用户名: 密码: 验证码:
基于区间的不确定性优化理论与算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性广泛存在于工程实际问题中,不确定性优化理论和算法的研究对于产品或系统的可靠性设计具有重要意义。随机规划和模糊规划是两类传统的不确定性优化方法,它们需要大量的不确定性信息以构造变量的精确概率分布或模糊隶属度函数。然而,对于很多工程问题,获得足够的不确定性信息往往显得非常困难或成本过高,这便使得两类方法在适用性上具有一定的局限性。区间数优化是一类相对较新的不确定性优化方法,它利用区间描述变量的不确定性,只需要通过较少的信息获得变量的上下界,故在不确定性建模方面体现了很好的方便性和经济性。区间数优化方法的研究近年来开始逐渐受到国内外的重视,有望在未来成为继随机规划和模糊规划之后的第三大不确定性优化方法,并且在工程领域展现了比后两者更强的应用潜力。然而目前区间数优化的研究尚处于初步阶段,特别是非线性区间数优化的研究还刚刚起步,在数学转换模型的建立、两层嵌套优化问题的求解等方面尚存在一系列的技术难点需要解决。
     为此,本文将针对非线性区间数优化展开系统的研究,力求在其数学规划理论本身及实用性算法方面做出一些卓有成效的尝试和探索。数学规划理论方面的工作是提出两种非线性区间数优化的转换模型,实现了不确定性优化问题向确定性优化问题的转换,此部分工作是整篇论文的基础;实用性算法方面的工作主要是将目前工程优化领域中的一些求解工具有机引入非线性区间数优化,一定程度上解决因两层嵌套优化造成的低效问题,从而构造出多种具一定工程实用性的高效非线性区间数优化算法。基于此思路,本论文开展和完成了如下研究工作:
     (1)针对一般的不确定性优化问题,从数学规划理论层面提出了两种非线性区间数优化的数学转换模型,即区间序关系转换模型和区间可能度转换模型。给出了一种改进的区间可能度构造方法,将不确定不等式约束转换为确定性约束;给出了不确定等式约束的处理方法,最终将之转换为两个确定性约束。两种转换模型采用了上述相同的不确定约束的处理方法,但在不确定目标函数的处理上有所不同,即分别基于区间序关系和区间可能度将不确定目标函数转换为确定性目标函数。通过转换模型,得到一确定性的两层嵌套优化问题。最后,提出一种基于遗传算法的两层嵌套优化方法来求解转换后的确定性优化问题。
     (2)给出多网络和单网络两种混合优化算法求解转换后的两层嵌套优化问题,从而构造出两种高效的非线性区间数优化算法。多网络混合优化算法中,通过多个人工神经网络模型建立设计向量与目标函数区间或约束区间之间的映射关系,并且采用遗传算法作为优化求解器;单网络混合优化算法中,只通过单个人工神经网络模型建立设计变量和不确定变量与相应的目标函数值和约束值之间的映射关系,并且采用遗传算法作为内、外层优化求解器。利用混合优化算法对转换后的确定性优化问题进行求解时,不再使用原耗时的真实模型,而是每次调用人工神经网络模型进行快速计算,从而大大提高了非线性区间数优化的计算效率。
     (3)对区间结构分析方法进行了扩展,并基于区间结构分析方法发展出了一种高效的非线性区间数优化算法。基于区间集合理论和子区间技术,提出了大不确定性区间结构分析方法,以计算较大的变量不确定性水平下的结构响应边界;将区间结构分析方法引入复合材料弹性波动问题,并与混合数值法相结合提出了一种复合材料层合板的弹性波动区间数值算法,用于计算层合板在不确定材料属性和载荷下的瞬态位移响应边界;利用区间结构分析方法求解不确定目标函数和约束在任一设计向量下的区间,有效地消除了内层优化,原先通过转换模型获得的两层嵌套优化问题变成了一传统的单层优化问题,从而构造出一种高效的非线性区间数结构优化算法。
     (4)基于序列线性规划技术,发展出了一种高效的非线性区间数优化算法。每一迭代步,通过一阶泰勒展式建立目标函数和约束关于设计变量和不确定变量的线性近似模型,从而得到一线性区间数优化问题;基于区间分析方法,高效求解不确定目标函数和约束在当前近似优化问题最优解处的边界,并以此判断当前得到的最优设计向量是否为可行下降解,只有可行下降解才得以保留至下一迭代步;另外,根据区间数优化的特点给出多个停止判断准则,保证算法的收敛性。
     (5)提出了基于近似模型管理策略的非线性区间数优化算法。整个优化过程由一系列近似不确定性优化问题迭代完成:每一迭代步,通过近似模型技术建立一近似不确定性优化问题,并进一步通过非线性区间数优化的转换模型将之转变为确定性优化问题进行求解;利用信赖域方法对优化过程中的近似模型进行管理,即每一迭代步计算可靠性指标以判断近似模型精度,并对设计向量和信赖域半径矢量进行更新,使得设计空间不断向最优解靠近。
     (6)提出了基于局部加密近似模型技术的非线性区间数优化算法。每一迭代步,根据当前近似不确定性优化问题的求解结果,对目标函数和约束的当前样本进行加密,使得下一迭代步中的近似模型在近似空间中对应于响应边界的两个关键区域的局部精度得到提高。该算法只追求近似模型在局部关键区域而非整体近似空间上的精度,所以相比于常规的基于均匀分布样本的近似优化方法,能大大减少所需样本的数量;另外,该算法在提高优化效率的同时还能一定程度上避免因样本过多而造成的近似模型矩阵的奇异。
Uncertainty widely exists in practical engineering problems, and studying the theories and algorithms of uncertain optimization is significant for reliability design of industrial products and systems. Stochastic programming and fuzzy programming are two types of traditional uncertain optimization methodologies, in which a great amount of sampling information on the uncertainty is required to construct the precise probability distributions or fuzzy membership functions. Unfortunately, it often seems very difficult or sometimes expensive to obtain sufficient uncertainty information, and hence these two types of methods will encounter some limitations in applicability. The interval number optimization is a relatively newly-developed uncertain optimization method, in which interval is used to model the uncertainty of a variable. Thus the variation bounds of the uncertain variables are only required, which can be obtained through only a small amount of uncertainty information. In recent years, the interval number optimization has been attracting more and more attentions, and it is expected to become the third major uncertain optimization methodology after stochastic programming and fuzzy programming. Furthermore, the interval number optimization even shows a larger application potential for practical engineering problems than the other two methods. However, it is still at its preliminary stage for the present interval number optimization research, especially for the nonlinear interval number optimization (NINO), studies for which are just getting started. Some key technical difficulties remain, such as creation of the mathematical transformation models, effective solution of the nesting optimization problem etc.
