用户名: 密码: 验证码:
基于模板的特异构造环芳分子的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以碳-碳三键为桥联的环芳化学,特别是富碳化合物和构型保持的大环类化合物研究。是现代环芳化学研究中最引人注目的领域。
     环芳化合物的性质取决于它的几何形状、电子效应和芳环上的取代基。三键的刚性结构可以使大环骨架得以很好的扩展,而苯环可以控制三键桥联的方向,从某种意义上决定了整个分子的形状。三键和芳香环的组合可以形成一系列形态各异的平面或三维环芳化合物。通过C≡C的连接,各种芳香环可以组合成形状特定的二维或三维的大环化合物。它们在分子构型、分子手性、液晶材料和传感材料等方面的潜在应用被广泛研究。其中一些高度不饱和的此类化合物被作为是有序碳材料的前驱体。本文还进一步阐述了本实验室以前的工作,在此基础上设计并合成了一系列新型的光学活性的环芳化合物及其衍生物。
     第二章主要讨论光学活性分子内双螺旋化合物的构筑方法。通过手性构型高度稳定的联萘模板来引进手性源,用文献报道的此类双螺旋化合物合成方法合成了具有两个不同连接桥的分子内双螺旋化合物(R,P)-67,并设计了新的合成路线合成了该双螺旋化合物的对映异构体(S,M)-67,通过比较得出新方法省去了一些复杂手性片段的制备,缩短了反应步骤。从(R)和(S)-2,2’-二乙炔基-1,1’-联萘模板出发,还成功地合成了光学活性分子方(R,R,R,R)-和(S,S,S,S)-69和70,我们将化合物69和70分别与六氟磷酸银和六氟磷酸铜以等摩尔比混合。虽然未得到可以进行X-Ray分析的化合物晶体,但对形成的配合物进行了1HNMR和圆二色谱(CD)分析。通过与69和70的比较,我们发现1HNMR的氢位移值和圆二色谱(CD)的Cotton效应波长、峰形都有很大的变化。我们可以判定金属配合物的形成,由于这两个笼状化合物含有氮朝向环内的吡啶和联吡啶单元,只能与金属离子形成分子内配合物。而且通过CPK模型和Chem3D的计算,给出了配合物的结构为分子内双螺旋化合物。这表明我们通过含有吡啶单元的笼状化合物与金属配位构筑了一种新型的分子内双螺旋化合物,且异构体的CD谱呈现出良好的镜像对称关系,这表明了异构体为对映异构体。
     第三章从(R)和(S)-2,2’-羟基-1,1’-联萘出发,以具有双螺旋结构的环芳化合物为哑铃的球体,刚性的苯基炔化合物为连接桥,通过Sonogashira偶联反应成功地合成了几个光学活性的哑铃状化合物(R, P)-和(S, M)-79~82以及螺旋单元构筑的枝状化合物(R, P)-和(S, M)-83~86。目标化合物的结构都通过IR,1H和13C NMR分析得到确认,而且对其进行了紫外–可见吸收光谱和圆二色谱分析。并且通过Chem3D的计算得出,目标化合物的分子大小都达到了2-3个纳米,从而可以展望此类分子在纳米材料方面的应用。
     第四章以(R)和(S)-2,2’-二乙炔基(羟基)-1,1’-联萘以及为模板,引入邻位苯环连接桥构筑的两个扩展型双螺旋化合物。并从两个模板出发,在最初尝试由分子间成环合成目标化合物时,却得到了目标化合物的单倍体(分子内成环化合物)。在此基础上改进了合成策略,设计了对模板进行选择性保护,先引入一边二炔连接桥,再脱去保护引入另一端邻位苯环连接桥,最后经Cu2+催化的分子内Eglinton偶合成环反应得到了设计的目标化合物。并成功得到了化合物154,73的适合X-Ray单晶衍射分析的晶体,对其进行了晶体结构分析。
     第五章设计了两个空穴大小不同的三维空腔结构分子89和90。在89的合成中,虽然设计了分子内和分子间关环两条合成路线,但由于分子位阻效应未得到设计的目标分子,却都得到了一个双层笼状化合物175。目标化合物90引入了更长的苯炔体系作为平面连接桥,减小了联萘间的位阻,直接由分子间成环合成法得到。在此过程中我们还探讨了合成路线中涉及的几种反应类型:Sonogashira反应,脱去保护基TMS的反应,封管反应,铜盐促进的炔烃偶合反应。
     本文当中所有的中间体和目标化合物都经过MS、IR、1H NMR、13C NMR和DEPT组合测定得到确认。
The chemistry of cyclophynes having carbon–carbon triple bond bridges has been one of the most actively investigated fields in modern cyclophane chemistry, particularly in connection with the evolving fields of carbon-rich materials and shapepersistent macrocyclic compounds.
