用户名: 密码: 验证码:
盐度对粘性泥沙絮凝影响的格子波耳兹曼模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘性泥沙絮凝过程对粘性泥沙运动及河口海岸许多物理过程起着十分重要的作用,而盐度是影响粘性泥沙絮凝过程的主要因素之一,目前尚缺乏从微观角度揭示盐度对粘性泥沙絮凝沉降影响的工作。为此,本文建立了考虑盐度影响的粘性泥沙运动的三维格子Boltzmann模型,对不同盐度情况下的粘性泥沙絮凝过程进行模拟,对实际絮凝现象从微观角度进行了阐释。论文的主要研究内容和结论如下:
     1、建立了考虑盐度影响的粘性泥沙运动全尺度模拟的三维格子Boltzmann模型。格子Boltzmann模拟结果与理论解比较吻合,说明本文建立的模型可以对盐度影响下的粘性泥沙絮凝问题进行模拟。
     2、模拟了不同盐度情况下两颗粒静水沉降问题。结果表明:盐度主要影响两颗粒间的最小距离,盐度越高,两颗粒距离越近,盐度越低,两颗粒距离越远。在两颗粒沉降过程中,高盐度下两颗粒的相对速度产生突变,而在低盐度下没有速度突变。
     3、模拟了不同盐度情况下多颗粒静水沉降问题。结果表明:不同盐度条件下盐度越高,双电层斥力影响越小,从而更容易形成絮团。在盐度较高的情况下,单颗粒或絮团在沉降过程中,遇到其他颗粒或絮团碰撞、粘结形成更大的絮团。多颗粒沉降对周围流场产生一定影响,改变了颗粒的运动轨迹和沉速,形成的絮团会在沉降过程中旋转,沉降过程中颗粒运动过程极为复杂。
The flocculation processes play an important role in cohesive sediment transport and some physical phenomena in estuaries and on coasts. Moreover, salinity is the one of the main factors which influence the cohesive sediment flocculation. However, there is few effective ways for direct numerical simulation of salt flocculation mechanism. Therefore, a three-dimensional numerical model of salt flocculation dynamics of cohesive sediment via the Lattice Boltzmann method was presented. Some physical phenomena in the field were explained from the mesoscale view. The main results are summarized as follows:
     1. A fully resolved numerical model of salt flocculation dynamics of cohesive sediment via the Lattice Boltzmann method was developed. The simulated results agreed with those analytical solutions. It was shown that the present model could be applied to the simulation of the effects of salinity on the flocculation behavior.
     2. The processes of two settling particles under different salinity situation were obtained. It is shown that the salinity mainly influences the minimum distance between the two particles during settling. The higher is the salinity, the smaller the distance between two particles will be. It is also observed that in the high salinity situation there is a sudden-change of relative velocity of the particles, while this cannot occur in the low salinity situation.
     3. The salt flocculation processes due to differential settling of cohesive sediment in different salinity situation were simulated via Lattice Boltzmann method. The higher the salinity is, the smaller the electrical double-layer interaction force is, which makes it easy to aggregate. In high salinity situation, the single particles or the flocs may collide with the other particles or flocs and aggregate during settling. The flocculation processes of multi-particles form the complex flow fields around the particles, which change the particle trajectories and settling velocities, and then make the flocs rotate in water.
引文
[1]钱宁,万兆惠.泥沙运动力学.北京:科学出版社, 2003. 76-85.
    [2]常青,傅金镒,郦兆龙.絮凝原理.兰州:兰州大学出版社, 1993.136-145.
    [3]蒋国俊,姚炎明,唐子文.长江口细颗粒泥沙絮凝沉降影响因素分析.海洋学报, 2002, 24(4): 51-57.
    [4]陈宗淇,王光信,徐桂英.胶体与界面化学.北京:高等教育出版社, 2004.142-156.
    [5]张庆河,王殿志,吴永胜等.粘性泥沙絮凝现象研究述评(1):絮凝机理与絮团特性.海洋通报, 2001, 20(6): 80-90.
    [6]杨铁笙,熊祥忠,詹秀玲等.粘性细颗粒泥沙絮凝研究概述.水利水运工程学报, 2003, 2: 65-77.
    [7]关许为,陈英祖.长江口泥沙絮凝体的现场显微观.泥沙研究, 1992, 9(3): 54-59.
    [8]关许为,陈英祖.长江口泥沙絮凝静水沉降动力学模式的试验研究.海洋工程, 1995, 13(1): 46-50.
    [9]时钟.长江口细颗粒泥沙过程.泥沙研究, 2000, 12(6): 72-81.
    [10]张金凤.基于格子玻耳兹曼方法的粘性泥沙絮凝机理研究[博士学位论文].天津:天津大学, 2006.
    [11] Thill A, Moustier S, Garnier J M, Bottero J Y. Evolution of particle size and concentration in Rhone river mixing zone: influence of salt flocculation. Continental Shelf Research . 2001, 20: 2127-2140.
    [12] Van Leussan W. Aggregation of particles, settling velocity of mud flocs-a review Physical Processes in Estuaries (edited by Droukers J and Van Leussan W), Spring-Verlag, 1988: 147-403.
    [13]张志忠,王允菊,徐志刚.长江口细颗粒泥沙絮凝若干特性探讨[C].第二届河流泥沙国际学术讨论会论文集,水利电力出版社,1983:274-285
    [14]陈邦林等.长江口南港南槽地区悬移质絮凝机理研究,上海市城市污水排放背景文献汇编.上海:华东师大出版社, 1988: 276-282.
