岩体彩色数字影像图的纠正技术.人民长江.1999,30(1).
    [111]Bieniawski.地质力学分类法(岩体分类系统).华东水电技术.1993, (4).
    [112]A.S.Costa-Pereira,J.A.Rodrigues-Caroalho. Rock mass classifications for tunnel purpose—Correlations between the systems Proposed by Wickham et al.,Bieniawski and Rocha.隧道译从.1991, (1).
    [113]菊一小吉等(日本).坝基岩石稳定性的岩土力学综合评价.水利水电译文(E83),1983.
    [114]袁绍国,王震.节理测量误差的来源及其分析.包头钢铁学院学报,1998,17(4).
    [115]Steffen O K H, et al. Recent developments in the interpretation of data from the joint surveys in rock masses. Proc 6th Regional Conf for Africa on Soil Mech and Foundation Engineering. Durban, South Africa. 1975.
    [116]陈枫,孙宗颀.岩体不连续面间距数学模型的一个修正函数.工程地质学报.1998,6(2).
    [117]Cruden D M. Describing the size of discontinuities. Int. J.Rock Mech. Min. Sci. & Geomech.Abstr..1977,14(3).
    [118]Priest S.D.,Hudson J.A. Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys. Int.J.Rock Mech. Min. Sci.&Geomech.Abstr. 1981,18(2).
    [119]Laslett G M.Censoring and edge effects in area and line transect sampling of rock joint traces. Mathematical Geology. 1982, 14(2).
    [120]Kulatilake P.H.S.W..Wu T H.Estimation of mean trace Iength of discontinuities, Rock Mech.and Rock Eng. 1984,17(3).
    [121]黄国明,黄润秋.基于交切条件的不连续面平均迹长估算法.地质科技情报.1999,18(1).
    [122]黄国明.节理岩体描述及其工程应用.成都理工学院博士学位论文,1999.
    [123]黄国明,黄润秋.用窗口法估计不连续面的连通率.水文地质工程地质.1998,25(6).
    [124]Einstein H H, Venicziano D, Baecher G B,O Reilly K J. The effect of discontinuity persistence on rock slope stability. Int.J.Rock Mech. Min. Sci.& Geomech. Abstr. 1983,20.
    [125]黄润秋.基体结构面调查的全迹长测量与连通率研究.工程地质学报.2000,8(增刊).
    [126]黄建安,王思敬.断续结构岩体失稳破坏的分离面.水文地质工程地质.1984,11(3).
    
    
    [127]Zhang X.A two dimensional model of en-echelon jointed rock masses with multi-discontinuity geometry parameters. Rock Mechanics and Rock Engineering. 1989,22.
    [128]姚家建,王秋明,冯承树.缓倾角结构面连通系数的研究.工程地质.1989,3(1).
    [129]汪小刚,陈祖煜,刘文松.应用蒙特卡洛法确定节理岩体的连通率和综合抗剪强度指标.岩石力学与工程学报.1992,11(4).
    [130]王青.体积节理计数的统计方法.勘察科学技术.1993,(4).
    [131]Palmstrom A. Application of the volumetric joint count as a measure of rock mass jointing. Proc. Int. Symp. Fundmentals of Rock Joints, Sweden, Bjorkliden, 1985.
    [132]Sen Z,Eissa E A. Rock quality charts for Iog-normally distributed block sizes. Int. J.Rock Mech. Min. Sci.&Geomech. Abstr. 1992,29(1).
    [133]赵文,唐春安.结构面间距和迹长的测量理论.中国矿业.1998,7(3).
    [134]龙亦安.综合声学参数计分评判坝区工程岩体质量的研究.工程勘察.1990,(4).
    [135]蒋友清.用岩心块度指数划分建筑地基岩体完整性.湖南水利.1998,(6).
    [136]王清玉.应用弹性波法对岩体结构分类及有关问题解析.四川水力发电.1994,(1)
    [137]河北省水文地质四大队.应用声波探测技术研究地下洞室稳定性的初步总结.水文地质技术方法.1974(2).
    [138]王清玉.工程岩体弹性波测试若干问题商榷.人民长江.1993,24(9).
    [139]Deere D C. Technical description of rock cores for engineering purposes. Rock Mech &Engng Geol. 1964,1.
    [140]陈家棣.三斗坪花岗岩体的几个质量指标.河海大学学报.1994,22(4).
    [141]秦四清.分维D_f与RQD的关系模型.水文地质工程地质.1995,22(1).
    [142]Sen Zekai. Rock Quality Charts based on cumulative intact lengths. Bulletin of the Association of Engineering Geologists. 1992,29(2).
    [143]Sen Zekai. RQP, RQR and fracture spacing. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr. 1990,27.
    [144]Sen Zekai. RQD models and fracture spacing. J. Geotech. Engng. 1984,110.
    [145]Sen Zekai.&Kezi A..Discontinuity spacing and RQD estimates from finite length scanline. Int. J. Rock Mech.Min.Sci.&Geomech. Abstr. 1984,21.
    [146]Eissa E.A.&Sen Z. Intact length correlation in relation to rock quality designation. Int. J. Rock Mech. Min. Sci.&Geomech.Abstr. 1991,28.
    [147]Priest S.D.,Hudson J.A. Discontinuity Spacingsin rock Int.J.Rock Mech. Min. Sci.&Geomech.Abstr. 1976,13.