     The properties of cyclophynes are characterized by the geometric and electronic properties of triple bonds and the substitution pattern of the aromatic rings. With regard to the geometrical properties, the macrocyclic frameworks of cyclophynes can be expanded by incorporation of triple bonds because of their linearity. The substitution pattern of the aromatic rings, on the other hand, fixes the direction of the bridging triple bonds, defining the whole molecular shape. As a result, a variety of two- and three-dimensional architectures can be built by connecting aromatic rings with triple bond linkages. On the other hand, nonplanar macrocycles of this type have been studied with regard to their conformation, chirality, and their potential application to liquid crystalline and sensing materials. Some highly unsaturated members of this type of compound have been shown to serve as precursors of ordered carbon materials. The previous work of our lab was described, and a series of new type of cyclophynes and their derivatives were designed and synthesized.
     The second chapter focused on the synthetic method of the helical cyclophane. (R) and (S)-2,2′-diethynyl-1,1′-binaphthyl with highly stable chiral configuration was employed as structural template, an unsymmetrical helical cyclophane (R,P)-67 bridged by different components was successfully achieved by the method reported in the literature. The enantiomer (S,M)-67 was successfully achieved by a new synthetic strategy. In comparison with the previously reported method, improved new one saved the preparation of some chiral building block, and shorted synthetic processes. The design and synthesis of enantiopure compounds with cage structure were described. Enantiopure molecule square (R,R,R,R) and (S,S,S,S)-69, 70 were synthesized from the same chiral templates. The Ag(I) complex of (R,R,R,R) and (S,S,S,S)-69 and Cu(II) complex of (R,R,R,R) and (S,S,S,S)-70 was obtained quantitatively. A dramatic change of 1H NMR and circular dichroism (CD) spectra was observed compared to 69, 70. But also the CPK model and the calculated result of Chem3D, given the complex structure of the double helix molecule compounds. Their CD spectra represented exactly mirror images of each other, which reflected unambiguously enantiomeric relation between the all isomers.
     In the third chapter, several enantiopure Dumbbell-compounds [(R,P),(R,P)]-79~82 and dentritic compound [(R,P),(R,P),(R,P)]-83~86 with helical units were synthesized from (R)-2,2′-dihydroxy-1,1′-binaphthyl(BINOL) by Sonogashira coupling reaction. In the structures of these compounds, cyclophyne bearing helical structure and rigid phenylethynyl were used as the ball of dumbbell and linking bridge. And their space models were given using Chem3D. The molecular sizes of compounds 79-86 are 2-3 nm, which makes these compounds have potential application as nanomaterials.
     In the fourth chapter, (R,R) and (S,S)-72 with double helical structure bridged by o-phenylene were designed and synthesized from enantiopure [(R)-or(S)-form] 2,2’-diethynyl(dihydroxy)-1,1’-binaphthyl. The first method, we attempt obtained the torgetmolecular by intermecular coupling reaction, but obtained a monomer of intramolecularly coupling cyclization 154,159. Subsequently, we synthesis of 72,74 was successfully achieved by a new synthetic strategy. by the introduction of protecting group and the conneting of a o,o′-butadiyne linking bridges, then removal of protecting group, leading-in another o′-phenylene linking bridges and intramolecular Eglinton coupling reaction. 154 and 73 were characterized by X-ray single crystal diffraction.
     In the fifth chapter, we designed two three-dimensional macrocycles 89 and 90 with different sizes of the cavity. But 89 can not be synthesized by the two synthetic strategy we designed, because of the molecular steric effect. By extended the linking bridges, through Sonogashira reaction, sealed-tube reaction and Eglinton coupling reaction. Obtained the three-dimensional macrocycles 90.
     All the intermediates and target compounds synthesized in this paper were characterized by MS, IR, 1H NMR, 13C NMR and DEPT.