     This dissertation conducts a systematical research for the NINO, and aims at contributing some useful researches and trials on mathematical programming theories and practical algorithms. Firstly, two transformation models of NINO are put forward through which the uncertain optimization problem can be transformed into a deterministic optimization problem, and this part of work is the basis of the whole dissertation. On the other hand, some computation tools in the present engineering optimization field are extended into the interval number optimization to solve the lower efficiency problem caused by the nesting optimization and whereby several efficient NINO algorithms are constructed. As a result, the following studies are carried out in this dissertation:
     (1) For a general uncertain optimization problem, two mathematical transformation models of NINO are suggested at the level of mathematical programming theory, respectively based on the order relation of interval number and the possibility degree of interval number. A modified construction method is suggested for the possibility degree of interval number based on the probability method, and based on it an uncertain inequality constraint can be transformed into a deterministic constraint; an approach is also suggested to transform an uncertain equality constraint into two deterministic constraints. The two transformation models employ the above same way to deal with the uncertain constraints, while different ways for uncertain objective function, namely adopt the order relation of interval number and the possibility degree of interval number to transform the uncertain objective function into deterministic objective function, respectively. Through the transformation model, a deterministic nesting optimization problem can be finally formulated, which can be solved by a suggested nesting optimization method based on a genetic algorithm (GA).
     (2) Two hybrid optimization algorithms respectively based on multiple networks and single network are suggested to solve the transformed nesting optimization problem, and whereby two kinds of NINO methods with high efficiency are constructed. In the multiple-networks hybrid optimization algorithm, several artificial neural network models are required and each one creates the projection relation between the design variables and the bounds of the uncertain objective function or a constraint, and the GA is adopted as optimization solver. In the single-network hybrid optimization algorithm, only one artificial neural network model is required to create the projection relation between the variables (design variables and uncertain variables) and the functional values (uncertain objective function and constraints), and the GA is also used as optimization solver for both of the inner and outer layer optimization. In the optimization process, the actual model is replaced by the efficient artificial neural network model and hence the optimization efficiency of NINO can be improved greatly.