    [15]关许为,陈英祖,杜心慧.长江口絮凝机理的试验研究.水利学报, 1996, (6).70-74.
    [16]蒋国俊,张志忠.长江口阳离子浓度与细颗粒泥沙絮凝沉积.海洋学报, 1995,17(1): 76-82
    [17]吴荣荣,李久发等.钱塘江河口细颗粒泥沙絮凝沉降特性研究.海洋湖沼通报, 2007, 3: 29-34.
    [18]陈洪松,邵明安,李占斌. NaCl对细颗粒泥沙静水絮凝沉降影响初探.土壤学报, 2001, 38(1): 131-134.
    [19] Smoluchowski M. Drei vortr?geüber diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen. Physik Zeitschrift 1916, 17: 585-599.
    [20] Smoluchowski M. Versuch einer Mathematischen Theorie der Koagulations- kinetik Kolloider Losunge. Zeitschrift fur Physikalische Chemie, 1917, 92: 129-168.
    [21] Diehl A, Levin Y. Smoluchowski equation and the colloidal charge reversal. Journal of Chemical Physics, 2006, 125(5) : 35-53.
    [22] Goodisman J, Chaiken J. Scaling and the Smoluchowski equations. Journal of Chemical Physics, 2006, 125(7): 41-47.
    [23] Meakin P. Fractals, scaling and growth far from equilibrium. Cambridge: Cambridge University Press, 1998.
    [24] Wihen T A, Sander L M. Diffusion limited aggregation a kinetic critical phenomenon. Physical Review Letters, 1981, 47: 1400-1403.
    [25]杨铁笙,李富根,梁朝皇.粘性细颗粒泥沙静水絮凝沉降生长的计算机模拟.泥沙研究, 2005, 4: 14-20.
    [26]洪国军,杨铁笙.黏性细颗粒泥沙絮凝及沉降的三维模拟.水利学报, 2006, 37(2): 172-177.
    [27] Chen H, Chen S, Matthaeus WH. Recovery of the Navier-Stokes equations using a lattice gas Boltzmann method. Physical Review A, 1992, 45: R5339-R5342.
    [28] Chen S, Doolen G. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30: 329-344.
    [29] Heemels M W. Computer simulations of colloidal suspensions - using an improved lattice-Boltzmann scheme. Ph. D Dissertation, Delft: Delft University of Technology, 1999.
    [30] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 1994, 271: 285-309.
    [31] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics, 1994,271: 311-339.
    [32] Ladd A J C, Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical Physics, 2001, 104: 1191-1251.
    [33] Behrend O. Solid-fluid boundaries in particle suspension simulations via the lattice Boltzmann method. Physical Review Letters, 1995, 52(1): 1164-1175.
    [34] Aidun C K, Lu Y, Ding E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. Journal of Fluid Mechanics , 1998, 373: 287-311.
    [35] Nguyen N-Q, Ladd A J C. Lubrication correction for lattice-Boltzmann simulations of particle-fluid suspensions. Physical Review Letters, 2002, E66: 046708-1-11.
    [36] Ding E J, Aidun C K. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. Journal of Statistical Physics, 2003, 112(314): 685-707.
    [37] Nguyen N-Q, Ladd A J C. Sedimentation of hard-sphere suspensions at low Reynolds number. Journal of Fluid Mechanics, 2005, 225: 73-104.
    [38]吴锤结,周菊光.悬浮颗粒运动的格子Boltzmann数值模拟.力学学报, 2004, 36(2): 151-162.
    [39] Nguyen H P, Chopard B, Stoll S. Lattice-Boltzmann method to study hydrodynamic properties of 2D fractal aggregates. Future Generation Computer Systems, 2004, 20(6): 981-991.
    [40] Aidun C K, Lu Y, Ding E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. Journal of Fluid Mechanics, 1998, 373: 287-311.
    [41] Qi D. Lattice Boltzmann simulations of particles in non-Reynolds number flows. Journal of Fluid Mechanics, 1999, 385: 41-62.
    [42] Qi D. Lattice Boltzmann simulations of rectangular particles. International Journal of Multiphase Flow, 2000, 26: 421-433.
    [43] Heemels M W, Hagen M H J, Lowe C P. Simulating solid colloidal particles using the lattice-Boltzmann method. Journal of Computational Physics, 2000, 164: 48-61.
    [44] Feichtinger C. Lattice-Boltzmann simulation of moving charged colloids. Diploma thesis of Friedrich-Alexander University, 2006.
    [45] Chun B, Ladd A J C. The electroviscous force between charged particles: beyond the thin-double-layer approximation. Journal of Colloid and Interface Science,2004, 274: 687-694.
    [46]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法.武汉:湖北科学技术出版社, 2002, 68-85.
    [47] Frisch U, d’Humieres D, Hasslacher B, et al. Lattice gas hydrodynamics in two and three dimensions. Complex Systems, 1987, 1: 647-707.
    [48]张林波等.并行计算导论.北京:清华大学出版社, 2006, 56-89.
    [49]杨铁笙,熊祥忠等.粘性细沙悬浮液中颗粒表面滑动层厚度的计算.水力学报2002, 5: 20-25.
    [50] Kim S, Karrila S J. Microhydrodynamics: principles and selected applications. Massachusetts State: Butterworth-Heinemann, 1991. 219-238.
    [51] Higashitani K, Iimura K, Sanda H. Simulation of deformation and breakup of large aggregates in flows of viscous fluids. Chemical Engineering Science, 2001, 56: 2927-2938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700