引文
[1] Moore J S. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res., 1997, 30(10): 402-413
    [2] Zhao D J, Moore S. Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem. Commun., 2003, (7): 807-818
    [3] Haley M M. It takes alkynes to make a world-new methods for dehydrobenzoannulene synthesis. Synlett, 1998, 1998(6):557-565
    [4] Marsden J A, Palmer G J, Haley M M. Synthetic strategies for dehydrobenzo[n]annulenes. Eur. J. Org. Chem., 2003, 2003(13): 2355-2369
    [5] Bunz U H F, Rubin Y, Tobe Y. Polyethynylated cyclicπ-systems: scaffoldings for novel two and three-dimensional carbon networks. Chem. Soc. Rev., 1999, 28(2): 107-119
    [6] H?ger S. Highly efficient methods for the preparation of shape-persistent macrocyclics. J. Polym. Sci. Part A: Polym. Chem., 1999, 37(15): 2685-2698
    [7] Youngs W J, Tessier C A, Bradshaw J D. ortho-Arene cyclynes, related heterocyclynes, and their metal chemistry. Chem. Rev., 1999, 99(11): 3153-3180
    [8] Grave C, Schlüter A D. Shape-persistent, nano-sized macrocycles. Eur. J. Org. Chem., 2002, 2002(18): 3075-3098
    [9] Toyota S, Iyoda M, Toda F. Aromatic chemistry. Annu. Rep. Prog. Chem., Sect. B, 2002, 98: 359-407
    [10] Bodwell G J, Satou T.“Polyunsaturated”cyclophanes. Angew. Chem. Int. Ed., 2002, 41(21): 4003-4006
    [11] M.M. Haley. It Takes Alkynes to Make a World - New Methods for Dehydrobenzoannulene Synthesis. Synlett 1998, 557–565
    [12] U.H.F. Bunz. Carbon Rich Compounds II, Macrocyclic Oligoacetylenes and Other Linearly Conjugated Systems. Top. Curr. Chem. 1999, 201, 131–161.
    [13] U.H.F. Bunz, Y. Rubin, Y. Tobe. Polyethynylated cyclic -systems: scaffoldings for novel two and three-dimensional carbon networks Chem.Soc. Rev. 1999, 28, 107–119.
    [14] W. J. Youngs, C. A. Tessier, J.D. Bradshaw. Ortho-Arene Cyclynes, Related Heterocyclynes and Their Metal Chemistry. Chem. Rev. 1999, 99, 3153–3180.
    [15] G. J. Bodwell, T. Satou. Polyunsaturated Cyclophanes. Angew. Chem. Int.Ed. 2002, 41, 4003–4006.
    [16] C. Grave, A.D. Schlüter. Shape-Persistent, Nano-Sized Macrocycles . Eur. J. Org.Chem. 2002, 3075–3098.
    [17] Solooki D, Bradshaw J D, Tessier C A, et al. Syntheses and crystal structures of 1,2:5,6:9,10:13,14:17,18:21,22-hexabenzo-3,7,11,15,19,23-hexadehydro[24] annulene (HBC), 1,2:5,6:9,10:13,14-tetrabenzo-3,7,11,15-tetradehydro[16] annulene (QBC) and a tetracobalt complex of QBC. The first example of a transition metal complex of QBC. J. Organomet. Chem., 1994, 470(2): 231-236
    [18] Iyoda M, Vorasingha A, Kuwatani Y, et al. A one-step synthesis of dehydro[12]annulenes using palladium-catalyzed reaction of o-diiodoarenes with acetylene gas. Tetrahedron Lett., 1998, 39(26): 4701-4704
    [19] Kehoe J M, Kiley J H, English J J, et al. Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org. Lett., 2000, 2(7): 969-972
    [20] Miljanic O S, Vollhardt K P C, Whitener G D. An alkyne metathesis-based route to ortho-dehydrobenzannulenes. Synlett, 2003, 2003(1): 29-34
    [21] Solooki D, Bradshaw J D, Tessier C A, et al. Synthesis and characterization of trithienocyclotryne(TTC) and its tetracobalt complex. The first example of a dehydroannulene containing thiophene rings. Organometallics, 1994, 13(2): 451-455
