用户名: 密码: 验证码:
盐碱土上马蔺的渗透调节和光合适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了生长在盐碱土上马蔺的生长、渗透调节和内源激素ABA的变化,盐碱土生长的马蔺光合日变化、光适应特性、光合机构的控制和马蔺对盐碱土和干旱的光合特点,结果如下:
     1、马蔺在7~8月份生长速率较快,其平均株高为50~90cm,分蘖枝为5~8个,生物量为47.2g/株。8月份以后生物量逐渐减小。马蔺的生长过程呈S型曲线变化。生物量干重增重过程大致分为缓慢、快速和停止生长3个生长阶段。马蔺叶片中Na~+、K~+和脯氨酸的含量随着盐碱度的变化而改变,盐碱度较大,即pH高的月份,马蔺叶片中Na~+、K~+和脯氨酸的含量也同样增加,叶片细胞的膜透性增强。渗透调节物质的增加,降低了叶片水势,维持了细胞膨压,保持了马蔺在盐碱土的正常生长。
     2、与对照相比处理材料叶片中ABA含量显著增加,外源ABA的加入降低了盐碱胁迫引起的MDA和H_2O_2量的增加,延缓了盐碱胁迫引起的CAT活性的衰减,提高了GR活性。盐碱长期胁迫明显增加了马蔺叶片ABA含量,但是不同植物根系中ABA含量存在着差异。在8天内,马蔺和大豆根系的ABA含量与土壤中ABA含量相差不大,根系ABA流向土壤,使土壤ABA水平在短期内提高,与土壤ABA之间建立了平衡关系。玉米根系ABA明显高于土壤ABA水平,与土壤之间没有交换关系,这主要与玉米根系内皮层的凯氏带有关。
     3、马蔺叶片Pn和Tr均呈现双峰曲线,具有光合午休现象。这种现象出现的原因是由于较高的太阳辐射引起叶片温度的升高,叶片的羧化效率(CE)和表观量子产额(AQY)的下降造成的。
     4、在马蔺叶片的成熟衰退过程中,光合能力、羧化效率、表观量子效率都逐渐下降,但是PSⅡ最大光化学效率在整个生育期基本维持恒定。同时叶片的羧化效率(CE)和RuBP的再生能力(A_(350))二者下降的幅度高于表观量子产额(AQY)和电子传递能力(J_(max))。也就是说,在马蔺叶片光合衰退过程中,光饱和时的光合速率及光饱和点的下降幅度显著大于CO_2饱和时的光合速率及CO_2饱和点的下降幅度,A_(350)/J_(max)逐渐下降,说明光合暗反应过程的衰退幅度大于光反应过程的衰退幅度。
     5、马蔺叶片原初光化学效率(F_v/F_m),实际光化学效率(ΦPSⅡ)的日变化与光强有关,中午PSⅡ功能下调,有明显的光抑制。在光合有效辐射(PAR)逐渐增强时,F_v/F_m和ΦPSⅡ降低,非光化学猝灭(NPQ)增加,激发能由PSⅠ向PSⅡ分配,说明引起马蔺光抑制的原因除了NPQ之外,分配给PSⅡ能量增加后进一步促进PSⅡ可逆失活是非常重要的因素。PAR逐渐减小时,光抑制逐渐减缓,光化学效率恢复,这主要是NPQ减小,尤其是激发能分配不平衡性系数(β/α-1)下降,PSⅡ能量负荷减轻,失活的PSⅡ恢复活性的结果。
     6、盐碱(含盐量0.36%、pH8.90)处理对马蔺叶片PSⅡ光化学活性(F_v/F_m)影响不大,但降低了电子传递速率(ETR)。盐碱伴随着干旱胁迫明显降低了PSⅡ最大光化学效率(F_v/F_m)、光化学猝灭(qP)和PSⅡ反应中心的光能捕获效率(F_v′/F_m′),分配给PSⅠ的激发能减少了33.3%,分配给PSⅡ激发能的份额增加了18.1%,激发能分配失衡。进一步揭示了盐碱和干旱胁迫下,非光化学耗散(NPQ)的增加和状态转换(由状态2向状态1转换)是马蔺减弱逆境伤害的重要适应机制。
     7、盐胁迫降低了马蔺光合作用和气孔导度,对F_v/F_m没有影响。在盐胁迫的基础上碱胁迫却降低了F_v/F_m。外源Ca~(2+)和ABA可以明显缓解盐胁迫下的光抑制,外源Ca~(2+)对碱胁迫作用不大,ABA发挥重要的作用。因此,pH值对马蔺光合作用的影响比NaCl更为严重。
For several years, Iris lactea Pall, var chinensis(Fisch .) Koidz is bred a tolerant herbage to salt and alkali soil as virescence. In this paper, Ecophysiology of Iris lactea Pall, var chinensis(Fisch.) Koidz were studied to investigate growth, osmotic regulation, photosynthetic diurnal changes, photosynthetic apparatus characteristics grown in salt and alkali soil. The results were followings:1. A study was conducted to determine growth characteristics, capacity of osmotic adjustment of Iris Lactea Pall, var Chinensis Koidz grown in salt-alkali soil of Songnen plain in China. Iris Lactea Pall, var Chinensis Koidz grew more rapid on July and August, plant height is 50~90cm, and has 5-8 branches. The biomass per plant is 47.2g/plant during growth and development period. The process of Iris growth is divided three stages: slow growth stage, rapid growth stage and stop growth stage. Substances of osmotic adjustment were analyzed to determine the capacity of osmotic adjustment and adaptation in Iris leaves. Accumulation of Na~+ and K~+, proline concentration and improvement of cell membrane penetration were conducted to adjusted very rapidly to salt and alkali content during each month. With the accumulation osmotic substances, water potentials and osmotic potentials in Iris leaves decreased, cell turgid pressure increased or maintained to preserve cell, leaf and then whole plant growth under salt and drought condition.2. The results showed that the ABA contents in leaves after salt and alkali treats increased markedly. The addition of exogenous ABA decreased the increment of MDA and H2O2 contents and retarded the attenuation of CAT activity, which were induced by salt and alkali treats, and enhanced the GR activity. The content of leaf ABA increased under long-term salt and alkali stress, but root ABA differed among plants. However, in corn roots which possess a well-developed exodermis, alkaline and saline conditions in the rhizosphere did not reduce the endogenous ABA concentration, because the leaching of ABA from corn roots into the rhizosphere was lower than that from Iris and soybean roots. ABA efflux from corn and