用户名: 密码: 验证码:
鲜切荸荠/莲藕特异性变色机理及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲜切果蔬(Fresh-cut fruits and vegetables)是指任何果蔬经鲜切加工后,虽然形状发生改变,但仍然保持新鲜状态的产品。变色是直接限制鲜切果蔬产品流通和货架期的重要因素之一。荸荠(Eleocharis tuberosa(Roxb.)Roem.et. Schult)和莲藕(Nelumbo nucifern guertn)适宜鲜切加工,但鲜切荸荠在贮藏中会发生黄化,鲜切莲藕片则表现为两个表面变色不同的现象。本研究以鲜切荸荠和莲藕为试材,深入研究了它们在贮藏过程中发生的特异性变色现象,探讨了变色机理,并在此基础上研究了鲜切莲藕变色的方向性调控。
     本研究结果表明,鲜切荸荠表面黄化可能并非是酶促褐变的结果,因为除了贮藏初期,在鲜切荸荠贮藏过程中一直没有检测到常见的与褐变相关的酚类物质;两种酶促褐变的关键酶——多酚氧化酶(Polyphenol oxidase,PPO)和过氧化物酶(Peroxidase,POD)在整个贮藏过程中不仅活性很低,而且变化平缓;采用抗坏血酸处理并不能有效延缓鲜切荸荠黄化的发生;进一步研究发现鲜切荸荠表面黄化物质的甲醇提取液在200~400 nm范围内呈现三个明显的吸收峰,经化学鉴定推测是黄酮类物质或黄酮类和蒽醌类物质的混合物;此外,对鲜切荸荠的黄化表面组织进行培养分离得到五种微生物,通过形态学研究初步证实其中一种为地霉属(Geotrichum)真菌,其余四种分别属于盐水球菌属(Salinococcus)、链球菌属(Streptococcus)、黄杆菌属(Flavobacterium)和葡萄球菌属(Staphylococcus)细菌。其中地霉属真菌、链球菌属和葡萄球菌属细菌可导致鲜切荸荠严重黄化。
     鲜切莲藕片变色具有明显的方向性,具体表现为朝向藕梢的一面较朝向藕头的一面先变色,且变色严重,这一现象是由莲藕组织内部因素决定的。深入研究鲜切莲藕片的两个不同方向表面相关的生理发现,在两个表面中不但与褐变密切相关的因素——PPO、POD、PAL酶活性及膜脂过氧化程度存在着明显的不同,而且水分含量也有显著差异。进一步研究结果表明,水分不均衡是导致鲜切莲藕变色方向性的关键。贮藏过程中,朝向藕头面组织中的水分含量一直明显高于朝向藕梢面的组织。而莲藕组织水分减少量与PPO、POD酶活性之间呈高度正相关。苯丙氨酸解氨酶(Phenylalanine ammonialyase,PAL)活性随着莲藕组织中水分的大量丧失,同样表现出上升趋势。水势和膜透性的差异可能是产生水分不平衡的原因所在。
     通过硫酸铵分步盐析和DEAE-Spharose离子交换柱、Phenyl Sepharose 6 Fast Flow疏水柱层析,从鲜切莲藕组织中分离纯化到PPO,分子量约为65.9~66.1。该酶最适反应温度为20℃,在40℃下较稳定;最适pH值约为6.0,pH 5.6~ pH 6.5之间最稳定,超过pH 6.5,稳定性下降;抗坏血酸、异抗坏血酸、L-半胱氨酸和亚硫酸钠几乎都可以完全抑制莲藕组织中PPO的活性,而EDTA-Na、柠檬酸、氯化钠和氯化钙对PPO均只表现出轻微的抑制作用;FeSO4、FeCl3、和CuSO4对莲藕组织中的PPO则表现出一定的激活作用。
     通过硫酸铵分步盐析、Sephadex G-75柱层析和DEAE-Sepharose离子交换柱,对鲜切莲藕组织中POD进行了部分分离纯化。该酶最适反应温度为30℃,热稳定性相对较差,随着温度的升高,POD活性随着时间的延长呈加速下降趋势;最适pH为6.0,在pH 4.4、pH 6.5和pH 9.0都比较稳定;抗坏血酸、L-半胱氨酸和亚硫酸钠对其有较强的抑制作用,Fe2+和Fe3+也表现出一定的抑制作用,并且Fe2+的抑制作用强于Fe3+,而CaCl2、NaCl和柠檬酸只表现出微弱的抑制作用; Cu2+对其表现出明显的激活作用。
     抗坏血酸虽然可以延缓鲜切莲藕组织褐变,但并不能改变变色的方向性,而且会产生紫边等现象,0.4 %的抗坏血酸护色效果最好;壳聚糖处理不仅可以减缓鲜切莲藕组织褐变的发生,并较为有效地解决了鲜切莲藕变色的方向性问题。采用壳聚糖涂膜的鲜切莲藕组织两个不同方向表面水分差异明显减少,并与壳聚糖浓度呈反比,壳聚糖涂膜对PAL、PPO和POD酶活性产生不同程度的抑制作用,并与壳聚糖浓度呈正比。其中1.5 %浓度的壳聚糖处理对PPO酶活性产生了强烈的抑制作用,使其整个贮藏过程中一直维持在非常低的水平;壳聚糖对POD酶活性也表现出一定的抑制作用,但抑制程度较PPO低。壳聚糖涂膜处理还抑制了膜脂过氧化作用。但采用壳聚糖处理会导致鲜切莲藕组织膜透性增大,而且低浓度的壳聚糖会诱发鲜切莲藕组织腐烂的发生。
     单独采用壳聚糖溶剂食用乙酸处理研究表明,其增加了组织膜透性,减小了鲜切莲藕两个不同方向表面水分的差异,从而消除了由其所引发的褐变相关酶活性的差异,当食用乙酸浓度达到1.8 %时,鲜切莲藕变色的方向性现象已基本消除。同时食用乙酸还明显降低了PAL酶活性,减少了酶促褐变底物酚类物质的生成;并对PPO酶也产生了强烈的抑制作用,对POD酶也表现出一定的抑制能力,阻止了膜脂的过氧化作用。因此食用乙酸在控制鲜切莲藕变色的方向性中起关键作用,但其浓度过高会导致组织色泽偏红,并且食用乙酸由于改变组织pH值可能是导致低浓度壳聚糖处理诱发腐烂的原因所在。
Fresh-cut fruits and vegetables are generally refered to the products that remain in a fresh state after they are processed, but the discoloration always takes place, being thus regarded as one of the important factors to the shelf life of fresh-cut fruits and vegetables. Both chufa (Eleocharis tuberosa(Roxb.)Roem.et. Schult) and lotus root (Nelumbo nucifern guertn) serve as appropriate fresh-cut materials; However, certain discolorations have been reported during processing and storing. Yellowing is often observed in fresh-cut chufa during storage, and for fresh-cut lotus root, variance in browning on the opposite sections has also frequently been noticed. The present study aims to investigate yellowing mechanism of fresh-cut chufa and browning orientation of fresh-cut lotus root during storage. Certain regulations for browning orientation of fresh-cut lotus root are also discussed.
     It may not be some specific enzymatic activities that result in the yellowing of fresh-cut chufa; certain considerations are discussed. reasons as follows: (1) None of the phenols interrelated with browning are found in fresh-cut chufa during storage expect at the initial stage; (2) As the key enzymes for the enzymatic browning reaction, both PPO and POD remain very low in their activities and exhibit little change during storage; (3) The yellowing of fresh-cut chufa could not be prevented by employing ascorbic acid, which has been reported as most widely used for browning control.