     (3) Some extensions are made for the interval structural analysis method, and furthermore an efficient NINO algortithm is suggested based on the interval structural analysis method. Firstly, the interval structural analysis method is extended to compute the response bounds of structures with large uncertainty levels, based on the interval set theory and the subinterval technique. Secondly, the interval structural analysis method is introduced into the elastic wave propagation problem of composite materials, and a kind of interval numerical algorithm of elastic wave is proposed for composite laminated plates based on the hybrid numerical method. Thus the transient displacement response bounds of a composite laminated plate caused by the uncertain load and material property can be computed. Thirdly, in the NINO solving process, the interval structural analysis is adopted to compute the bounds of the uncertain objective function and constraints at each iterative step, and whereby the inner layer optimization can be eliminated successfully. Therefore, the transformed nesting optimization problem becomes a traditional single-layer optimization problem, and hence an NINO algorithm with high efficiency can be constructed.
     (4) Based on the sequential linear programming technique, an efficient NINP algorithm is developed. At each iterative step, linear approximation models with respect to the design variables and uncertain variables are created for the uncertain objective function and constraints using the first-order Taylor expansion, and whereby a linear interval number optimization problem is obtained; based on the interval analysis method, bounds of the uncertain objective function and constraints at the optimal design vector of the current approximation optimization problem can be achieved very efficiently, and whereby whether the currently obtained design vector is a feasible and descending point can be judged, as only a feasible and descending design can be remained to the next iterative step; several termination criteria are provided to ensure convergence of the present algorithm.
     (5) An efficient NINO algorithm is suggested based on an approximation model management strategy. The whole optimization process consists of a sequence of approximate optimization problems. At each iterative step, an approximate optimization problem can be created through the approximation model technique, and it can be solved by being changed as a deterministic optimization problem using a transformation model of NINO. The trust region method is then employed to manage the approximation models in the optimization process. At each iterative step, a reliability index is computed to judge the precision of the current approximation models, and whereby the design vector and trust region radius vector can be updated. Therefore, the design space can be ensured to keep closing to the actual optimal design vector.
     (6) An efficient NINO algorithm is suggested based on a local-densifying approximation model technique. At each iterative step, the current samples of the uncertain objective function and constraints can be densified according to the solution of current approximate optimization problem. Thus the local precision of the approximation models in the two key regions within the approximation space corresponding to the response bounds can be improved. This algorithm aims at improving the precision of the local key regions instead of the whole approximation space, and hence much less samples are required comparing with the conventional approximation optimization methods based on the uniformly distributed samples. Furthermore, the algorithm can also avoid singularity of the involved approximation models caused by the overmany samples a certain extent, as well as improvement of the optimization efficiency.
引文
[1] Himmelblau D M. Applied nonlinear programming. New York: McGraw-Hill Book Company, 1972.
    [2] Nocedal J, Wright S J. Numerical optimization. New York: Springer, 1999.
    [3] Haftka R T, Gurdal Z. Elements of structural optimization. Netherlands: Kluwer Academic Publishers, 1992.
    [4]陈宝林.最优化理论与算法.北京:清华大学出版社, 2002.
    [5]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社, 2005.
    [6]刘惟信.机械最优化设计.北京:清华大学出版社, 2002.
    [7]邱志平.不确定参数结构静力响应和特征值问题的区间分析方法: [吉林工业大学博士学位论文].长春:吉林工业大学, 1994.
    [8]杨晓伟.区间参数结构的静动态分析: [吉林工业大学博士学位论文].长春:吉林工业大学, 2000.
    [9]连华东.区间参数结构的区间有限元方法: [吉林工业大学博士学位论文].长春:吉林工业大学, 2002.
    [10]李润方,王建军.齿轮系统动力学(振动、冲击、噪声).北京:科学出版社, 1997.
    [11]张建波,陈仲仪.一种识别齿轮刚度的新方法.见:第四届全国振动理论及应用学术会议论文集.郑州, 1990, 265-273.
    [12]童忠钫,张杰.加工中心立柱床身结合面动态特性研究及参数识别.振动与冲击, 1992, 43 (3): 13-19.
    [13]诸德培.振动环境对结构特性的影响.见:第五届全国振动理论及应用学术会议论文集.屯溪, 1993, 79-82.
    [14]张杰.复杂机械结构结合面动力学建模及其参数识别方法的研究.机械强度, 1996, 18 (2): 1-5.
    [15]孙爱荣.核电厂结构系统参数不确定性分析.东北林业大学学报, 1995, 23 (1): 108-115.
    [16] Chang C C, Lo J G. Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel. Atmospheric Environment, 2001, 35: 6201-6211.