    [148]Priest S.D, Hudson J.A. Discontinuities and rock mass geometry. Int. J. Rock Mech.Min.sci.&Geomech.Abstr. 1979,16.
    [149]Goodman R.E. RQD and fracture spacing. J. Geotech Engng Div ASCE. 1980,106.
    [150]Goodman R.E. Methods of geological engineering in discontinuous rock. West. New York. 1976.
    [151]徐光黎.岩石质量指标RQD的估算方法.水文地质工程地质.1991,18(6).
    [152]Attewell P B,Farmer I W. Principles of Engineering Geology. John Wiley and Sons Inc. New York. 1976.
    [153]Palmstrom A. The volumentric joint count-a useful and simple measure of the degree of rock mass joints. Proc 4th Cong Int Assoc Engng Geol. New Delhi. 1982,2.
    [154]Stimpson. B..Intact rock strength and fracture spacing relationships in a porphyry copper deposit. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr. 1980,17.
    [155]Bahaaeldin H S. Block size distribution and quality classification in naturally fractured rocks. Bulletin of the Association of Engineering Geologists. 1992,29(4).
    [156]Boadu E K, Long L T. The fractal character of fracture spacing and RQD. Int. J. Rock Mech.Min. Sci.&Geomech. Abstr. 1994,31.
    
    
    [157]杜时贵.岩石质量定量描述研究现状及趋向.工程地质学报.1998,6(3).
    [158]杜时贵,何芳象,王思敬.PQD研究的几个理论问题.现代地质.1998,12(2).
    [159]杜时贵,许四法,杨树峰等.岩石质量指标RQD与工程岩体分类.工程地质学报.2000,8(3).
    [160]杜时贵.岩体结构面的工程性质.北京:地震出版社,1999.
    [161]杜时贵,王思敬.岩石质量指标(RQD)的各向异性分析.工程地质学报.1996,4(4).
    [162]徐光黎,唐辉明,潘别桐等.岩体结构模型及应用.武汉;中国地质大学出版社,1993.
    [163]潘别桐等.岩体结构概率模型模拟和应用.沈阳:东北工学院出版社,1989.
    [164]王思敬.坝基岩体工程地质力学分析.北京:科学出版社,1990.
    [165]周庆良等.网络模拟在隧道围岩稳定性分析中的应用.公路.1994.
    [166]秦四清,张倬元,王士天等.非线性工程地质学导引.成都:西南交通大学出版社,1993.
    [167]章杨松,罗国煜,阎长虹等.岩石质量描述图与岩石质量风险分析探讨.地质论评.2001,47(2).
    [168]罗国煜,阎长虹.岩坡系统分析与可靠性分析.地质学报.1994,68(2).
    [169]张晓晖,王辉,黄鼎成.补充RQD值的几类岩体质量评价图.地质科技情报.1999,18(1).
    [170]张世殊.坝基岩体块度特征研究.工程地质学报.2001,9(4).
    [171]W.R. DEARMAN, F.J.BAYNES and T.Y.IRFAN. Engineering Grading of Weathered Granite. Eng. Gco. 1978,(12).
    [172]MERRITT A.H.. Engineering classification for in situ rock Ph. D. Thesis, Univ. Illinois, Urbana, 1968.
    [173]DEERE, D.U., MERRITT, A. H. and COON, R.F.. Engineering classification of in situ rock. U.S.Air Force Systems Command, Air Force Weapons Lab., Kirtland Air Force Base, New Mexico, Tech. Rep. AFWL-TR-67-144, Jan., 1969.
    [174]沈军辉.川西南玄武岩岩体结构的浅表生改造与水电工程.成都理工学院博士学位论文,2000.
    [175]陶连金,常春,黄润秋.深切河谷岩体结构的表生改造.成都理工学院学报.2000,27(4).
    [176]钱康,罗征均.漫湾电站坝区卸荷裂隙发育特征及工程地质特性研究.水利水电技术.1994,25(7).
    [177]钱康.天生桥一级水电站岩体风化分带,特征及建基面的确定.人民珠江.1999,(1).
    [178]黄润秋,张倬元,王士天.论岩体结构的表生改造.水文地质工程地质.1994,21(4).
    [179]姚增,赵平劳,邱新红.不同测试方法的纵波波速与静弹模量的相关研究.兰州大学学报(自然科学版).1991,27(3).
    [180]韩爱果,聂德新,王小群.高拱坝建基面选择主控指标的选取.成都理工学院学报.2001,28(增刊).
    [181]Dong Xuecheng. Deformability study of Gezhouba Dam foundation rocks, Rock Mechanics and Rock Engineering. 1987, 20.
    [182]S.A. Slimak, G.R. Ljumoric et al, Determination of Discontinuous Rock Mass Properties by Seismo-acoustic Methods, Proceedings of the Congress of the International Society for Rock Mechanics. 1991, 7.
    [183]DX Nie WX Fu. The Application of primary wave velocity in the assessment of rockmass strength parameters. Engineering and Environmntal Geophysics for the 21st Century, 1997, p518-523.
    [184]赵玉绂.国内外主要围岩分类换算原则和方法.工程地质学报.1993,1(2).
    [185]符文熹.地应力环境场下岩体的变形特性及预测研究.成都理工学院博士学位论文,2000.
    [186]微文工作室编著.Access2000即学即通.北京:人民邮电出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700