     Further researches have shown that there are three distinct absorption peaks between 200-400 nm in the methanol extract of the yellowed parts from the fresh-cut chufa. Exact chemical identification suggests that the yellowed matter may be flavone or mixture of flavone and anthraquinone. Meanwhile, five microbes of one fungus and four bacteria separated from the yellowed tissue of the fresh-cut chufa have been cultured. Morphologic identification shows that the only fungus falls into Geotrichum, while other four bacteria belong respectively to Salinococcus, Streptococcus, Flavobacterium and Staphylococcus. The microbes in Geotrichum, Streptococcus and Staphylococcus have been proved to play a leading role in causing fresh-cut chufa yellow seriously.
     Many experiments have substantiated that fresh-cut lotus root represents an obvious browning orientation in that the end-ward sections became brown earlier and more seriously than the head-ward ones. This phenomenon is regarded as induced by the lotus root itself other than the external factors. Furthermore, distinct difference was observed in the water contents of the opposite sections as well as that found in other factors including PAL, PPO, POD activities and the level of membrane lipid peroxidation. It indicated that the water imbalance of the opposite sections of fresh-cut lotus root acted as a key factor in causing browning orientation. A high positive correlation existed between the water content and the activities of browning-related enzymes such as PPO and POD. The activities of these enzymes rose as the tissues lost moisture. As for PAL activity, the trend was similar. Accordingly, the water imbalance of the opposite sections of fresh-cut lotus root might result from the diverse water potential and membrane permeability.
     Purified PPO was obtained from the fresh-cut lotus root by ammonium sulfate fractionation, DEAE-Sepharose and Phenyl Sepharose 6 Fast Flow columns chromatography. The enzyme was found to be homogenous by SDS-PAGE. The molecular weight of the fresh-cut lotus root PPO as estimated by SDS-PAGE ranged from 65.9 kD to 66.1 kD according to Sephadex G-100 gel fractionation. The purified enzyme had an optimal pH of 6.0 for activity. It remained rather stable when kept in pH 5.6~ pH 6.5 citrate/phosphate or phosphate buffer and at 4℃. Its optimum reaction temperature was 20℃and stable below 40℃. However, the activity decreased dramatically when temperature rose above 60℃. Ascorbic acid, Erythorbic acid, L-cysteine and sodium sulfite could almost completely inhibit PPO activity, while EDTA-Na, citrate acid, NaCl and CaCl2 showed slight inhibition. FeSO4, FeCl3 and CuSO4 could remarkably activate the fresh-cut lotus root PPO activity, especially at a high concentration.
     Partly purified POD was obtained from the fresh-cut lotus root by ammonium sulfate fractionation, Sephadex G-75 and DEAE-Sepharose columns chromatography. The purified enzyme had an optimal pH of 6.0 for activity. It appeared very stable at pH 4.4, 6.5 and 9.0 respectively when kept at 4℃. The optimum reaction temperature was 30℃, and the thermal stability of it was low. The activity decreased rapidly with the rising temperature. Ascorbic acid, L-cysteine and sodium sulfite almost completely inhibited the enzyme activity, Fe2+ and Fe3+ also appeared some inhibition to POD, whereas citrate acid, NaCl and CaCl2 had only slight inhibition. CuSO4 had a remarkable activating effect on the fresh-cut lotus root POD activity.
     Ascorbic acid could not be expected to reverse the browning orientation of the fresh-cut lotus root, although it was certainly effective in delaying the browning phenomenon. Even worse, the tissue showed purple stains on the epidermis after treated with ascorbic acid. It had been proved that 0.4 % AA treatment could most efficiently inhibit the browning process. However, chitosan coating treatment was shown to be effective not only to postpone the browning but also to regulate the orientation of browning with an optimal concentration of 1.5 %. It indicated that such a chitosan coating had meliorated the water imbalance of the opposite sections of the fresh-cut lotus root. Simultaneously, PAL, PPO and POD activities had been inhibited; thereinto PPO activity was nearly entirely inhibited by 1.5 % chitosan, whereas POD activity was merely partly inhibited. Negative correlations existed between the enzyme activity and the chitosan concentration. LOX activity also decreased, leading the decrease in the superoxide anion free radicles and MDA. However, the membrane permeability of the fresh-cut lotus root would increase and the tissue decay could be induced by chitosan coating treatment.
