用户名: 密码: 验证码:
一重要水库的悬浮物时空动态特征及硝化池对水库水质改善效果分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
某水库是一座抽水型供水水库。本文从2010年7月至2011年6月研究了该水库水体表层悬浮物的时空动态特征及其主要影响因素。结果表明:沿水库水流方向,悬浮物浓度呈现明显的纵向梯度变化,即从硝化池入水口至大坝处,水体表层的悬浮物浓度逐渐降低。入库原水、过后沉池后、孤岛、库中、大坝处全年的平均悬浮物质量浓度为20.8mg/L、18.4mg/L、11.7mg/L、8.8mg/L、8.4mg/L。水体透明度、表层叶绿素浓度的变化与悬浮物浓度呈显著负相关(P<0.05)。入库原水表层悬浮物粒度D(0.5)平均为250.7μm,D(0.9)平均为391.3μm,主要以小型浮游植物、黏土、粉砂等颗粒物为主。过生物硝化池后,D(0.5)和D(0.9)平均分别为144.3μm和363.5μm,主要以粉砂、砂粒为主,同时也含有少量的浮游生物。孤岛附近位于水库的过渡区,颗粒物主要以黏土、粉砂和小型浮游植物等为主。在大坝处和库中附近,D(0.5)和D(0.9)平均为329.1μm和802.6μm,主要以群体性绿藻为主,少量丝状藻类和单细胞藻类(如小球藻等)。
     该水库库尾修建有生物处理工程,工程采用生物接触氧化法作用以降解水中氨氮和有机污染物。本文通过分析原水经生物反应池前后理化指标、叶绿素和悬浮物等的变化,揭示生物处理工艺对该水库水质的影响,结果表明:生物处理工程对入库原水中较高浓度的氨氮有较好的去除效率,而低浓度时效果不明显;降低水体中叶绿素浓度,去除部分藻类;同时还能提高水体中溶氧等。本研究初步评价了不同模式运行下对水质改善的效果,并提出了生物硝化池的调度与运营管理的优化建议。
The reservoir is a type of pumping water reservoir which using for water supply. FromJuly2010to June2011, we studied spatial and temporal variations of suspended solids (SS) insurface water, and its main influence factors. Our results demonstrated that concentration of SSshows a typically longitudinal gradient. Average concentration of SS in raw water is20.8mg/L,and then water flow passing sedimentation pool (18.4mg/L), island (11.7mg/L), middle ofreservoir (8.8mg/L), finally, when water flow arrive the dam, average concentration of SSreduced to8.4mg/L. Concentration of SS showed a significantly negative correlation betweenSecchi depth (SD) and chlorophyll a (P<0.05). Particle size of SS showed a different variationcompared to its concentration. Average of D (0.5) in raw water was250.7μm and D (0.9) was391.3μm, respectively. It was mainly composed of small phytoplankton, clay and sand powderparticles. After reaction with biological nitrification pool, average of D (0.5) was144.3μm andD (0.9) was363.5μm, and it was mainly composed of powder sand, sand and littlepico-plankton. Island is located in the transition area where powder sand, clay and smallphytoplankton were the main components. Average of D (0.5) and D (0.9) were329.1μm and802.6μm near the dam, SS were mainly composed of Chlorophyta, and filamentouscyanobacteria, single-celled algae (such as chlorella sp., etc).
     A biological treatment engineering project had been built in tail area of the reservoir, inorder to degrade ammonia and organic pollutants with biological contact oxidation method.This study analyzed change of physical-chemical parameters, chlorophyll a, SS before and afterbiological reaction. Our results showed that ammonia could be bio-transferred effectively whenits concentration was high. Under running biological treatment, concentration of chlorophyll awould be reduced and some algae would be removed, concentration of DO would be increasedsignificantly. Finally, we assess the effect of water quality improvement under differentoperating conditions, and we also proposed the optimal diversion and management for theoperation of biological treatment.
引文
韩博平.中国水库生态学研究的回顾与展望[J].湖泊科学,2010,22(2):151-160.
    韩博平,冯远船,刘正文.广东省大镜山水库生态学与水质管理研究[J].广州:广东科技出版社,2006.
    韩博平,李铁,林旭钿.广东省大中型水库富营养化现状与防治对策研究[M].北京:科技出版社,2003.
    王占生,刘文君.微污染水原饮用水处理[M].中国建筑工业出版社,1999.
    查人光,贺尧基等.生物接触氧化预处理在石臼漾水厂中的应用[J].给水排水,1999,25(3):9-11.