Iris and soybeab roots into the soil solution was observed only during the first days of the experiments and thereafter became substantially decreased.3. The data acquired in this study showed that diurnal changes of Pn and Tr were two-peak-type-curve, and was marked midday depression of Pn, which could be fully accounted for Gs changes. Carboxylic efficiency(CE) photosynthetic rate at saturation for intercellular CO2 concentration(A_350) apparent quantum yield(AQY) and photosynthetic rate at light saturation(Pmax) decreased in the midday. The result demonstrated that midday depression could be attributed to leaf temperature rising caused by the increasing of strong solar radiation (PAR).4. The results showed that Pn decreased with leaf ripping, and CO_2 carboxylic efficiency (CE), apparent quantum yield(AQY) declined at same time, but maximum photochemical efficiency(Fv/Fm) had little changed during leaf senescence of Iris lactea Pall, var chinensis(Fisch.) Koidz. During senescence of Iris lactea Pall, var chinensis(Fisch.) Koidz, CE and A_350 (net photosynthetic rate at light saturation) declined more rapid than AQY and J_max (net photosynthetic rate at CO_2 saturation (net photosynthetic rate at light saturation). This result showed that dark reaction or carbon cycle of photosynthesis declined more rapid than light reaction.5. The data acquired in this study showed that the diurnal changes of the maximum PS II photochemical efficiency (F_v/F_m) and actual photochemical efficiency of PS II (OPS II) were related to light intensity, the functional photosystem II reaction centers were decreased to cause significant photoinhibition. With the increasing of photosynthetic actual irradiation (PAR) to simulate
    PAR diurnal change, Fv/Fm and OPS II decreased, nonphotochemical quenching (NPQ) increased, and the fraction of excited energy allocated to PS II increased to enhance PS II burden carrying excited energy. These results indicated that photoinhibition in Iris leaves are caused primarily by increasing of excited energy allocated to PS II to enhance reversible inactivation of PS II centers except NPQ increasing. With the decreasing of PAR, Fv/Fm and OPS II increased, NPQ and unbalance index of excited energy allocated to PS II and PS I (p/a-1) declined respectively. This indicated that the recovery of PS II photochemical efficiency is caused primarily by renewing PS II activation owing to unloading the energy burden of PS II.6. Salt and alkali treatment (the content of salt 0.36%,pH 8.90) alone had no effect on the maximal photochemistry of PS II (Fv/Fm), but decreased apparent photosynthetic electron transport rate(ETR).However, the salt and alkali treatment accompanied with drought decreased Fv/Fm and the efficiency of excitation captured open PS II(Fv'/Fm'), and state transition (from II to I) caused 33.3% decrease in allocation of excited energy to PS I and 18.1% increase to PS II. At the same time, the salt and alkali treatment accompanied with drought resulted in serious imbalance of excited energy distributions between two photosystems, enhanced the pressure on PS II .It is suggested that Nonphotochemical quenching (NPQ) could play a key role in adaptation mechanism of plant to stress.7. NaCl treatment alone had no effect on the maximal photochemistry of PSII. However, the NaCl treatment modified pH stress on PSII photochemistry in Iris leaves, which was manifested by a lesser pH-induced decrease in photochemical quenching (qP), efficiency of excitation energy capture by open PSII reaction centers (Fv7Fm'), and quantum yield of PSII electron transport (OPSII). Additions of calcium and ABA could alleviate photoinhibition in Iris leaves treated by NaCl. But Additions of calcium has no effects on alleviating under alkaline stress, and ABA does.