     The reason why the membrane permeability of fresh-cut lotus root increased and the tissue decay was induced by chitosan coating treatment might rest with the action of edible acetic acid as the chitosan solution was composed of both edible acetic acid and chitosan. This edible acetic acid changed the pH value, which served as a key factor for microbe growth. In the meantime, the difference of water content between the opposite sections was reduced due to the increasing of membrane permeability, which was induced by the acetic acid. As a result, the diversity of the enzyme activity that induced water imbalance was also eliminated. The browning orientation was almost completely removed by 1.8 % acetic acid concentration. Similarly, PAL, PPO and POD activities were all inhibited but with diverse degrees. The membrane lipid peroxidation was also prevented. Consequently, the edible acetic acid in the chitosan coating was the real crux for regulating the browning orientation of the fresh-cut lotus root. However, acetic acid in high concentration can lead a redder chroma in tissue color, which deserves further attention.
引文
毕阳, 欧阳春光. 苹果梨多酚氧化酶(PPO)的部分特性. 食品科学,2001,22(12):29~31
    程建军, 马莺, 杨咏丽等. 苹果梨中多酚氧化酶酶学特性的研究. 园艺学报, 2002, 29 (3) : 261~262
    陈安和, 孙敏, 李坤培. 几丁质对贮存期草莓中 SOD 活动和 Vc 含量的影响. 食品科学,1994, (7):65~67
    陈文军,洪启征. 贮藏中荔枝果皮衰老与褐变的研究. 园艺学报,1992, 12(3):227~232
    陈贻竹, 王以柔. 荔枝果实过氧化物酶(POD) 的研究. 中国科学院华南植物研究所集刊, 1989, (5) : 47~52
    崔彦玲,张环. 番茄叶霉病抗性与苯丙氨酸解氨酶的相关性. 华北农学报, 2003, 18(1): 79~82
    邓义才. 荔枝果皮褐变与果实水分、呼吸变化的关系. 广东农业科学,1994, 5:17~19
    东秀珠,蔡妙英. 常见细菌系统鉴定手册. 北京:科学出版社,2001, 353~363
    段玉权,冯双庆,马秋娟等. 中华寿桃果肉多酚氧化酶的纯化研究. 中国农业科学,2004, 37(4):588~591
    葛秀秀. 大豆抗疫霉根腐病机制的初步研究. 华北农业大学:博士学位论文,2001
    宫钦钦, 田世平. 荔枝果皮过氧化酶的纯化与性质研究. 生物化学与生物物理进展,2002, 29(6):891~896
    关军峰. 果品品质研究. 河北:河北科学技术出版社,2001. 279~335
    刁春英, 毕阳. 采后壳聚糖涂膜处理对损伤接种杏黑斑病的影响. 甘肃农业大学学报, 2000,35(4):445~449
    郝志华, 吴谋成. 植酸对果品的保鲜效果研究. 华中农业大学学报, 1998, 17(6):594~598
    华淑南, 李共国. 壳聚糖涂膜保鲜竹笋研究. 食品科学,2002, 23 (4):l23~126
    黄梅丽. 食品色香味化学. 北京:轻工业出版社,1984. 48
    黄浩. 红豆杉细胞多酚氧化酶的性质研究初探. 江西科学,1999,17(3):158~162
    黄建韶, 田宏现. 莲藕中多酚氧化酶的性质. 吉首大学学报, 2002, 23(2):82~84
    黄向红, 陈曼云. 壳聚糖膜保鲜四季柚的效果研究. 四川果树,1995, (4):12~13
    霍君生, 李新强, 佟代言等. 鸭梨果实褐变过程中细胞结构及细胞内膜微粘度的变化. 见: 韩振海, 黄卫东,许雪峰. 中国科协第二届青年学术年会园艺学论文集. 北京: 北京农业大学出版社, 1995. 681 ~ 686
    胡文玉, 邹良栋. 壳聚糖涂膜对苹果的保鲜效应(简报). 植物生理学通讯, 1998, 34 (1): l7~l9
    J. B. 哈本. 黄酮类化合物. 北京:科学出版社,1983. 51~56
    蒋跃明, 陈绵达, 林植芳等. 香蕉低温贮藏期果皮褐变与膜结构的关系. 中国科学院华南植物研究所集刊, 1990, (6) : 145~ 151
    蒋跃明, 陈绵达, 林植芳等. 香蕉低温酶促褐变. 植物生理学报, 1991, 17 (2) : 157~ 163
    蒋跃明. 荔枝果皮褐变的研究. 中山大学:博士学位论文,1999. 1~35
    蒋跃明. 果实褐变及控制. 植物杂志, 1991, 18 (6) : 22 ~23
    蒋跃明, 张东林, 刘淑娴等. 椰子褐变底物的初步研究. 植物生理学通讯, 1992, 28 (5) : 347~349
    蒋跃明. 酚类物质的高效液相色谱的快速检测. 中国科学院华南植物研究所集刊, 1995, (10) : 106~108
    金玉来, 钱建亚. 甘薯中多酚氧化酶的研究. 食品科学, 1991,(9):4~9
    鞠志国, 朱广廉. 水果贮藏期间的组织褐变问题. 植物生理学通讯, 1988, 24 (4) : 46~ 48
    鞠志国, 朱广廉, 曹宗巽. 气调贮藏条件下 CO2 对莱阳茌梨果肉褐变的影响. 园艺学报, 1988, 15 (4) : 229~ 232
    李红叶, 黎军英, 曹若彬. 脱乙酰壳多糖对桃软腐、褐腐病菌的抑制和采后软腐病的防治研究. 浙江农业学报, 1997, 9 (2):87~92
    李秀锦. 不同成熟期桃多酚氧化酶的研究. 农业工程学报,1999, 15(2):233~234
    李宁, 郁志芳, 赵友兴等. 莲藕多酚氧化酶的酶学特性. 江苏农业学报, 2002, 18(1):63~64
    黎军英, 李红叶. 壳聚糖对桃褐腐病菌的抑菌作用. 电子显微学报, 2002, 21 (2):138~140
    凌关庭. 食品添加剂手册. 北京:化学工业出版社,1989. 250
    林河通, 席屿芳, 陈绍军. 果实贮藏期间的酶促褐变. 福州大学学报(自然科学版),30(增刊):2002, 696~703
    林鉴荣,林春华. 西洋菜 马蹄 莲藕. 广州:广东科技出版社:2001. 21~23
    林植芳, 李双顺, 张东林等. 采后荔枝果实氧化和过氧化作用的变化. 植物学报, 1988, 30 (4) : 382~387
    刘亚光,李海英,杨庆凯. 大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究. 大豆科学,2002, 21(3): 195~198
    陆国权, 施志仁. 甘薯酶促褐变安全调控研究. 浙江农业学报. 1998, 10 (1):28~31
    陆家云. 植物病害诊断. 北京:中国农业出版社,1995. 7~18
    罗祖友, 罗顺华. 有机酸复合保鲜剂应用于草莓贮藏的初步探讨. 湖北农业科学. 2002, (3):67~69
    彭涤非, 钟彩虹, 王仁才. 桃多酚氧化酶的纯化及其特性. 湖南农业大学学报(自然科学版), 2004, 30(3):251~256
    彭丽桃, 蒋跃明. 适度加工果蔬褐变控制研究进展(综述). 亚热带植物科学, 2003, 32 (4):72-76
    彭丽桃, 蒋跃明, 杨书珍等. 壳聚糖被膜对鲜切荸荠褐变的抑制. 植物生理学通讯, 2002, 38(6):554~556
    彭世清. 植物 PPO 的研究进展. 热带农业科学,2000, (3):61~66
    庞学群, 张昭其. 防褐处理对切分荸荠、马铃薯低温贮藏期间褐变的影响. 食品科学, 2002, 23 (4): 126~129
    戚佩坤. 果蔬贮运病害. 中国北京:中国农业出版社, 1994.
    乔旭光, 夏向东, 张步志. 牛蒡多酚氧化酶酶学性质的研究. 山东农业大学学报,1997, 28(3):327~330
    宋光泉,柳建良,梁世强. 荔枝果皮褐变与失重关系的研究. 仲恺农业技术学院学报,2002, 15(3):1~7
    苏新国, 郑永华, 张兰等. 壳聚糖涂膜对菜用大豆荚采后衰老和品质的影响. 植物生理学报,2001, 27 (6):467~472
    苏新国,蒋跃明,李月标等. 4-HR 对鲜切莲藕褐变以及贮藏品质的影响. 食品科学,2003, 24(12):142~145
    水茂兴, 马国瑞, 陈美慈等. 壳聚糖处理番茄、青椒的保鲜效果. 浙江农业科学, 2001a, (4):164~167
    水茂兴, 马国瑞, 陈美慈等. 草莓采后壳聚糖处理对其耐贮性的影响. 浙江农业学报, 2001b, 13 (2):81~85
    塔卡基,杨方琪,高福成. 广东芝麻香蕉加工中的酶促褐变研究(Ⅰ): 多酚氧化酶的提取、分离及
    其特性研究. 无锡轻工业学院学报,1994, 13(1):10~20
    谭仁祥. 植物成分分析. 北京:科学出版社,2002. 281~286
    田呈瑞. 芒果过氧化物酶活性的研究. 西北植物学报,1997, 17(4):533~536
    潘东明, 林琳, 郭志雄. 龙眼果皮过氧化物酶的分离纯化研究初报. 福建农林大学学报(自然科学版), 2003, 32 (4):543~544
    潘永贵,李枚秋. M P 果蔬贮期不良变化及防治. 食品工业科技, 1999, 20(5):64~65
    潘永贵, 施瑞成. 采后果蔬受机械伤害的生理生化反应. 植物生理学通讯,2000, 36(6):568~572
    王海滨. 类胡萝卜素的紫外可见光谱特性及其应用. 武汉工业学院学报, 2004, 23(4):10~13
    王璋. 食品酶学. 北京:中国轻工业出版社. 1994. 229~253
    吴光旭. 植物抗菌活性物质及其对果蔬采后病害控制的研究. 华南农业大学:博士学位论文,2004. 27
    吴敏, 陈昆松,张上隆. 桃果实采后成熟过程中脂氧合酶活性的变化. 园艺学报,1999, 26(4):227~231
    吴明江, 张忠恒, 池春玉等. 几种化学物质对苹果梨酶促褐变反应的影响及机理研究. 黑龙江农垦师专学报, 1994, (1) : 77~80
    吴小勇, 曾庆孝, 阮征等. 壳聚糖的抑菌机理及抑菌特性研究进展. 中国食品添加剂, 2004, (6): 46~49,68
    吴友根, 陈金印. 壳聚糖与果蔬保鲜生理生化效应的研究进展. 安徽农业科学, 2002, 30 (6): 865~868
    吴振先,苏美霞,陈维信等. 贮藏荔枝果皮多酚氧化酶及过氧化物酶与褐变的研究. 华南农业大学学报,1998, 19(1):12~15
    肖红梅,王桂云,陈敏. 壳聚糖保鲜草莓效果的研究. 中国畜产与食品,1998, 5 (3):105~106
    肖丽霞,王乔. 壳聚糖在果蔬贮藏保鲜中的应用. 保鲜与加工,2005, (1):4~6
    辛广, 张维华, 张兰杰等. 南果梨多酚氧化酶的研究. 沈阳农业大学学报, 1997, 28(4):274~277
    徐娟, 邓秀新. 红肉脐橙(Citrus sinensis L.)果肉中特征色素提取方案探索. 果树学报, 2002, 19(4):223~226
    徐清海, 李秉超, 明霞. 壳聚糖常温保鲜南果梨的研究.辽宁农业科学,2000, (3):19~21
    徐晓春. 荔枝褐变与酚类物质及相关生理生化的关系. 华南农业大学:硕士学位论文,2004. 8
    颜梅新, 袁高庆, 陈世伟. 荸荠贮藏期真菌性病害种类调查鉴定初报. 广西农业生物科学, 2003, 22(2): 96~99
    严守雷. 莲藕多酚提取分离鉴定及生物活性的研究. 华中农业大学:硕士学位论文,2003. 27~31