    肖羽堂,许建华,王冠平.强化微污染原水净化效果的生产性应用研究[J].环境科学,1998,19(3):28-34.
    徐斌,夏四清,胡晨燕等. MBBR工艺预处理黄浦江微污染原水[J].中国给水排水,2004,20(8):5-9.
    周建平,郑国兴.悬浮填料在微污染原水生物预处理中的应用[J].净水技术,2005,24(5):45-46.
    李怀正等.生物接触氧化预处理原水的设计参数[J].中国给水排水,2001,17(2):43-45.
    陈汉辉,孙国胜.东深原水生物预处理工程挂膜启动过程水质净化效果变化的分析[J].环境污染治理技术与设备,2002,3(2):59-61.
    杨岸明等.变频控制DO下SBR硝化反应控制参数及节能的中试研究[J].环境工程学报,2007,1(10):13-17.
    凌霄,胡勇有.曝气生物滤池流态特性研究[J].安全与环境学报,2005,5(4):4-7.
    吴宏海等.东江河微污染原水生化预处理的试验研究[J].中山大学学报,2000,39(6):294-297.
    范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J].中国科学(D辑),2003,33(8):760-768.
    逄勇,罗潋葱.水动力条件下太湖透明度模拟研究[J].地球科学,2005,35(2):145-156.
    凌晖等.纯氧曝气在污水处理和河道复氧中的应用[J].中国给水排水,1999,15(8):49-51.
    王诚信等.污染河流的纯氧曝气复氧[J].上海环境科学,1999,18(9):411-413.
    陈小红等.深圳湾游艇项目悬浮物影响预测与分析[J].海洋环境科学,2000,19(1):48-51.
    王正方.长江口海域悬浮颗粒的行为[J].海洋学报,1985,7(6):722-727.
    阮文杰.长江口天然水流中细颗粒泥沙的絮凝作用[J].海洋科学,1991,6:39-43.
    李道季,李军,陈吉余等.长江河口悬浮颗粒物研究[J].海洋与湖沼,2000,31(3):295-301.
    谷国传.长江口外水域悬沙分布特征[J].东海海洋,1986,4(1):11-19.
    沈焕庭,朱慧芳,茅志昌.长江河口环流及其对悬沙输移的影响[J].海洋与湖沼,1986,17(1):26-35.
    夏福兴, Esima D..长江河口悬浮颗粒有机絮凝研究[J].华东师范大学学报(自然科学版),1991,1:67-70.
    李道季. FACScan流式细胞仪在河口悬浮物研究中的应用[J].海洋湖沼通报,67(3):77-83.
    王宝栋.河口细颗粒泥沙的絮凝作用[J].黄渤海海洋,1994,12(1):71-76.
    余晖,张学青等.黄河水体颗粒物对硝化过程的影响研究[J].环境科学学报,2004,24(7):601-606.
    张运林,秦伯强等.悬浮物浓度对水下光照和初级生产力的影响[J].水科学进展,2004,15(5):615-620.
    刘文君.淮河(蚌埠段)饮用水源水生物接触氧化预处理生产性试验[J].环境科学,1997,33(2):30-33.
    梅翔.微污染水源水生物接触氧化处理工艺中几种填料处理效果的初步比较[J].给水排水技术动态,2000,110(2):43-46.
    陈丽芬,林秋奇,胡韧,韩博平,林举贤,黄芳.亚热带大型水库-新丰江水库的浮游生物群落特征[J].中山大学学报论丛,1995,1:135-141.
    林国恩.广东流溪河水库湖沼学变量的时空动态特征[J].湖泊科学,2009,21:397-404.
    查人光.深度处理组合工艺在石臼漾水厂中的应用[J].给水排水,2007,33(2):9-12.
    韩博平,林旭钿,李铁.广东省大中型供水水库营养现状分析[J].科学出版社,2003,15-18.
    胡韧,林秋奇,王朝晖等.广东省典型水库浮游植物组成与分布特征[J].生态学报,2002,22(11):1939-1944.
    陈洪斌.不同填料类型污染源水生物预处理的比较[J].中国环境科学,2012,32(3):447-453.
    蔡庆华.三峡水库香溪河库湾春季水华期间悬浮物动态[J].应用生态学报,2009,12(4):20-26.
    常秀岭.湖北浮桥河水库悬浮物的季节变化[J].湖泊科学,2010,22(2):300-306.
    李秋华,林秋奇,韩博平.广东大中型水库电导率分布特征及其受N、P营养盐的影响[J].生态环境,2005,4(1):16-20.