    [17]袁泉,李一兵.参数不确定度对汽车侧面碰撞事故再现结果的影响.农业机械学报, 2005, 36 (5): 16-19.
    [18]王海燕,刘红军.液体火箭发动机性能可靠性的随机仿真方法.火箭推进,2006, 32 (4): 26-30.
    [19]刘宝碇,赵瑞清,王纲.不确定规划及应用.北京:清华大学出版社, 2003.
    [20] Iwamura K, Liu B D. Stochastic operation models for open inventory networks. Journal of Information & Optimization Sciences, 1999, 20 (3): 347-363.
    [21] Liu B D, Esogbue A O. Decision criteria and optimal inventory processes. Boston: Kluwer Academic Publishers, 1999.
    [22] Liu B D. Uncertain programming: a unifying optimization theory in various uncertain environments. Applied Mathematics and Computation, 2001, 120: 227-234.
    [23] Kall P. Stochastic programming: achievements and open problems. In: Models, Methods and Decision Support for Management: Essays in Honor of Paul Stahly, Heidelberg. New York: Physica-Verlag, 2001, 285-302.
    [24]芮延年,傅戈雁.现代可靠性设计.北京:国防工业出版社, 2007.
    [25] Ben-Haim Y. Robust reliability in the mechanical sciences. Berlin: Springer-Verlag, 1996.
    [26] Zhao J, Liu B D. New stochastic models for capacitated location-allocation problem. Computers & Industrial Engineering, 2003, 45 (1): 111-125.
    [27] Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty—optimization with anti-optimization. Computers and Structures, 1994, 53 (6): 1401-1405.
    [28] Doltsinis I, Kang Z. Robust design of structures using optimization methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 2221-2237.
    [29] Bellman R E. Dynamic programming. New Jersey: Princeton University Press, 1957.
    [30] Bellman R E, Zadeh L A. Decision making in a fuzzy environment. Management Science, 1970, 17: 141-164.
    [31] Charnes A, Cooper W W. Chance-constrained programming. Management Science, 1959, 6 (1): 73-79.
    [32] Dantzig G B. Linear programming under uncertainty. Management Science, 1955, 1: 197-206.
    [33] Dantzig G B, Ferguson A R. The allocation of aircraft routes—an example of linear programming under uncertainty. Management Science, 1956, 3: 45-73.
    [34] Beale E M L. On minizing a convex function subject to linear inequalities. Journal of the Royal Statistical Society, Series B (Methodological), 1955, 17 (2): 173-184.
    [35] Walkup D W, Wets R J B. Stochastic program with recourse. SIAM Journal onApplied Mathematics, 1967, 15: 1299-1314.
    [36] Wets R J B. Stochastic program with fixed recourse: the equivalent deterministic program. SIAM Review, 1974, 16: 309-339.
    [37] Charnes A, Cooper W W, Symonds G H. Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Management Science, 1958, 4 (3): 235-263.
    [38] Borell C. Convex measures on locally convex spaces. Arkiv for Matematik, 1974, 12 (1): 239-252.
    [39] Prekopa A. Logarithmic concave measure and related topics. Dempster M A H (ed.), Stochastic programming. New York-San Francisco-London: Academic Press, 1980, 63-82.
    [40]戎晓霞.不确定优化问题的若干模型与算法研究: [山东大学博士学位论文].济南:山东大学, 2005.
    [41] Birge J R, Louveaux F V. Introduction to stochastic programming. New York: Springer, 1997.
    [42] Sherali H D, Fraticelli B M P. A modified benders’partitioning approach for discrete subproblems: an approach for stochastic programs with integer recourse. Journal of Global Optimization, 2002, 22: 319-342.
    [43] Ahmed S, Sahinidis N V. An approximation scheme for stochastic integer programs arising in capacity expansion. Operations Research, 2003, 51 (3): 461-471.
    [44] Bastin F. Nonlinear stochastic programming. Ph.D. thesis, University of Namur, 2004, Namur, Belgium.
    [45] Takriti S, Ahmed S. On robust optimization of two-stage systems. Mathematical Programming, 2003, 99 (1): 109-126.
    [46]崔迪.随机规划若干问题的研究: [山东科技大学硕士学位论文].青岛:山东科技大学, 2005.
    [47]冯英俊,魏权龄.多目标规划模糊解的一般形式.模糊数学, 1982, 2 (2): 29-35.
    [48] Inuiguchi M, Ramik J. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 2000, 111 (1): 3-28.