    杨洋,曾庆孝,阮征. 壳聚糖及其在果蔬保鲜中的应用研究进展. 中国南方果树,2002, 31(5):71~72
    叶兴乾,张贵平. 板栗多酚氧化酶性质的研究. 上海交通大学学报(农业科学版),2001, 19(3):174~178
    尹莲. 含金属离子的壳聚糖涂膜剂常温保鲜葡萄的研究. 食品科学, 1998, 19 (9):51~53
    于清泉. 莲藕栽培与藕田套养技术. 北京:金盾出版社:2003. 1~8
    于新, 黄小丹, 冯彤等. 草菇多酚氧化酶特性的研究. 仲恺农业技术学院学报,1998, 11(3):27~33
    于新,蓝碧锋,张金云等. 莲藕采后生理及保鲜技术研究进展. 广州食品工业科技,2002, 18(3):50~53
    詹嘉红,蓝宗辉,曾碧英. 橄榄果实多酚氧化酶特性研究. 广州食品工业科技, 2003, 19 (4) : 16~17
    张龙翔,张庭芳,李令媛. 生化实验技术与方法.北京:科学出版社.1985. 112~118
    张淑平, 缪松. 新疆哈密瓜贮藏工艺条件的研究. 食品科技,1999, (5):55~56
    张唯一,毕阳. 果蔬采后病害与控制. 中国北京:中国农业出版社,1996.
    张昭其. 荔枝(Litchi chinensis Sonn.)果皮花色素苷酶促降解机理研究. 华南农业大学博士学位论文,2001. 53~68
    赵有为. 中国水生蔬菜. 北京:中国农业出版社:1999. 81~98;18~40
    赵伶俐, 范崇辉, 葛红等. 植物多酚氧化酶及其活性特征的研究进展. 西北林学院学报, 2005,20 (3) : 156~159
    赵友兴. 鲜切莲藕酶促褐变机理与控制的研究. 南京农业大学硕士论文,2001. 41
    郑学勤, 宫明波, 位绍文等. 壳聚糖衍生物对苹果和梨的贮藏保鲜效果. 中国果树,1996,(2):16~19
    中国科学院微生物研究所细菌分类组编著. 一般细菌常用鉴定方法. 北京:科学出版社,1978.6~13
    宗亦臣, 王贵禧, 冯双庆. 枣果实多酚氧化酶性质的研究. 林业科学, 2003,39(3):45~47
    宗亦臣. 冬枣果实中酚类物质及其多酚氧化酶性质的研究. 中国农学通报,2004,20(4):97~98,134
    周春华. 壳聚糖在园艺产品贮藏保鲜中的应用. 农村科技开发,2003,(1):33
    綦菁华, 肖雯. 天然有机物在草莓贮藏保鲜中的应用. 北京农业科学, 1998,16 (1):36~38
    Abbott JA, Buta JG. Effect of antibrowning treatment on color and firmness of fresh-cut pears. J Food Qual, 2002, 25, (4): 333~341
    Abreu M, Beirao da CS, Goncalves EM et al. Use of mild hest treatments for quality retention of fresh-cut ‘Rocha’ pear. Postharv Biol Technol, 2003, 30 (2):153~160
    Amiot MJ, Fleuriet A, Cheynier V et al. Phenolic compounds and oxidative mechanisms in fruit and vegetables. In FA Tomas-Barberán and RJ Robins eds. “Phytochemistry of fruitd and vegetables”,Proceedings Phytochemical Soc. Europe, Clarendon Press, Oxford, 1997. 51~85
    Anese M, Nicoli MC, Dall’Aglio G et al. Effect of high pressure treatments on peroxidase and poly- phenoloxidase activities. J Food Biochem, 1995, 18:285~293
    Asaka M, Hayashi R. Activation of polyphenoloxidase in pear fruits by high pressure treatment. Agric Bio Chem, 1991, 55 (9):2439~2440
    Asemota HN, Wellington MA, Odutuga AA et al. Effect of short-term storage on phenolic content σ-diphenolasee and peroxidase activities of cut yam tubers. J Sci Food Agric, 1992, 60: 309~312
    Aylward F, Haisman DR. Oxidation systems in fruits and vegetables-their relation to the quality of preserved products. Adv Food Res, 1969, 17: 1~76
    Baldwin EA, Nisperos-Carriedo MO, Baker RA. Edible coatings for lightly processed fruits and vegetables. Hort Sci, 1995a, 30 (1): 35~37
    Baldwin EA, Nisperos-Carriedo MO, Baker RA. Use of edible coatings to preserve quality of lightly (and slightly )processed products. CRC Crit Rev Food Sci Nutr, 1995b, 35 (6): 509~524
    Baldwin EA, Nisperos-Carriedo MO, Chen X et al. Improving storage life of out apple and potato with edible coating. Postharv Biol Technol, 1996, 9 (2): 151~163
    Bastrash S, Makhlouf J, Castaigne F et al. Optimal controlled atmosphere conditions for storage of brocili florets. J Food Sci, 1993, 58: 338~341,360
    Beaudreu CI, Yasunobu KT. Heme proteins. Ⅶ. Crystalline pineapple peroxidase B. Biochem, 1966, 5: 1405~1431
    Benjamin NO, Montgomery MW. Polyphenol oxidase of Royal Ann cherries: purification and characterization. J Food Sci, 1973, 38: 799~806
    Billaud C, Regaudie E, Fayad N et al. Effect of cyclodextrins on polyphenol oxidation catalyzed by apple polyphenol oxidase. In Lee CY, Whitaker GR, eds. Enzymatic Browning and Its Prevention, ACS Symposium Series 600, Washington, DC, American Chemical Society, 1995. 295~312
    Bradeford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem, 1976, 72: 248~254
    Brancil N, Barbosa-Cánovas GV. Quality changes during refrigerated storage of packaged apple slicse treated with polysaccharide films. In: Barbosa-Cánovas GV. and Gould GW eds. Innovations in food processing. Pennsylvania: Technomic, Publishing Co. 2000. 243~254
    Brecht JK. Physiology of lightly processed fruits and vegetables. Hort Sci, 1995, 30: 18~22 Bolin HR, Stafford AE, King Jr AD et al. Factors affecting the storage stability of shredded lettuce. J Food Sci, 1977, 42 (5): 1319~1321
    Bolin HR, Huxsoll CC. Storage stability of minimally processed fruit. J Food Biochem, 1989, 13: 281~292
    Bolin HR, Huxsoll CC. Effect of preparation and storage parameters on quality retention of salad-cut lettuce. J Food Sci, 1991, 56 (1): 60~62, 67
    Boynton BB, Sims CA, Sargent S et al. Quality and stability of precut mangos and carambolas subjected to high-pressure processing. J Food Sci, 2002, 67 (1): 409~415
    Burnette F. Peroxidase and its relationship to food flavor and quality: A review. J Food Sci, 1977, 42: 1~6 Buta JG, Abbott JA. Browning inhibition of fresh-cut Anjou, Bartlett, and Bosc pears. Hort Sci, 2000, 35 (6): 1111~1113
    Catala C, Chamarro J. Partial purification and properties of anionic and cationic flavedo peroxidase isoenzymes from Valencia Late oranges. Food Sci Technol Abstr, 1988, 20: 11J31
    Cheynier V, Moutounet M. Oxidative reactions of caffeic acid in model systems containing polyphenol oxidase. J Agric Food Chem, 1992, 40: 2038~2044
    Cisneros-Zevallos L, Saltveit ME, Krochta JM. Mechanism of surface white discolotation of peeled (minimally processed) carrots during storage. J Food Sci, 1995, 60: 320~323,333