引文
查霞娟,孙岚,肖崇彬.苹果砧木耐盐性比较试验.中国果树,1986(2):5-9.
    陈华新,李卫军,高辉远.NaCl胁迫增强杂交酸模(Rumex K-1)幼苗叶片光系统Ⅱ的耐热性.植物生理与分子生物学报,2004,161:257-264.
    陈新华,李卫军,安沙舟,高辉远.钙对NaCl胁迫下杂交酸模(Rumex K-1)光抑制减轻的作用.植物生理与分子生物学报,2003,29:449-454.
    陈善春,张进仁,吴安仁,等.柳橙胚愈伤组织耐盐性研究.西南农业大学学报,1987,9(4):463-469.
    杜红梅,王德利,孙伟.松嫩草地全叶马兰夏季与秋季光合及蒸腾作用的比较.应用生态学报,2002,13(12):1600-1604
    傅秀云.冬小麦耐盐力与脯氨酸含量的关系.山东农业科学,1998,(2):5-7
    樊自立,马英杰,马映军.中国西部地区耕地土壤盐渍化评估及发展趋势预测.干旱区地理,2002,25(2):97-102.
    冯立田,赵可夫.叶绿体对盐胁迫的某些生理适应制.植物学通报,1998,15(增刊):62-67.
    龚明,丁念诚,贺子义.盐胁迫下大麦和小麦叶片膜脂过氧化伤害与超微结构变化.植物学报,1989,31(11):841-846.
    谷瑞升,蒋湘宁,郭仲琛.胡杨细胞和组织结构与其耐盐性关系的研究.植物学报,1999,41(6):576-579.
    郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,1996,32:1-8.
    姜卫兵,马凯,王业遴.无花果耐盐性生理指标的探讨.江苏农业学报,1991,7(3):29-33.
    姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应.江苏农业学报,1992,8(4):13-17.
    贾探民,杜双田.世界各国防治土壤盐碱化主要措施.垦殖与稻作,1999(2):43-44.
    李月树.羊草种群地早部分生物量形成规律的探讨.植物生态学与地植物学丛刊,1983,7(4):289-297.
    李建尔,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理.北京:科学出版社.1997.271.
    李秀军.松嫩平原西部土地盐碱化与农业可持续发展.地理科学,2000,20(1):51~55
    李平,赵鸿斌,田原,何长德.塔里木河流域土地盐渍化改良与竖井排灌工程.地质灾害与环境保护,2002,13(2):48-62聂绍荃.黑龙江植物资源志.东北林业大学出版社,2003.860-862.
    李磊.大麦芽期耐用盐性鉴定指标初探.莱阳农学院学报,2000,17(1):29-31
    刘宛,胡文玉,谢甫绨.NaCl胁迫及外源自由基对离体小麦叶片膜脂过氧化的影响.西北植物学报,1997,4:343-346
    刘志礼,李鹏去.NaCl胁迫对螺旋藻生长及抗氧化酶活性的影响.植物学通报,1998,15(3):43-47.
    刘友良.植物耐盐性的研究进展.植物生理学通讯,1987,(6):72-81.
    刘祖祺,张石城主编.植物逆境生理学.北京:农业出版社.370-72.
    刘凤华,陈受宜.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58.
    娄成后和王学臣主编.作物产量形成的生理学基础.北京:农业出版社.2001,52
    廖祥儒,贺普超,朱新立.盐渍对葡萄色素含量的影响.园艺学报,1996,23(3):300-302.
    廖祥儒,贺普超,朱新立.玉米素对盐渍下葡萄叶圆片H_2O_2清除系统的影响.植物学报,1997,39(7):641-646.
    聂绍荃主编.黑龙江植物资源志.东北林业大学出版社,2003.860~862
    钱骅,刘友良.盐胁迫下钙对大麦根系质膜和液泡膜功能的保护效应.植物生理学通讯,1995, 31(2):102-104.