    [49] Zimmermann H J. Applications of fuzzy sets theory to mathematical programming. Information Sciences, 1985, 36: 29-58.
    [50] Dubios D, Prade H. Systems of linear fuzzy constraints. Fuzzy Sets and Systems, 1980, 3: 37-48.
    [51] Tanaka H. On fuzzy mathematical programming. Journal of Cybemetics, 1984, 3 (4): 37-46.
    [52] Luhandjula M K, Ichihashi H, Inuiguchi M. Fuzzy and semi-infinite mathematical programming. Information Sciences, 1992, 61: 233-250.
    [53] Inuiguichi M, Ichihashi H, Kume Y. Relationships between modality constrained programming problems and various fuzzy mathematical programming problems. Fuzzy Sets and Systems, 1992, 49: 243-259.
    [54]洪振英.模糊规划的稳定性及其于序结构下的求解方法: [哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学, 2001.
    [55]唐家福,汪定伟.一类Fuzzy目标/资源约束二次规划问题非精确算法研究.见: 1996中国控制与决策学术年会议论文集.沈阳:东北大学出版社, 1996.
    [56] Tang J F, Wang D W. An interactive approach based on a GA for a type of quadratic programming problems with fuzzy objective and resourse. Computer & Operations Research, 1997, 24: 413-422.
    [57]唐家福,汪定伟.基于GA的一类Fuzzy资源非线性问题的模型.模糊系统与数学, 1998, 12: 58-67.
    [58]刘宝碇,赵瑞清.随机规划与模糊规划.北京:清华大学出版社, 1998.
    [59]蒋峥.区间参数不确定系统优化方法及其在汽油调和中的应用研究: [浙江大学博士学位论文].杭州:浙江大学, 2005.
    [60] Ben-Haim Y, Elishakoff I. Convex models of uncertainties in applied mechanics. Amsterdam: Elsevier Science Publisher, 1990.
    [61] Salinetti G. Approximations for chance-constrained programming problems. Stochastics, 1983, 10: 157-179.
    [62] Ermoliev Y. Stochastic quasigradient methods and their application to systems optimization. Stochastics, 1983, 9: 1-36.
    [63]郭书祥.非随机不确定结构的可靠性方法和优化设计研究: [西北工业大学博士学位论文].西安:西北工业大学, 2002.
    [64] Moore R E. Methods and applications of interval analysis. London: Prentice-Hall Inc., 1979.
    [65] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics. Amsterdam: Elsevier Science Publishers, 1990.
    [66] Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells. Journal of Applied Mechanics, 1993, 60 (3): 683-688.
    [67] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety, 1995, 17 (2): 91-109.
    [68] Lombardi M. Optimization of uncertain structures using non-probabilistic models. Computers & Structures, 1998, 67: 99-103.
    [69] Pantelides C P, Ganzeli S. Design of trusses under uncertain loads using convex models. Journal of Structural Engineering, 1998, 124 (3): 318-329.
    [70] Ganzerli S, Pantelides C P. Load and resistance convex models for optimum design. Structural Optimization, 1999, 17 (2): 259-268.
    [71] Ganzerli S, Pantelides C P. Optimum structural design via convex model superposition. Computers & Structures, 2000, 74 (6): 639-647.
    [72] Pantelides C P. Comparison of fuzzy set and convex model theories in structural design. Mechanical Systems and Signal Processing, 2001, 15 (3): 499-511.
    [73]郭书祥,吕震宙.基于非概率模型的结构可靠性优化设计.计算力学学报, 2002, 19 (2): 198-201.
    [74]郭书祥,吕震宙.结构的非概率可靠性方法和概率可靠性方法的比较.应用力学学报, 2003, 20 (3): 107-110.
    [75]曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究.计算力学学报, 2005, 22 (5): 546-549.
    [76]曹鸿钧,段宝岩.基于非概率可靠性的结构优化设计研究.应用力学学报, 2005, 22 (3): 381-385.
    [77]亢战,罗阳军.基于凸模型的结构非概率可靠性优化.力学学报, 2006, 38 (6): 807-815.
    [78] Qiu Z P. Comparison of static response of structures using convex models and interval analysis method. International Journal for Numerical Methods in Engineering, 2003, 56: 1735-1753.
    [79] Qiu Z P, Wang X J. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures, 2003, 40: 5423-5439.
    [80]邱志平.非概率集合理论凸方法及其应用.北京:国防工业出版社, 2005.