    Civello PM, Martinez GA, Chaves AR et al. Peroxidase from strawberry fruit (Fragaria ananassa Duch.): partial purification and determinination of some properties. J Agric Food Chem, 1995, 43: 2596~2601
    Coetzer C, Corsini D, Love S, Pavek J. Control of enzymatic browning in potato (Solanum tuberosuml) by sense and antisense RNA from tomato polyphenol oxidase. J Agric Food Chem, 2001, 49: 652~657
    Cople Lima KS, Lima ALS, Luchese RH et al. Minimally processed carrots in modified atmosphere packaging and gamma irradiation treatment: microbiological, physical chemistry and chemistry evaluation. Ciencia e Tecnologia de Alimentos, 2003, 23 (2): 240~250
    Couture R, Cvantwell MI, Ke D et al. Physiological attributes related to quality attributes and storage life of minimally processed lettuce. Hort Sci, 1993, 28 (7): 723~725
    Das JR, Bhat SG, Gowda LR. Purification and characterization of a polyphenol oxidase from the Kew cultivar of Indian pineapple fruit. J Agric Food Chem, 1997, 45: 2031~2035
    Day BPF. High oxygen modified atmosphere packaging for fresh prepared produce. Postharv News Inform, 1996, 7:31~34
    Dobransky T, Sova O, Teleha M. Application of autofocusing in the isolation of peroxidase. J Chromato, 1989, 474 (2): 430~434
    Dong HQ, Cheng LY, Tan JH et al. Effects of chitosan coating on quality and shelf life of peeled litchi fruit. J Food Engin, 2004, 64:335~338
    Drake SR, Sanderson PG, Neven LG. Response of apple and winter pear fruit quality to irradiatiob as a quarantine treatment. J Food Process Proserv, 1999, 23 (3): 203~216
    Du J M,Gemma H. Efects of chitosan coating on the storage of peach,Japanese pear and kiwifuit.Jap Soci Hort Sci,1991, 66 (1): l5~22
    Du JM, Gemma H, Iwahori S. Effects of chitosan coating on the storability and on the ultrastructural changes of ‘Jonagold’ apple fruit in storage.日本食品科学工学会志, 1998, 24 (1): 23~30
    E1 Ghaonth A, Arul J, Ponnampalm R el a1.Chitosan coating effect on storability and quality of fresh strawberries.Food Sci, 1991, 56 (6):l618~l620
    El Ghaouth A,Ponnampalm R,Castaigne F et a1. Chitosan coating to extend the slorage life of tomatoes.Hort Sci, 1992, 27 (9):l016~l018
    E1 Ghaonth A, Arul J, Grenier J et a1. Antifungal activity of chitosan on two post-harvest pathogens of strawberry fruits. Phytopathology, 1992, 82: 398~402
    El Ghaonth A, Arul J, Asselin A el a1. Anti-fungal activity of chitosan on post—harvest pathogens: induction of morphological and cytological alterations in Rhzizopus stolonifer. Mycol Res, 1992, 96: 769~779
    El Ghaouth A, Arul J, Grenier J et a1. Effect of chitosan on cucumber plants: suppression of phythium aphinodermatum and induction of defense reactions. Phytopathology, 1994, 84: 313~320
    El Ghaonth A, Arul J, Wilson C et al. Biochemical and botrytis cinerea in bell pepper fruit. Postharvest Biol. Technol, 1997, 312: 183~194
    Elstner EF, Heapel A. Inhibition of nitrite formation from hydroxylammouniun chloride: A simple assay for superoxide dismutase. Analytical Biochem, 1976,70: 616~620
    Fan XT, Sokorai KJB. Sensorial and chemical quality of gamma-irradiated fresh-cut iceberg lettuce in modified atmosphere packages. J Food Protect, 2002, 65 (11): 1760~1765
    Fan XT. Antioxidant capacity of fresh-cut vegetables exposed to ionizing radiation. J Sci Food Agric, 2005, 85 (6): 995~1000
    Fan XT, Niemera BA, Mattheis JP et al. Quality of fresh-cut apple slices as affected by low-dose ionizing radiation and calcium ascorbate treatment. J Food Sci, 2005, 70 (2): S143-S148
    Farrell RL, Murtagh KE, Tien M et al. Physical and enzymatic properties of lignin peroxidase isoenzymes from phanerochaete chrysosporium. Enzyme and Microbial Technol, 1989, 11 (6): 322~328
    Ferrer OJ, Otwell WS, Marshall MR. Effect of bisulfite on lobster shell phenoloxidase. J Food Sci, 1989, 54: 478~480
    Finkle BJ, Nelson RF. Enzyme reactions with phenolic compounds: effect of o-methyl-transferase on a natural substrate of fruit polyphenolxoidase. Nature, 1963, 197: 902~903
    Flurkey WH, Jen JJ. Peroxidase and polyphenolase activitites in developing peaches. J Food Sci, 1978, 43: 1826~1831
    Garcia E, Barrett DM. Preservative treatments for fresh-cut fruits and vegetables. In Lamikanra O, eds.fresh-cut fruits and vegetables. Boca Raton: crc Press, 2002. 267~303
    Garrett EH. Fresh-cut produce:tracks and trends. In Lamikanra O, eds.fresh-cut fruits and vegetables. Boca Raton: CRC Press, 2002.1~10
    Gil MI, Gorny JR, Kader AA. Responses of Fuji apple slices to ascorbic acid treatments and low-oxygen atmospheres. Hort Sci, 1998, 33 (2): 305~309
    Gonzalez-Aguilar GA, Ruiz-Cruz S, Cruz-Valenzuela R et al. Physiological and quality changes of fresh-cut pineapple treated with antibrowning agents. Lebensmittel Wissenschaft und Technol, 2004, 37 (3): 369-376
    Gonzalez-Aguilar GA, Ruiz-Cruz S, Soto-Valdez H. et al. Biochemical changes of fresh-cut pineapple slices treated with antibrowning agents. Int J Food Sci Technol, 2005, 40 (4): 377~383
    Gorny JR, Hess-Pierce B, Kader AA. Quality changes in fresh-cut peach and nectarine slices as affected by cultivar, storage atmosphere and chemical treatments. J Food Sci, 1999, 64: 429-432.