    山仑,徐萌.节水农业及其生理基础.应用生态学报,1991,2(1):70-76.
    沈禹颖,阎顺国,朱兴运.几种培育措施对河西走廊盐渍草地的作用.中国草地,1998,(2):7-14.
    沈禹颖,李昀,阎顺国.河西走廊5种禾本科牧草早期耐盐性研究.草地学报,1999,7(4):293-299.
    孙广玉,邹琦,程柄嵩,王滔.大豆光合速率和气孔导度对水分胁迫的响应.植物学报,1991,33(1):43-49.
    孙广玉,邹琦,程柄嵩,王滔.小粒大豆光合特性的研究.中国农业科学,1991,24(2):57-62.
    孙金月,赵玉田,常汝镇,等.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究,中国农业科学.1997,30(4):9-15
    谈健康,安树青等.NaCl、Na_2SO_4和Na_2CO_3胁迫对小麦叶片自由基含量及质膜透性的比较研究.植物学通报,1998,(15):82-86.
    汤章成.植物抗逆性生理生化研究的某些进展.植物生理学通讯,1991,27(2):16-148.
    汪良驹,王业进,刘友良.盐逆境中无花果叶片蛋白质合成与脱落酸及脯氨酸积累的关系.江苏农业学报,1991,7(1):38-44
    汪良驹,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸积累中的作用.植物生理学报,1999,25(1):38-42.
    汪良驹,马凯,姜卫兵,等.五种落叶果树的氯离子分布与耐盐性研究.中国南方果树,1996,25(4):34-38.
    王慧英,孙建设,张建光.NaCl胁迫对苹果砧木K~+和Na~+吸收的影响及其与耐盐性的关系.河北农业大学学报,2002,25(增刊1):104-107.
    王宝山.NaCl胁迫对高梁根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物生理学报,2000,26(3):845-850
    王萍.碳酸钠胁迫下羊草幼苗的生理效应及外源ABA的缓解效应.草业学报,1998,7(1):24-27.
    王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响.南京农业大学学报,2002,25(4):11-14.
    王遵亲主编.中国盐碱土.北京:科学出版社,1993.573.
    王继和,刘虎俊.加拿大阿尔伯达省盐渍化土地治理与研究.干旱区研究,1999,16(1):67-71.
    王奎武等.盐碱荒滩荒地柽柳造林技术.林业科技,2000,25(5):13-14.
    王德利,王正文,张喜军.羊草两个趋异类型的光合生理生态特性比较的初步研究.生态学报,1999,19(6):837-843.
    汪良驹,马凯,姜卫兵,等.NaCl胁迫下石榴和桃植株Na~+、K~+含量与耐盐性研究.园艺学报,1995,22(4):336-340.
    肖明.以建立人工草地为目的的盐渍土综合改良研究.中国草地,1995.5:34-37.
    徐恒刚,董志勤,单敏.马蔺在城市绿化中的作用及前景.内蒙古科技与经济,2002,9:60-61.
    徐炳成,山仑,黄占斌,李代琼.黄土丘陵柳枝稷光合生理生态特性的初步研究.西北植物学报,2001,21(4):625-630.
    杨莉琳,李金海.我国盐渍化土壤的营养与施肥效应研究进展.中国生态农业学报,2001,9(2):79-81
    许大全.光合作用“午睡”现象的生态生理与生化.植物生理学通讯,1990,6:5-10.
    杨瑞玲,毕于运.我国盐碱化耕地的防治.干旱区资源与环境,1996,10(3):20~30.
    杨胜铭,高辉远,邹琦.状态转换对光合作用中激发能分配的调节及其与光破坏防御的关系.植物生 理学通讯,2001,37(2):89-93
    余叔文,汤章诚主编.植物生理与分子生物学.北京:科学出版社,1998,779-796.
    翟凤林,曹凤鸣.植物的抗盐性及其改良.北京:农业出版社.1986.57-69.
    张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,16(4):429-432.
    张福锁.植物营养生态生理学和遗传学.北京:中国科技出版社,1993.
    张宝泽,曹子谊,赵可夫.盐分胁迫下沙枣某些生理特性的研究.林业科学,1992,28(2):167-169.
    郑慧莹,李建尔.松嫩平原盐生植物与盐碱化草地恢复.北京:科学出版社.1993.233.
    郑慧莹,李建尔.松嫩平原的草地植被及其利用保护.北京:科学出版社.1993.195.
    郑文菊,王勋陵,贾敬芬.小麦耐盐系愈伤组织细胞的超微结构观察.西北植物学报,1999,19(1):81-84.