    [81] Rommelfanger H, Hanuscher R. Wolf J. Linear programming with fuzzy objectives. Fuzzy Sets and Systems, 1989, 29 (1): 31-48.
    [82] Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 1990, 48 (2): 219-225.
    [83] Ramik J, Rommelfanger H. A single- and multi-valued order on fuzzy numbers and its use in linear programming with fuzzy coefficients. Fuzzy Sets and Systems,1993, 57 (2): 203-208.
    [84] Dubios D, Parade H. Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 1983, 30 (3): 183-224.
    [85] Ohta H, Yamaguchi T. Linear fractional goal programming in consideration of fuzzy solution. European Journal of Operational Research, 1996, 92 (1): 157-172.
    [86] Tong S C. Interval number and fuzzy number linear programming. Fuzzy Sets and Systems, 1994, 66 (3): 301-306.
    [87]刘新旺,达庆利.一种区间线性规划的满意解.系统工程学报, 1999, 14 (2): 123-128.
    [88]张全,樊治平,潘德惠.不确定性多属性决策中区间数的一种排序方法.系统工程理论与实践, 1999, 5: 129-133.
    [89]徐泽水,达庆利.区间数排序的可能度法及其应用.系统工程学报, 2003, 18 (1): 67-70.
    [90] Chanas S, Kuchta D. Multiobjective programming in optimization of interval objective functions—a generalized approach. European Journal of Operational Research, 1996, 94: 594-598.
    [91] Sengupta A, Pal T K. On comparing interval numbers. European Journal of Operational Research, 2000, 127: 28-43.
    [92] Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and Systems, 2001, 119: 129-138.
    [93] Inuiguchi M, Kume Y. Extensions of efficiency to possibilistic multiobjective linear programming problems. In: Proceedings of Tenth International Conference on Multiple Criteria Decision Making, 1992, 3: 331-340.
    [94] Inuiguchi M, Sakawa M. Minimax regret solution to linear programming problems with an interval objective function. European Journal of Operational Research, 1995, 86 (3): 526-536.
    [95] Shimizu K, Aiyoshi E. Necessary conditions for min-max problems and algorithms by a relaxation procedure. IEEE Transactions on Automatic Control, 1980, 25: 62-66.
    [96] Inuiguchi M, Sakawa M. Maximum regret analysis in linear programs with an interval objective function. In: Proceedings of IWSCI’96, 1996, 308-317.
    [97] Mausser H E, Laguna M. A new mixed integer formulation for the maximum regret problem. Working Paper, Graduate School of Business, University of Colorado, Boulder, CO, 1997.
    [98] Kouvelis P, Yu G. Robust discrete optimization and its applications. Boston: Kluwer Academic Publishers, 1997.
    [99] Mausser H E, Laguna M. A heuristic to minimax absolute regret for linear programs with interval objectives function coefficients. European Journal of Operational Research, 1999, 117: 157-174.
    [100] Averbakh I, Lebedev V. On the complexity of minimax regret linear programming. European Journal of Operational Research, 2005, 160 (1): 227-231.
    [101]马龙华.不确定系统的鲁棒优化方法及其研究: [浙江大学博士学位论文].杭州:浙江大学, 2002.
    [102] Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 4791-4800.
    [103]程志强,戴连奎,孙优贤.区间参数不确定系统优化的可行性分析.自动化学报, 2004, 30 (3): 455-459.
    [104] Wu H C. The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research, 2007, 176: 46-59.
    [105]蒋峥,刘斌.不确定优化问题的研究动向.武汉科技大学学报, 2006, 29 (6): 599-602.
    [106] Xu Y G, Liu G R, Wu Z P. A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move. Applied Artificial Intelligence, 2001, 15: 601-631.
    [107] Nakahara Y, Sasaki M, Gen M. On the linear programming problems with interval coefficients. International Journal of Computer Industrial Engineering, 1992, 23: 301-304.
    [108] Kundu S. Min-transitivity of fuzzy leftness relationship and its application to decision making. Fuzzy Sets and Systems, 1997, 86: 357-367.
    [109]达庆利,刘新旺.区间数线性规划及其满意解.系统工程理论与实践, 1999, 19 (4): 3-7.
    [110] Facchinetti G, Ricci R G. Muzzioli S. Note on ranking fuzzy triangular numbers. International Journal of Intelligent Systems, 1998, 13: 613-622.
    [111]胡毓达.实用多目标最优化.上海:上海科学技术出版社, 1990.
    [112]陈宝林.最优化理论与算法.北京:清华大学出版社, 2003.