    Gunata YZ, Sapis JC, Moutounet M. Substrates and aromatic carboxylic acid inhibitors of grape phenoloxidases. Phytochem, 1987, 26: 1573~1575
    Gunes G, Watkins CB, Hotchkiss JH. Effects of irradiation on respiration and ethylene production of apple slices. J Sci Food Agric, 2000, 80 (8): 1169~1175
    Hagenmaier RD, Baker RA. Low-dose irradiation of cut iceberg lettuce in modified atmosphere packaging. J Agric Food Chem, 1997, 45 (8): 2864~2868
    Halpin B, Pressey R, Jen J et al. Purification and characterization of peroxidase isoenzymes from green peas (Pisum sativum). J Food Sci, 1989, 54: 644~649
    Health RL, Packer L. Photoperoxidation in isolated chloroplasts Ⅰ. Kinetetics and stoichiometry of fatty scid peroxidation. Arch Biochem Biophysical, 1968, 125:189~198
    Heaton JW, Yada RY, Marangoni AG. Discoloration of coleslaw is caused by chlorophyll degradation. J Agric Food Chem, 1996, 44 (2): 395~398
    Heimdal H, Kuhn BF, Poll L et al. Biochemical changes and sensory quality of shredded and MA-packaged iceberg lettuce. J Food Sci, 1995, 60: 1265~1268
    Helander IM, Nurmiaho-Lassila EL. Ahvenainen R et al.Chitosan Disrupts the Barrier Properties of the outer membrane of gram-negative bacteria. Int J Food Microbiology, 2001, 71: 235~244
    Hendrickx M, Ludikhuyze L, Broeck I van den et al. Effects of high pressure on enzymes related to food quality. Trends Food Sci Technol, 1998, 9 (5): 197~203
    Henze RE. Inhibition of enzymatic browning of chlorogenic acid solutions with cysteine and glutathione. Science, 1956, 123: 1174~1175
    Hirano S, Nagao N. Effect of chitosan,pectic acid,lysozyme and chitinase on the growth of several phytopathogens. Agric Biol Chem, 1989, 53: 3065~3066
    Howard LR, Griffin LE. Lignin formation and surface discolotation of minimally processed carrot sticks. J Food Sci, 1993, 58: 1065~1067, 1072
    Howard LR, Dewi T. Sensory, microbiological and chemical quality of mini-pelled carrots as affected by edible coating treatment. J Food Sci, 1995, 60 (1): 142~144
    Hsu, A.F, Shieh JJ, Bills DD et al. Inhibition of mushroom polyphenol oxidase by ascorbic acid derivatives. J Food Sci, 1988, 53: 765~767, 771
    Iyengar R, McEvily AJ. Anti-browning agents: alternatives to the use of sulfites in foods. Trends Food Sci Technol, 1992, 3: 60~64
    Jang YM,Li YB. Effect of chitosan coating on postharvest life and quality of longan fruit. Food Chem, 2001, 73: 139~143
    Janovitz-Klap A, Richard F, Nicolas J. Polyphenoloxidase from apple partial purification and some properties. Phytochem, 1989, 28: 2903~2908
    Jen JJ, Seo AH, Flurkey WH. Tomato peroxidase: purification via hydrophobic chromatography. J Food Sci, 1980, 45: 60~63
    Jeon M, Zhao Y. Honey in combination with vacuum impregnation to prevent enzymatic browning of fresh-cut apples. Int J Food Sci Nutr, 2005, 56 (3): 165-176
    Jiang YM, Yao, LH, Lichter A et al. Postharvest biology and technology of litchi fruit. International Journal of Food, Agriculture and Environment, 2003, 1 (2): 76~81
    Jiang YM, Li YB, Jiang WB. Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature. Lebensmittel-Wissenschaft und-Technologie, 2005, 38: 757~761
    Kahn V, Andrawis A. Inhibition of mushroom tyrosinase by tropolone. Phytochem, 1985, 24: 905~908
    Kahn V. Effects of proteins, protein hydrolyzates, and amino acids on o-dihydroxyphenolase activity of polyphenol oxidase of mushroom, avocado and banana. J Food Sci, 1985, 50: 111~115
    Kaji H, Ueno M, Osajima Y. Storage of shredded cabbage under a dynamically controlled atmosphere of high oxygen and high carbon dioxide. Biosci Biotechnol Biochem, 1993, 57: 1949~1052
    Kanner J, Mendel H, Budowski P. Cartene oxidizing factors in red pepper fruits: peroxidase activity. J Food Sci, 1977, 42: 1549~1551
    Kermasha S, Goetghebeur M, Monfette A et al. Studies on inhibition of mushroom polyphenol oxidase using chlorogenic acid as substrate. J. Agric Food Chem, 1993, 41: 526~531
    Khan AA, Robinson DS. The thermostability of purified mango isoperoxidases. Food Chem, 1993, 47 (1): 53~59
    Kim DM, Smith NL, Lee CY. Apple cultivar variations in response to heat treatment and minimal processing. J Food Sci, 1993, 58 (5): 1111~1114, 1124
    King AD, Bolin HR. Physiological and microbiological storage stability of minimally processed fruits and vegetables. Food Technol, 1989, 43: 132~135,139
    Lamikanra O, Watson MA. Effects of ascorbic acid on peroxidase and polyphenoloxidase activities in fresh-cut cantaloupe melon. J Food Sci, 2001, 66 (9): 1283~1286
    Langdon TT. Prevention of browning in prepared potatoes without use of sulfiting agents. Food Technol, 1987, 41: 64~67
    Lanzarini G, Pifferi PG, Zamorani A. Specificity of an σ-diphenol oxidase from Prunus acium fruits. Phytochem, 1972, 11: 89~95
    Lee CY, Smith NL, Pennesi AP. Polyphenoloxidase from DeChaunac grapes. J Sci Food Agric, 1983, 34: 987~991
    Leon JC, Alpeeva IS, Chubar TA et al. Purification and substrate specificity of peroxidase from sweet potato tubers. Plant Sci, 2002, 163: 1011~1019
    Le Tien C, Vachon C, Mateescu MA et al. Milk protein coatings prevent oxidative browning of apple and potatoes. J Food Sci, 2001, 66: 512~516
    Liao ML, Seib PA. Chemistry of L-ascorbic acid related to foods. Food Chem, 1988, 30: 289~312
    Liu W, Fang J, Zhu WM et al. Isolation, purification and properties of the peroxidase from the hull of Glycine max var HH2. J Sci Food Agric, 1999, 79: 779~785
    Li Z, Eun JL, Jun HL. Effect of hot water treatment on quality of fresh-cut apple cubes. Food Sci Biochem, 2004, 13 (6): 821~825
    Loaiza-Velarde JG, Tomas-Barbera FA, Saltveit ME. Effect of intensity and duration of heat-shock treatments on wound-induced phenolic metabolism in iceberg lettuce. J Amer Soc Hort Sci, 1997, 122 (6): 873~877
    López-Galvez G, Saltveit M, Cantwell M. Wound induced phenylanine ammonia lyase activity factors affectingits induction and correlation with the quality of minimallyprocessed lettuces. Postharv Biol Technol, 1996, 9 (2) : 223~233
    López-Serrano M, Ros-Barceló A. Purification and characterization of a basic peroxidase isoenzyme from strawberries. Food Chem, 1996, 55 (2):133~137
    Lu ZX, Yu ZF, Gao X et al. Preservation effects of gamma irradiation on fresh-cut celery. J Food Engin, 2005, 67 (3): 347~351
    Martinez MV, Whitaker JR. The biochemistry and control of enzymatic browning. Trends Food Sci Technol, 1995, 6: 195~200
    Marshall MR, Kim J, Wei CI. Enzymatic browning in fruits, vegetables and seafoods. http://www.fao.org/ag/ags/agsi/ENZYMEFINAL/enzymatic%20Browning.html#INTRO#INTRO, 2000.