    徐云龄.植物盐胁迫蛋白.植物生理学通讯,1989,(2):5-11.
    章文华,刘友良.盐胁迫下钙对大麦和小麦离子吸收分配及H~+-ATP酶活性的影响.植物学报,1993,35:435-440.
    赵可夫.作物抗性生理.北京:农业出版社,1990,249-52.
    赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993.
    朱新广,王强,张其德.Effects of Photoinhibition and Its Recovery on Photosynthetic Functions of Winter Wheat Under Salt Stress. Acta Botanica Sinica, 2001,植物学报,43(12):1250-1254.
    朱新广,王强,张其德.冬小麦光合功能对盐胁迫的响应.植物营养与肥料学报,2002,8(2):177-180.
    朱新广,张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16(4):332-338.
    邹琦,孙广玉.小粒大豆与普通大豆光合对光、温度、CO_2响应特性的比较研究.山东农业大学学报,1991,22(4):311-317.
    Amtmann A. Mechanisms of Na~+ uptake in plant cells .Advance in Botanical Research, 1999,29:75-112.
    Anderson J M, Park Y I, Chow WS. Photoinactivation and photoprotection of photosystem Ⅱ in nature. Physiol Plant, 1997, 100:213-223.
    Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport inArabidopsis. Science, 1999, 285:1256-258.
    Aro EM, Virgin I, Anderson B. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover. Biochim Biophys Acta, 1993, 1143:113-134.
    Asada K. Ascorbate peroxidase hydrogen peroxide scavenging enzyme in plant. Physiol Plant, 1992, 85: 235-241
    Baker NR. A possible role for photosystem Ⅱ in environmental perturbations of photosynthesis. Physiol Plant, 1991, 81:563-570.
    Bajji M, Lutts S, Kinet JM. Water deficit effect on solution contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci, 2001, 160: 669-681.
    Barbara Demmig , Klaus Winter. Characterization of three components of nonphotochemical fluorescence quenching and their response to photoinhibition Plant Physiol, 1988,15:163-177.
    Barkls JB, Tonoplast Na~+/H~+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthennum crystallinum L. Plant Physiology, 1995,109:884-887
    Blatt MR. Hormonal control of ion channel gating. Ann Rev Physiol Plant Mol Biol,1993,44:55-61.
    Boggess SF, Paleg LG, Aspinall D. A-pyrroline-5-carboxylic acid dehydrogenase in barley aproline accumulating species. Plant physiology, 1975,156:259-262.
    Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses. Plant Cell. 1995,7:1099-1011.
    Braun G, Malkin S. Regulation of the imbalance in light excitation between Photosystem Ⅱ and Photosystem Ⅰ by cations and by the energized state of the thylakoid membrane. Biochim Biophys Acta, 1990,1017:79-90
    Britton C, Maehly AC. Assay of catalase and peroxidase. In: Packer L(ed). Methods in Enzymology. Vol Ⅱ. New York: Academic Press Inc. 1955,764-775.
    Bruce B, Biggins J, Steiner T et al. Mechanism of the light state transition in photosynthesis Ⅳ. Picosecond fluorescence spectroscopy of Anacystus nidulans and Porphyridium cruentum in state Ⅰ and state Ⅱ at 77 K. Biochim Biophys-Acta, 1985, 806:237-246
    Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta, 1992, 187: 335-347.
    Chen HX, Li WJ, An SZ, Gao HY. Characterization of PSII photochemistry and thermostability in salt-treated Rumex leaves. J Plant physiol,2004, 161:257-264
    Christa C. Photoinhibition of photosynthesis in vivo: the role of protein turnover in photosystem. Physiologia Plantarum, 1994,92: 188-196.
    Cramer GR, Bowman DC. Kinetics of maize leaf elongation: Increased yield threshold limits short-term, steady state elongation rates after exposure to salinity. J Exp Bot, 1991, 42:1417-1426.
    Csonka LN. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Molecular & General Genetics, 1981,182:82-86.
    Dandin SB. Mulberry a versatile biosource in the service of mankind. Science of Sericulture, 1996, 24(2): 109-113
    Daniells IG, Holland JF, Young RR. Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Aust J Exp Agric, 2001, 41:211~217
    Davies WJ, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Ann Rev plant Physiol Plant Mol Biol, 1991, 42:55-76.
    David RD, Widholm JM. Proline accumulation and its implication in cold tolerance of regenerable maize cailus. Plant Physiology, 1987, 83:703-708.
    Delfine S, Alvino A, Zacchini M, Loreto F. Consequence of salt stress on conductance to CO_2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol, 1998,25: 395-402.