    杨美兰.珠江口伶仃洋水域悬浮物的分布特征[J].南方水产,2005,20(2):33-34.
    金相灿,屠清瑛,章宗涉.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    熊水应. MBBR工艺在微污染原水预处理中的应用[J].给水排水,2010,8(7):8-12.
    林少君,贺立静,黄沛生等.浮游植物中叶绿素a提取方法的比较与分析[J].生态科学,2005,24:9-11.
    彭海清.给水处理中藻类的去除[J].中国给水排水,2002,2(2):25-27.
    刘广奇.给水处理除藻技术最新进展[J].净水技术,2008,34(2):32-34.
    韩博平,冯远船,刘正文.广东省大镜山水库生态学与水质管理研究[M].广州:广东科技出版社,2006.
    马克明,孔红梅,关文彬等.生态系统健康评价:方法与方向[M].生态学报,2001,21(12):2106-2116.
    王欣.曝气生物滤池法处理工业用微污染水源水[J].华南理工大学学报,2004,33(6):73-77.
    金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990,286-302.
    林素英,吴新建,郑芳.福州市东南水厂水原水污染特征分析[J].给水排水,2008,34(9):27-30.
    王文燕. Fe(Ⅲ)微生物还原机理及其研究进展.环境污染与防治[J],2006,39(2):11-12.
    刘惠军.炭膜曝气生物膜反应器硝化作用及其微生物群落结构分析[J].环境科学,2007,73(9):33-35.
    国家环境保护总局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2006.
    秦媛.生物接触氧化法去除微污染水源水中的氨氮[J].工业用水与废水,2004,50(6):20-22.
    鞠兴华.城市污水活性污泥生物脱氮模型及模拟研究[M].西安:西安建筑科技大学,2004:33-35.
    林以安.秋季黄海和东海海域沉降颗粒物及其地球化学组成[J].海洋学报,2006,30(1):10-12.
    沈耀良,赵丹,王承武等. ABR反应器的水力特征研究[J].中国给水排水,2003,19(11):1-3.
    阮文杰.长江口天然水流中细颗粒泥沙的絮凝作用[J].海洋科学,1991,27(6):70-72.
    黄廷林,丛海兵,周真明.强化原位生物接触氧化技术改善水原水质的试验研究[J].环境科学学报,2006,25(5):785-790.
    胡敦欣.渤、黄、东海海流和潮汐共同作用下的悬浮物输运、沉积及其季节变化[J].海洋科学,2004,46(1):26-29.
    陈汉辉,孙国胜.东深原水生物预处理工程挂膜启动过程水质净化效果变化的分析[J].环境污染治理技术与设备,2002,3(2):59-61.
    张庆河.絮团与颗粒不等速沉降碰撞研究[J].泥沙研究,2012,15(2):31-32.
    高大文,彭永臻.实时控制技术在污水生物处理中的研究进展[J].应用与环境生物学报,2004,10(6):821-825.
    杨岸明,王淑莹,杨庆等.变频控制DO下SBR硝化反应控制参数及节能的中试研究[J].环境工程学报,2007,1(10):13-17.
    董悦安.密云水库表底层水体交换试验研究[J].北京水利,2004,15(4):60-69.
    凌霄,胡勇有.曝气生物滤池流态特性研究[J].安全与环境学报,2005,5(4):4-7.
    赵文,蕾双林,李德尚等.盐碱池塘围隔生态系统的悬浮物结构及有机碳库储量[J].生态学报,2002,22(12):2133-2140.
    王兴奎.黄土高原侵蚀产沙与高含沙水流空间分异对比分析[J].自然资源学报,2010,15(1):11-14.
    谢平.武汉东湖颗粒悬浮物的结构与元素组成[J].水生生物学报,1996,20(3):197-204.
    张华.上海惠南水厂微污染水原水生物预处理工程设计[J].中国给排水,1999,25(8):3-9.
    王歆鹏,陈坚.硝化菌群在不同条件下的增殖速率和硝化活性[J].应用与环境生物学报,1999,5(1):64-68.
    肖羽堂,马程.生物修复微污染水原除有机物研究[J].安全与环境工程,2005,12(4):46-48.
    肖羽堂,赵美姿,高立杰.富氧生物膜法修复微污染水原的机理研究[J].长江流域资源与环境,2005,14(6):796-800.
    肖羽堂,吴鸣.弹性填料微孔曝气生物修复污染水原除NH4+-N研究[J].环境科学,2001,22(3):40-44.
    Chen J., Deng Y.. Identifiability analysis of the CSTR river water quality model [J]. WaterScience and Technology,2006,53(1):93-99.