    Mayer AM, Harel E. Polyphenol oxidases in plants. Phytochem, 1979, 18: 193 ~ 215 McEvily AJ, Jyengar R, Otwell WS. Inhibition of enzymatic browning in foods and bevergas. CRC Crit Rew Food Sci Nutr, 1992, 32: 153~273
    McLellan KM, Robinson DS. Heat stability of peroxidase from orange. Food Chem, 1984, 13 (2): 139~147
    Mihalyi K, Vamos-Vigyazo L, Kiss-Kutz N et al. The activities o polyphenoloxidase peroxidase in the fruits and vegetables as related to pH,temperature. Acte Aliment Acad Sci Hung, 1978, 7: 57~68
    Monsalve-Gonzalez A, Barbosa-Canovas GV, Cavalieri RP et al. Control of browning during storage of apple slices preserved by combined methods. 4-hexylresorcinol as anti-browning agent. J Food Sci, 1993, 58: 797-800, 82
    Moulding PH, Grant HF, McLellan KM et al. Heat stability of soluble and ionically bound peroxidases extracted from apples. Int J Food Sci Technol, 1987, 22 (4): 391~397
    Mvayer AM, Harel E. Laccase-like enzyme in peaches. Phytochem, 1968, 5: 783~789
    Nicolas JJ, Cheynier V, Fleuriet A et al. Polyphenols and enzymatic browning. In”Polyphenolic Phenomena”,INRA Editions, Paris, 1993. 165~175
    Nicolas JJ, Richard-Forget FC, Goupy PM et al. Enzymatic browning reactions in apple and apple products. CRC Crit Rev Food Sci Nutr, 1994, 34 (2): 109~157
    Nisperos MO, Baldwin EA. Edible coatings for whole and minimally processed fruits and vegetables. Food Austr, 1996, 48 (1): 27~31
    Nizakat Bibi, Badshah Khattak A, Ashraf Chaudry M et al. Shelf-life extension of minimally processed tomatoes by gamma irradiation. Advances Food Sci, 2005, 27 (1): 9~13
    Nussinovitch A,Lurie S. Edible coatings for fruits and vegetables. Postharv News and lnfor, 1995, 6 (4):53~57
    Ogura N, Kumakawa K, Fukushima M et al. Studies on peroxidase of kiwifruit. Food Sci Technol Abstr, 1990, 22: 8J72
    Olivas GL, Barbosa-Cánovas GV. Edible coatings for fresh-cut fruits. CRC Crit Rev Food Sci Nutr, 2005, 45 (7/8): 657~670
    Oszmianski J, Lee CY. Inhibition of polyphenol oxidase activity and browning by honey. J Agric Food Chem, 1990, 38: 1892-1895
    Osuga D, van der Schaaf A, Whitaker JR. Control of polyphenoloxidase activity using a catalytic mechanism. In R.Y. Yada, R.L. Jackman & J.L. Smith, eds. Protein Structure-Function Relationships in Foods, New York, Blackie Academic & Professional, 1994. 62~88
    Palmer JK. Banana polyphenoloxidase, preparation properties. Plant Physiol, 1963, 38: 508~513 Pao S, Petracek PD. Shelf life extension of peeled oranges by citric acid treatment. Food Microbiology, 1997, 14 (5): 485~491
    Peng LT, Jiang YM. Exogenous salicylic acid inhibits browning of fresh-cut Chinese water chestnut. Food Chem, 2006, 94 (4): 535~540
    Perez-Gago MB, Serra M, Alonso M et al. Effect of whey protein- and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharv Biol Technol, 2005, 36 (1): 77~85
    Pierpoint WS. The enzymic oxidation of chlorogenic acid some reactions of the quinine produced. Biochem J, 1966, 98: 567~574
    Pifferi PG, Gultrera R. Enzymatic degradation of anthocyanina: the role of sweet cherry polyphenol oxidase. J Food Sci, 1974, 39: 786~791
    Prestamo G. Peroxidase of kiwifruit. J Food Sci, 1989, 54 (3): 760~762
    Prestamo G, Manzano P. Peroxidase of selected fruits and vegetables and the possible ues of ascorbic acid as an antioxidant. Hort Sci, 1993, 28 (1): 48~50
    Reddy MVB, Angers P, Castaigne F et a1. Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatos. J Amer Soc Hort Sci, 2000, 125 (6): 742~747
    Richard-Forget FC, Goupy PM, Nicolas JJ. New approaches for separating purifying apple polyphenol oxidase isoenzymes: hydrophobic, metal chelate affinity chromatography. J Chromatogr, 1994, 667: 141~153
    Richard-Forget F, Cerny M, Fayad N et al. Isolation and characterization of a ‘quinone-trapping’ substance from a crude carica papaya protein preparation. Int J Food Sci Technol, 1998, 33: 285~296
    Robinson DS. Peroxidases and their significance in fruits and vegetables. In P. F. Fox, ed.”Food Enzymology”, Elsevier, London, 1991. 399~426
    Rocha AMCN, Brochado CM, Morais AMMB. Influence of chemical treament on quality of cut apple. J Food Qual, 1998, 21: 13~28
    Rocha AMCN, Coulon EC, Morais AMMB. Effects of vacuum packaging on the physical quality of minima- lly processed potatoes. Food Service Technol, 2003, 3 (2): 81~88
    Rodriguez-López JN, Espin JC, Amor FD et al. Purification and kinetic characterization of an anionic peroxidase from melon (cucumis melo L.) cultivated under different Salinity conditions. J Agric Food Chem, 2000, 48: 1537~1547
    Rolle RS, Chism GW. Physiology consequence od minimally processed fruits and vegetables. J Food Qual, 1987, 10: 157~177
    Rosen JC, Kader AA. Postharvest physiology and quality maintenance of sliced pear and strawberry fruits. J Food Sci, 1989, 54: 656~659
    Roudsari MH, Signoret A, Crouzet J. Eggplant polyphenoloxidase: purification, characterization properties. Food Chem, 1981, 7: 227~235
    Rouet-Mayer MA, Philippon J. Inhibition of catechol oxidases from apples by sodium chloride. Phytochem, 1986, 25 (12): 2717~2719
    Sakamura S, Watanabe S, Obata Y. Anthocyanase anthrocyanin occurring in the eggplant . Ⅲ. Oxidative decolorization of the anthocyanin by polyphenol oxidase. Agric Biol Chem, 1965, 29: 181~189
    Saltveit ME. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharv Biol Technol, 2000, 21: 61~69
    Sapers GM, Hicks KB, Phillps et al. Control of enzymatic browning in apples with ascorbic acid derivatives, polyphenol oxidase inhibitors and complexing agents. J Food Sci, 1989, 54: 997-1002, 1012
    Sapers G.M, Hicks KB. Inhibition of enzymatic browning in fruits and vegetables. In J.J. Jen, ed. Quality Factors of Fruits and Vegetables: Chemistry and Technology, Washington, DC, American Chemical Society, 1989. 29~43
    Sapers GM, Garzarella L, Philizota V. Application of browning inhibitors to cut apple and potato by vacuum and pressure infiltration. J Food Sci, 1990, 55: 1049~1053
    Sayavedra-Soto LA, Montgomery MW. Inhibition of polyphenoloxidase by sulfite. J Food Sci, 1986, 51: 1531~1536