    Demming Adams B, Adams Ⅲ W W. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:599-626.
    Demming B, Winter K. Characterization of three components of non-photochemical fluorescence quenching and their response to photoinhibition. Aust J Plant Physiol, 1988,15, 163-177.
    Dhindsa RS, Matowe W. Drought tolerance in two mosses : correlated with enzymatic defense against lipid peroxidation. J Exp Bot, 1981,32: 79-88.
    Divate MR,Pandey RM. Salt tolerance in grapes 1. Effect of salinity on chlorophyll photosynthesis and respiration. Indian J Plant Physiol,1981,24(1):74
    Dondini L. Bonazzi S. Del-Duca S. Acclimation of chloroplast transglutaminase to high NaCl concentration in a polyamine-deficient variant strain of Dunaliella salina and in its wild type. J Plant Physiol, 2001, 158:185~197.
    Dowmton WJ. Photosynthesis in salt stressed grapevines. Aust J Plant Physiol, 1977, (4): 183.
    Ehrenheim AM, Finazzi G, Forti G. Inhibition of photosystem Ⅱ activity by proton gradient. Biochim Biophys Acta, 1994, 1185:279-283.
    Erdei L, Trivedi S, Takeda K, Matsumoto H. Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat varieties differing in salt and drought tolerance J Plant Physiol, 1990,137:165-168
    Farquhar GD,Von Caemmerer S, and Berry, JA. A biochemical model of photosynthetic CO_2 assimilation in leaves of C3 species. Planta,1980,149:78~90.
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Armual Review of Plant Physiology,1982, 33:317-345.
    Finazzi G, Furia A, Barbagallo RP, Forti G. State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta, 1999, 1413:117-129.
    Freundl E,Steudle E Hartung W Apoplastic transport of abscisic acid across maize roots. The role of the exodermis.Planta,2000, 210:222-231.
    Gabarino J. NaCI induces a Na~+/H~+ antiport in tonoplast vesicles from barley roots. Plant Physiology, 1988,86:231-236.
    Gorham F. Some mechanism of salt tolerance in crop plants. Plant and Soil, 1985, (89): 15-40.
    Gossget DR, Banks SW, Millhollon EP, Lucas MC. Antioxidant response to NaCI stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiology, 1996,112:803-809.
    Greenway H, Munns R. Mechanisms of salt tolerance innonhalophytes. Annu Rev Plant Physiol, 1980,31: 149-190.
    Geiger DR, Servaites JC. Diurnal regulation of photosynthetic carbon metabolism in C3 plant. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45:235-256.
    Gossett DR, Millhollon EP, Lucas MC. Antioxidant response to NaCI stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci, 1994, 34: 706-714.
    Gur B, Shmuel M. Kinetic relationships between structural changes in the thylakoid membranes and photosystems organization.Biochim Biophys Acta, 1991, 1060:303-309
    Guri A. Variation in glutathione and ascorbate acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone.Can J Plant Sci, 1983, 63: 733-737.
    Haimeirong, Kubota E The effects of drought stress and leaf ageing on leaf photosynthesis and electron transport in photosystem 2 in sweet potato (lpomoea batatas Lain.) cultivars. Photosynthnetica, 2003, 41:253-258.
    Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol, 2000, 51:463~499
    Havaux M, Niyogi KK. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism Proc. Natl. Acad. Sci, USA, 1999, 96: 8762-8767.
    Havaux M, Strasser RJ, Greppin H. A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res, 1991, 27:41-45.
    Horton P, Hague A. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim Biophys Acta, 1988,932:107-115.
    Horton P, Ruban A V, Waiters R G. Regulation of light harvesting green plants Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:655-684
    Huber W, Influence of NaCI and ahscisic acid treatment in protein metabolism and some timber enzymes of amino acid metabolism in seedlings of Pemisetum typhoides,Planta; 1974; 121 (3):225-236.
    James RA, Riveli AR, Munns R, et al. Factors affecting CO2 assimilation,leaf injury and growth in salt-stresed durum wheat. Funct Plant Biol, 2002, 29:1393~1403.
    John B. Protein phosphorylation in green plant chloroplasts Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:281-311.
    Jones L. Metabolic adaptation in mature roots of salt stress Zea mays. Annals of Botany, 1980, 46:395-400.
    Kalir A. Changes in activity of slate dehydrogenase catalase peroxidase and superoxide dismuta.se in leaves of Halimione pertulacoides (L) .Aellen exposed to high sodium chloride concentrations. Annals of Botany, 1981,47:75-85.