    Constable M., Charlton M., Jensen F., et al. An ecological risk assessment of ammonia in theaquatic environment [J].Human and Ecological Risk Assessment,2003,9:527-548.
    Huang D., Monty A., et al. Difficulties in maintaining long-term partial nitrification ofammonium-rich sludge digester liquids in a moving bed biofilm reactor (MBBR)[J]. WaterScience and Technology,2004,49:53-60.
    Chung J., Lee Y.W., et al.Short cut biological nitrogen removal in hybrid biofilm/suspendedgrowth reactors [J]. Process Biochemistry,2007,42:320-328.
    Park S., Rittman B.E.. Operational boundaries for nitrite accumulation in nitrification based onminimum/maximum substrate concentrations that include effects of oxygen limitation, pH,and free ammonia and free nitrous acid inhibition [J]. Environmental Science andTechnology,2010,44:335-342.
    Hanaki K., Waantawin C.. Nitrification at low levels of dissolved oxygen with and withoutorganic loading in a suspended-growth reactor [J]. Water Research,1990,24(3):297-302.
    Cema G., Wiszniowski J., et al. Biological nitrogen removal from landfill leachate bydeammonification assisted by heterotrophic denitrification in a rotating biological contactor(RBC)[J]. Water Science and Technology,2007,55:35-42.
    Kornaros M., Liberators G. Kinetic modelling of Pseudomonas denitrificans growth anddenitrification under aerobic,anoxic and transient operating conditions [J]. Water Research,1998,32:1912-1922.
    Albay M, Akcaalan R. Factors determining the phytoplankton steady state assemblages in adrinking-water reservoir [J]. Hydrobiology,2003,502:85-95.
    Carpenter S.R., Kitchell J.F., Hodgson J. R.. Cascading trophic interactions and lakeproductivity [J]. Bioscience,1985,35:634-639.
    Geraldes A.M., Boa Vida M. J.. Limnological variations of a reservoir during two successiveyears: One wet, another dry [J]. Lakes&Reservoirs: Research and Management,2004,9(2):143-152.
    Reynolds C. S.. Phytoplankton assemblages and their periodicity in stratifying lake systems [J].Holarctic Ecology,1980,3:141-159.
    Reynolds C. S.. Cyanobacteria water blooms. Advances in botanical research [J]. London:Arcade Press,1987,13:67-143.
    Park S., Rittman B.E. Operational boundaries for nitrite accumulation in nitrification based onminimum/maximum substrate concentrations that include effects of oxygen limitation,pH,and free ammonia and free nitrous acid inhibition [J]. Environmental Science andTechnology,2010,44:335-342.
    Cema G., Wiszniowski J., et al. Biological nitrogen removal from landfill leachate bydeammonification assisted by heterotrophic denitrification in a rotating biological contactor(RBC)[J]. Water Science and Technology,2007,55:35-42.
    Reynolds C.S.. Phytoplankton assemblages and their periodicity in stratifying lake systems [J].Holarctic Ecology,1980,3:141-159.
    K. Ho. Lim, H.Ski. Shim. Operating characteristics of acetated submerged biofilm reactors fordrinking water treatment [J]. Water Science Technology,1997,35(12):101-108.
    Gippel C.J.. Potential of turbidity monitoring for measuring the transport of suspended solids instreams [J]. Hydrology Processes,1995,9:83-97.
    Pavanellid, Pagliarania. Monitoring water flow, turbidity and suspended sediment load, from anapennine catchment basin, Italy [J]. Bio systems Engineering,2002,83(4):463-468.
    Yoshito Oshima, Kazuhide Hori, Masaki Toda, et al. Phenol oxidation kinetics in supercriticalwater [J]. Supercritical Fluids,1998,13(2):241-246.
    Fang Ming Jin, Atsushi Kishita, Takehiko Moriya, et al. Kinetics of oxidation of food wasteswith H2O2in supercritical water [J]. Supercritical Fluids,2001,19(3):251-262.
    Boatman C.D., Murray J.W.. Modeling exchangeable NH4+adsorption in marine sediments:process and controls of adsorption [J]. Limnology and Oceanography,1984,27:99-110.
    Van Dune EH.S., Bloom G., Johannes Los.F., et al. Modeling underwater light climate inrelation to sedimentation, resuspension, water quality and autotrophic growth [J].Hydrobiology,2001,444:25-42.
    Kirk J.T.. Light and photosynthesis in aquatic ecosystem [M]. Cambridge: CambridgeUniversity Press,1994,129-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700