    [113] Krishnakumar K. Micro-genetic algorithms for stationary and nonstationary function optimization. In: SPIE: Intelligent Control and Adaptive Systems.Philadelphia, 1989, 289-296.
    [114] Liu G R, Han X. Computational inverse techniques in nondestructive evaluation. Florida: CRC Press, 2003.
    [115] Masri S F, Chassiako G, Ganghey T K. Identification of nonlinear dynamic systems using neural networks. Journal of Applied Mechanics, 1993, 60: 123-133.
    [116] Han X. Elastic waves in functionally graded materials and its applications to material characterization: [dissertation]. Singapore: National University of Singapore, 2001.
    [117] Cao J, Kinsey B, Sara A S. Consistent and minimal springback using a stepped binder force trajectory and neural network control. Journal of Engineering Materials and Technology, 2000, 122: 113-118.
    [118] Ayres R A. Shapeset: a process to reduce sidewall curl springback in high-strength steel rails. Journal of Applied Metalworking, 1984, 3: 127-134.
    [119] Hishida Y, Wagoner R. Experimental analysis of blank holding force control in sheet forming. Journal of Materials and Manufacturing, 1993, 2: 409-415.
    [120] Sunseri M, Cao J, Karafillis A P, et al. Accommodation of springback error in channel forming using active binder force control: numerical simulations and results. Journal of Engineering Materials and Technology, 1996, 118: 426-435.
    [121] Liu G, Lin Z Q, Xu W L, et al. Variable blankholder force in U-shaped part forming for eliminating springback error. Journal of Materials Processing Technology, 2002, 120: 259-264.
    [122] Han X, Jiang C, Li G Y, et al. An inversion procedure for determination of variable binder force in U-shaped forming. Inverse Problems in Science and Engineering, 2006, 14 (3): 301-312.
    [123] Papeleux L, Ponthot J P. Finite element simulation of springback in sheet metal forming. Journal of Materials Processing Technology, 2002, 125-126: 785-791.
    [124] Hughes Thomas J R, Liu W K. Nonlinear finite element analysis of shells-part II: two-dimensional shells. Computer Methods in Applied Mechanics and Engineering, 1981, 27: 167-181.
    [125]来新民,陈关龙,林忠钦等.薄板冲压件焊装夹具设计方法.机械科学与技术, 2000, 19 (5): 785-787.
    [126] Liu G R, Quek S S. The finite element method: a practical course. England: Elsevier Science Ltd, 2003.
    [127] Besterfield D H, Besterfield-Michna C, Besterfield G H, et al. Total qualitymanagement. New Jersey: Prentice-Hall Inc, 1999.
    [128] Qiu Z P, Elishakoff I. Anti-optimization technique-a generalization of interval analysis for nonprobabilistic treatment of uncertainty. Chaos, Solitions and Fractures, 2001, 12: 1747-1759.
    [129] Pao Y H. The generalized ray theory and transient responses of layered elastic solids. Physical Acoustics, 1977, 8 (6): 184-240.
    [130] Van der Hijden JHMT. Propagation of transient elastic waves in stratified anisotropic media. Amsterdam: North-Holland, 1987.
    [131] Booth D C, Grampin S. The anisotropic reflectivity technique: theory. Geophys, Journal of Royal Astrophysics Society, 1983, 72: 755-766.
    [132] Scott R A, Miklowitz J. Transient elastic waves in anitropic plates. Journal of Applied Mechanics, Transactions of the ASME, 1967, 34: 104-110.
    [133] Waas G. Linear two-dimensional analysis of soil dynamics problems in semi-infinite layer media: [dissertation]. Berkeley: University of California, 1972.
    [134] Nelson R B, Dong S B, Kalra R D. Vibrations and waves in laminated orthotropic circular cylinders. Journal of Sound and Vibration, 1971, 18: 429-444.
    [135] Kausel E. Wave propagation in anisotropic layered media. International Journal for Numerical Methods in Engineering, 1986, 23: 1567-1578.
    [136] Liu G R, Tani J, Ohyoshi T, et al. Transient waves in anisotropic laminated plates, part1: theory, part2: application. Journal of Vibration and Acoustics, 1991, 113: 230-239.
    [137] Liu G R, Xi Z C. Elastic waves in anisotropic laminates. Florida: CRC Press, 2002.
    [138] Han X, Liu G R, Xi Z C, Lam K Y. Transient waves in a functionally graded cylinder. International Journal of Solids and Structures, 2001, 38 (17): 3021-3037.