    Ke YQ, Pan TG. Effects of salt stress on the ultrastructure of chloroplast and the activities of some protective enzymes in leaves of sweet potato. Acta Phytophysiol Sin, 1999,25 (3): 229-233.
    Krause G H, Weis F. Chlorophyll fluorescence and photosynthesis: The basics[J]. Annu Rev Plant Physiol Plant Mol Biol, 2002, 42:313-349.
    Kyle DJ.The biochemical basis for photoinhibition of photosystem Ⅱ.In. Kyle DJ, Osmond CB,Arntzen C J ed. Photoinhibition. Amsterdam: Elsevier, New Fork,Oxford, 1987, 197-226.
    Low R, Roekel B, Kirsch M, Ratajczak R, Hortensteiner S, Martinoia E, Ltittge U, Rausch T. Early salt stress effects on the differential expression of vacuolar H(+)-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiology, 1996,110:259-265.
    Li XP. A pigment-bonding protein essential for regulation of photosynthetic light harvesting. Nature, 2000, 403:391-395.
    Liu JP, Zhu JK, A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280:1943-1945
    Luna C, de Luca M, Taleisnik E. Physiological causes for decreased productivity under high salinity in Boma, a tetraploid Chloris gayana cultivar. Ⅱ. Oxidative stress. Aust J Agric Res, 2002, 53:663-669
    Luttge U, Ratajczak R. The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. Advance of Botany Research, 1997,25:253-296.
    Mansour MMF, Lee-Stadelmann OY, Stadelmann EJ. Changes in growth, osmotic potential and cell permeability of wheat cultivators under salt stress. Physiol Plant, 1993, 36(3):429-434.
    Marcar NE, Crawford DF, Leppert P, Javanovic T, Floyd R, Farrow R. Tree for saltland. CSIRO press, Melbourne, 1995.
    Meng QW, Zhao SJ, Xu CC, et al. The role of Xanthophyll cycle in protecting the photosynthetic apparatus of wheat leaves against midday high light stress Acta Agronomica Sin, 1998,24 (6):747-750
    Moons A, Bauw G, Prinsen E, Van Montagu MD, Van der Straeten. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiology, 1995, 107:177-186.
    Morales F, Abadia A, Gomez-Aparis J, Abadia J. Effects of combined NaC1 and CaCl_2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiol Plant, 1992, 66:419-426.
    Mukherjee SP, Choudhuri MA. Implication of water stress induced change in the level of endogenous ascorbic acid under hydrogen peroxide in vigna seedlings. Physiol Plant, 1983, 58: 166-170.
    MOiler P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiol,2001,125:1558-1566.
    Munns R. Why measure osmotic adjustment? Aust J Plant Physiol, 1988,15:717-726.
    Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell Environment. 1993,16:15-24.
    Munns R. Comparative physiology of salt and water stress. Plant, Cell and Env, 2002, 25,239-250.
    Munns R. Termaat A. Whole-plant response to salinity. Aust J Plant Physiol, 1986,13:143-160
    Murata N. Control of excitation transfer in photosynthesis Ⅱ Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts [J]. 13iochim Biophys Acta, 1969, 189:171-181
    Nakamura Y ,Kasamo K, Shimosa N. Stimulation of the extrusion of proton and H~+-ATPase activitiese with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ ions. Plant and cell Physiology, 1992, 33(21): 193.
    Neumann PM. Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCI. Plant, Cell and Environment, 1993, 16:1107-1114.
    Neumann P. Sainity resistance and plant growth revisited. 1997,20:1193-1198.
    Niu X, Narasimhan ML,Salzman,RA. NaCI regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.Plant Physiology. 1993,103(3):713-8.
    Oja V, Laisk A . Oxygen yield from single turnover flashes in leaves: non-photochemical excitation quenching and the number of active PSⅡ. Biochim Biophys Acta,2000,1460:152-291.
    Passioura JB, Munns R. Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Aust J Plant Physiol, 2000, 27:941-948.
    Pick U. ATPase and ion mansport in Punaliella .Physiology Biochemistry and Biotechnology, 1992, 63-47
    Powles CB. Photoinhibition induced by visible light. Ann Rev Plant Physiol, 1984, 35:15-44.
    Tajasekaran LR. Physiological mechanism of tolerance of Lycopersicom spp. exposed to salt stress. Canada Journal of Plant Science,2000,80(1): 151-159.
    Raschke K. Stomatal action. Ann Rev Plant Physiol, 1975, 26:307-340.
    Rausch T, Kirsch M, Low R, Lehr A, Viereck R. Salt stress responses of higher plants: the role of proton pumps and Na~+/H~+-antiporters. Journal of Plant Physiology, 1996,148:425-433.