    Sapers GM, Hicks KB. Inhibition of enzymatic browning in fruits and vegetables. In Jen JJ, eds. Quality Factors of Fruits and Vegetables: Chemistry and Technology, Washington, DC, American Chemical Soc, 1989. 29~43
    Sciancalepore V, Longone V, Alviti FS. Partial purification and some properties of peroxidase from Malvasia grapes. Amer J Enol Vitic, 1985, 36 (2): 105~110
    Sciancalepore V, Alviti FS. Preliminary study on multiple forms of peroxidase from Malvasia grapes. Food Sci Technol Abstr, 1987, 19: 5J79
    Scott KJ. The control of rotting and browning of litchi fruit by hot benomyl and plastic film. Sci Hort, 1982, 16: 253~262
    Sessa DJ, Anferson RL. Soybean peroxidase: purification and some properties. J Agric Food Chem, 1981, 29: 960~965
    Siddia M, Sinha NK, Cash JN. Partial purification of polyphenol oxidase from plums. J Food Biochem, 1996, 20: 111~123
    Silva E, Lourenco EJ. Neves VA. Soluble and bound peroxidases from papaya fruit. Phytochem, 1990, 29 (4): 1051~1056
    Simpson BK, Gagne N, Ashie INA et al. Utiization of Chitosan for Preservation of Raw Shrimp (Pandalus Borealis). Food Biotechnol, 1997, 11: 25~44
    Soderhall K. Isolation and partial purification of polyphenol oxidase from Daucus carota L. Cell Cultures, 1985, 78: 730~733
    Son SM, Moon KD, Lee CY. Inhibitory effect of various antibrowning agents on apple slices. Food Chem, 2001, 73: 23~30
    Srinivas ND, Rashmi KR, Raghavarao KS et al. Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochem, 1999, 35: 43~48
    Sveyderhelm I, Boguslawski S, Michaelis G et al. Pressure induced inactivation of selected food enzymes. J Food Sci, 1996, 61: 308~310
    Tano K, et al. Atmospheric composition and quality of fresh mushrooms in modified atmosphere packages as affected by storage temperature abuse. J Food Sci, 1999, 64: 1073~1077
    Tatsumi Y, Watada AE, Wergin WP. Scanning electron microscopy of carrot stick surface to determine cause of white translucent appearance. J Food Sci, 1991, 56 (5): 1357~1359
    Thompson JE, Legge RL, Barber RF. The role of free radicals in senescence and wounding. New Phytol, 1987, 105: 317~344
    Toivonen PMA, DeEll JR. Physiolgy of fresh-cut fruits and vegetables. In Lamikanra O, eds. fresh-cut fruits and vegetables. Boca Raton: CRC Press, 2002. 1~10
    Underhill SJR, Critchley C. Cellular localisation of polyphenol oxidase and peroxidase activity in Litchi Chinensis Sonn. pericarp. Aust J Plant Physiol, 1995, 22: 627~ 632
    Vamos-Vigyazo L, Kiss-Kutz N. Studies into the o-diphenol oxidase activity of potatoes, Part Ⅱ. Some characteristics of the enzyme, its amount in different varities its changes on storage. Acte Aliment Acad Sci Hung, 1974, 3: 49~61
    Vámos- Vigyázvó L. Polyphenol oxidase and peroxidase in fruits and vegetables. CRC Crit Rev Food Sci Nutr, 1981, 15: 49~127
    Vander P, Varum KM, Domard A, el a1. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol, 1998, 118 (1): l 353~l 359
    Vue Ch, Yu G, Hirata J et al. Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents. Biosci Biotechnol Biochem, 1998, 62 (2): 206~209
    Walker JRL. The polyphenoloxidase of pear fruit. Aust J Biol Sci, 1964, 17: 575~576
    Walker JRL. The control of enzymic browning in fruit juices by cinnamic acid. J Food Thchnol, 1976, 11: 341~345
    Walker JRL, Wilson EL. Studies on the enzymic browning od apples. Inhibition of apple σ-diphenol oxidase by phenolic acids. J Sci Food Agric, 1975, 26: 1825~1831
    Walker JRL. Enzymatic browning in foods. Its chemistry and control. Food Technol. NZ, 1977, 12: 19-25
    Watada AE, Abe K, Yamauchi N. Physiological activities of partically processed fruits and vegetables. Food Technol, 1990, 44 (5): 116,118,120~122 Weemaes C, Ludikhuyze L, Broeck I van den et al. High pressure inactivation of polyphenoloxidases. J Food Sci, 1998, 63 (5): 873~877
    Weemaes C, Ludikhuyze L, Broeck I van den et al. Kinetic study of antibrowning agents and pressure inactivation of avocado polyphenoloxidase. J Food Sci, 1999, 64 (5): 823~827
    Wesche-Ebeling P, Montgomery MW. Strawberry polyphenoloxidase: purification characterization. J Food Sci, 1990, 55: 1315~1319
    Whitaker JR. Effect of pH on rates of enzyme-catalyzed reactions. In O.R. Fennema, ed. Principles of enzymology for the Food Sciences, Chapter 10, New York, Marcel Dekker, 1972.
    Whitaker JR, Lee CY. Recent advances in chemistry of enzymatic browning. In C.Y. Lee & J.R.Whitaker, eds. Enzymatic Browning and Its Prevention, ACS Symposium Series 600, Washington, DC, American Chemical Society, 1995. 2~7
    Whitaker JR. Enzymes. In: Fennema OP eds. Food Chemistry. 3rd ed., Marcel Dekker, New York, 1996. 431~530
    Wong DWS, Camirand WM, Pavlath AE. Development of edible coatings for minimally processed fruits and vegetables. In JM Krochta, Baldwin EA and M Nisperos-Carriedo, eds.”Edible coatings and films to improve food quality”, Technomic Lancaster, PA, 1994. 65~88
    Wu HC, Chu HL, Kuo JM et al. The biochemical characteristics of polyphenol oxidase from browning tissue-cultured bamboo (Dendrocalamus us latiflorus). Food Sci Agric Chem, 1999, 1 (4): 244~249
    Yamaguchi M, Campbell JD. Gamma-irradiation of mushrooms its effect on active latent forms of σ-diphenol oxidase. Radiat Bot, 1975, 13:55~67 Yamauchi N, Watada AE. Pigment changes in parsley leaves during storage in controlles or ethylene
    containing atmosphere. J Food Sci, 1993, 616~618, 637
    Yoruk R, Yoruk S, Balaban MO et al. Machine vision analysis of antibrowning potency for oxalic acid: a comparative investigation on banana and apple. J Food Sci, 2004, 69 (6): E281~E289
    Zhang LK, Lu ZX, Lu FX et al. Effect of gamma irradiation on quality-maintaining of fresh-cut lettuce. Food Control, 2006, 17 (3): 225~228
    Zhang DL, Quantick PC, Grigor JM. Changes in phenolic compounds in litchi (Litchi chinensis Sonn.)fruit during postharvest storage. Postharv Biol Technol, 2000, 19: 165~172
    Zhang DL, Quantick PC. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharv Biol Technol, 1997, 2: 195–202
    Zhang DL, Quantick PC. Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage.J Histochem Gytochem, 1998, 73 (6): 763~767
    Zhou HW, Feng X. Polyphenol oxidase from Yali pear. J Sci Food Agric, 1991, 57: 307~313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700