    [139] Han X, Liu G R, Lam K Y. Transient waves in plates of functionally graded materials. International Journal for Numerical Methods in Engineering, 2001, 52: 851-865.
    [140] Han X, Xu D, Liu G R. Transient responses in a functionally graded cylindrical shell to a point load. Journal of Sound and Vibration, 2002, 251 (5): 783-805.
    [141] Oh D H, Librescu L. Free vibration and reliability of composite cantilevers featuring uncertain properties. Reliability Engineering and System Safety, 1997, 56: 265-272.
    [142]黄争鸣.复合材料细观力学引论.北京:科学出版社, 2004.
    [143] Au F T K, Cheng Y S, Tham L G, et al. Robust design of structures using convex models. Computers and Structures, 2003, 81: 2611-2619.
    [144] Wang G G. Adaptive response surface method using inherited latin hypercube design points. Journal of Mechanical Design, Transactions of the ASME, 2003, 125: 210-220.
    [145] Renaud J E, Gabriele G A. Improved coordination in nonhierarchic system optimization. AIAA Journal, 1994, 32: 198-205.
    [146] Huang H, Xia R W. Two-level multipoint constraint approximation concept for structural optimization. International Journal of Structural Optimization, 1995, 9: 38-45.
    [147]夏人伟.工程优化理论与算法.北京:北京航空航天大学出版社, 2003.
    [148]隋允康,李善坡.改进的响应面方法在二维连续体形状优化中的应用.工程力学, 2006, 23 (10): 1-6.
    [149]张立新,隋允康,杜家政.基于响应面方法的结构耐撞性优化.北京工业大学学报, 2007, 33 (2): 129-133.
    [150] Roux W J, Stander N, Haftka R T. Response surface approximations for structural optimization. International Journal for Numerical Methods in Engineering, 1998, 42: 517-534.
    [151] Li G, Wang H, Aryasomyajula S R, et al. Two-level optimization of airframe structures using response surface approximation. Structural and Multidisciplinary Optimization, 2000, 20: 116-124.
    [152] Queipo N V, Haftka R T, Shyy W, et al. Surrogate-based analysis and optimization. Process in Aerospace Science, 2005, 41: 1-28.
    [153] Lee H W, Lee G A, Yoon D J, et al. Optimization of design parameters using a response surface method in a cold cross-wedge rolling. Journal of Materials Processing Technology, 2008, 201: 112-117.
    [154] Rodriguez J F, Renaud J E. Convergence of trust region augmented Lagrangian methods using variable fidelity approximation data. Structural Optimization, 1998, 15: 141-156.
    [155] Rodriguez J F, Perez V M, Padmanabhan D, et al. Sequential approximate optimization using variable fidelity response surface approximations. Structural and Multidisciplinary Optimization, 2001, 22: 24-34.
    [156] Rodriguez J F, Renaud J E, Watson L T. Trust region augmented Lagrangian methods for sequential response surface approximation and optimization. Journal of Mechanical Design, 1998, 120: 58-66.
    [157] Rodriguez J F, Renaud J E, Wujek B A, et al. Trust region model management in multidisciplinary design optimization. Journal of Computational and Applied Mathematics, 2000, 124: 139-154.
    [158] Alexandrov N M, Lewis R M, Gumbert C R, et al. Optimization with variable-fidelity models applied to wing design. NASA/CR-1999-209826, ECASE Report No. 99-49, December 1999.
    [159]孙成智.基于变压边力的薄板冲压成形理论与实验研究: [上海交通大学博士学位论文].上海:上海交通大学, 2004.
    [160]孙荣桓,尹亨云,刘琼荪.数理统计.重庆:重庆大学出版社, 2000.
    [161] Morris M D, Mitchell T J. Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 1995, 43 (3): 381-402.
    [162] Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness design optimization using successive response surface approximations. Computational Mechanics, 2002, 29: 409-421.
    [163]王海亮.基于耐撞性数值仿真的汽车车身结构优化设计研究: [上海交通大学博士学位论文].上海:上海交通大学, 2002.
    [164] Belytschko T, Lin J I, Tsay C S. Explicit algorithms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering, 1984, 42: 225-251.
    [165]穆雪峰,姚卫星,余雄庆等.多学科设计优化中常用代理模型的研究.计算力学学报, 2005, 22 (5): 608-612.
    [166] Jin R, Chen W, Smpson T W. Comparative studies of metamodeling techniques under multiple modeling criteria. Journal of Structural and Multidisciplinary Optimization, 2001, 23 (1): 1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700