    Reschke K,Resemann A. The midday depression of CO_2 assimilation in leaves of Arbutus unedo L.: Diurnal changes in photosynthetic capacity related to changes in temperature and humidity. Planta, 1986, 168:546.Richter M, Goss R, Wagner B, Holtzwarth, AR. Characterization of the fast and slow reversible components of non-photochemical quenching in isolated pea thylakoids by picosecond time-resolved chlorophyll fluorescence analysis. Biochemistry 1999,38:12718-12726.
    Ruban AV, Wentworth M, Horton P. Kinetic analysis of non-photochemical quenching of chlorophyll fluorescence. 1. Isolated chloroplasts. Biochemistry, 2001,40:9896-9901.
    Rubio F, Gassmann W, Schroeder JI. Sodium-drivan plant potassium transporter HKTI and tolerance.Science, 1995, 270:1660-1663.Sanchez FJ, Manzanares M, de Andres EF, et al. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crop Res, 1998, 59:225~235.
    Sabu A,Sheeja TE. Comparison of proline accumulation in callus and seedlings of two cultivation of Oryza sativa L.differing in salt tolerance. Indian Journal of Expermential Biology, 1995,33(2): 139-141
    Schachtman DP and Schroeder JI. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants.Nature, Aug 1994,370(6491): 655-8.
    Schobert B. The influence of water stress on the metabolism of diatoms: Ⅱ .Proline accumulation under different conditions of stress and light. Pflanzen physiol, 1977,85(5):451-462.
    Shalhevet J, Hsiao TC. Salinity and drought:A comparison of their effects on osmotic adjustment, assimilation, transpiration and growth. Irr Sci, 1986, 7:249-264.
    Shone MGT, Gale J. Effect of sodium chlodium stress and nitrogen soume on respiratiom, growth and photosynthesis in Lucerne (Medicago sativa L.), Journal of Experimental Botany, 1983, 34: 1117-1125.
    Singha S,Choudhuri MA. Effect of salinity (NaCI) stress on H_2O_2 metabolism in Vigna and Oryza seedling. Biochem Physiol Pflanzen, 1990,186:69-74.
    Silva JM, Arrabara MC. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: A comparison between rapidly and slowly imposed water stresses. J Plant Physiol, 2004, 161:551-555
    Slovik S,Daeter W, Hartung W. Compartmental redistribution and long-distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere - a mathematical model. J Exp Bot,1992, 46:881-894.
    Tester M, Davenport R. Na~+ tolerance and Na~+ transport in higher plants. Annal Bot, 2003, 91:503~527
    Turner LB, Stewart GR. Factors affecting polyamine accumulation in barley (Hordeum vulgate L.) leaf sections during osmotic stress. J Exp Bot, 1988,39:311-316.
    Tyorman SD. Root ion channels and saliaity .Scientia Horticulture ,1999,78:175-325.
    Udovenko GV. Change of root cell ultrastructure under salinization in plant of different sal resistance .Soviet plant physiology, 1970; 17:813-819.
    Whittaker RH,(王伯荪译)。植物群落排序。北京:科学出版社.1978.50-56.
    Wu J ,Neimanis S, Heber U. Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic appartus against photoinhibition Bot Acta, 1991,104:283-291
    Xu D Q,Wu S.Three phases of dark recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions Photosynthetica, 1996,32:417-425
    Yeo AR, Lee KS, Izard P, et al. Short~and long~term effects of salinity on leaf growth in rice (Oryza sativa L.). J Exp Bo, 1991, 42:881-889.
    Yang X H, Zou Q, Wang W. Photoinhibition in shaded cotton on leaves after exposing to high light and the time course of its restoration. Acta Botanica Sinica, 2001, 43(12): 1255-1259
    Zekri M, Parson LR. Calcium influences growth and leaf mineral concentration of citrus under saline condition. Hort Science, 1990,25(7):784-786.
    Zeng MC, Shannon CM, Grieve. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica,2002, 127:235-245
    Zhou HY. Physioecological characteristic of four dominant plants species in kerqin sandland.Chinese Journal of Applied Ecology, 2000, 11(4):587-590.
    Zimmermann U, Schneider H, Wegner LH, Wagner H J, Szimtenings M, Haase A, Bentrup FW. What are the driving forces for water lifting in the xylem conduit? Physiol Plant,2002,114:327-335.
    Zou Q, Xu C C, Zhao S J, et al. The role of SOD enzyme in protecting the photosynthetic apparatus of soybean leaves against midday high light stress. Acta Phytophysiologica Sinica,1995,21 (40):397-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700