    [22] Ferrara J D, Tessier-Youngs C, Youngs W J. Synthesis and characterization of the first transition metal complex 1,2:5,6:9,10-tribenzocyclododeca-1,5,9- triene-3,7,11-triyne. J. Am. Chem. Soc., 1985, 107(23): 6719-6721
    [23] Ferrara J D, Youngs C T, Youngs W J. Synthesis and characterization of a copper(I) triflate complex of 1,2:5,6:9,10-tribenzocyclododeca-1,5,9-triene- 3,7,11-triyne. Organometallics, 1987, 6(3), 676-678
    [24] Djebli A, Ferrara J D, Youngs C T. The synthesis and structural characterization of a novel tetracobalt cluster of 5,6,11,12,17,18- hexadehydrotribenzo[a,e,i]-cyclododecine. J. Chem. Soc., Chem. Commun., 1988, (8): 548-549
    [25] Ferrara J D, Djebli A, Tessier-Youngs C, et al. Synthesis and characterization of a silver(I) triflate sandwich complex of 1,2:5,6:9,10-tribenzocyclododeca- 1,5,9-triene-3,7,11-triyne. The first example of a 12-membered macrocycle sandwich complex. J. Am. Chem. Soc., 1988, 110(2): 647-649
    [26] Ferrara J D, Youngs C T, Youngs W J. Synthesis and molecular structure of a trinuclear copper(I) cofacial bimacrocycle. Inorg. Chem., 1988, 27(13): 2201-2202
    [27] Ferrara J D, Tessier-Youngs C, Youngs W J. A novel n-doped metallomacrocyclic conductor. J. Am. Chem. Soc., 1988, 110(10): 3326-3327
    [28] Ferrara J D, Tanaka A A, Fierro C, et al. Synthesis and structural and theoretical characterization of a nickel(0) complex of tribenzocyclyne (TBC) and the preparation of a novel organometallic conductor. Organometallics, 1989, 8(9): 2089-2098
    [29] Kinder J D, Tessier C A, Youngs W J. Synthesis of a para-methoxy substituted tribenzocyclotriyne. Synlett, 1993, 1993(2): 149-150
    [30] Youngs W J, Kinder J D, Bradshaw J D, et al. Synthesis of nickel(0) complex of a methoxy-substituted tribenzocyclotriyne. X-ray crystallographic evidence for an intermolecular carbon-hydrogen-nickel agostic interaction. Organometallics, 1993, 12(7): 2406-2407
    [31] Zhang D, Tessier C A, Youngs W J. Synthesis of tris(2,5-dialkynylthieno)cyclotriynes, tris(4,5-dialkoxyphenyl)cyclotriynes, and tetrakis(4,5-dialkoxyphenyl)cyclotetraynes with long-chain alkyl substituents, and the nickel and cobalt complexes of tris[4,5-(didodecyloxy)phenyl]cyclotriyne. Chem. Mater., 1999, 11(11): 3050-3057
    [32] Iyoda M, Fuchigami K, Kusaka A, et al. Z-Tribenzo[c,g,k]-1,2,5,6- tetradehydro[12]annulene, a concaveπ-electron system. Chem. Lett., 2000, 29(8): 860-861
    [33] Wandel H, Wiest O. Enediynes in 11-membered rings. Synthesis, structure, and reactivity of highly strained but unusually stable macrocycles. J. Org. Chem., 2002, 67(2), 388-393
    [34] Eickmeier C, Junga H, Matzger A J, et al. 5,6,11,12,17,18-hexadehydro- 1,4,7,10,13,16-hexaethynyltribenzo[a,e,i,]cyclododecene: synthesis and CpCo-catalyzed cycloisomerization to the first superdelocalized oligophenylenes. Angew. Chem. Int. Ed., 1997, 36(19): 2103-2108
    [35] Tovar J D, Jux N, Jarrosson T, et al. Synthesis and X-ray characterization of an octaalkynyldibenzooctadehydro[12]-annulene. J. Org. Chem., 1997, 62(11): 3432-3433
    [36] Palmer G J, Parkin S R, Anthony J E. Synthesis of a remarkably stabledehydro[14]annulene. Angew. Chem. Int. Ed., 2001, 40(13): 2509-2512
    [37] Nishinaga T, Nodera N, Miyata Y, et al. Dehydro[12]- and -[18]annulenes fused with tetrafluorobenzene: synthesis, electronic properties, packing structures, and reactivity in the solid state. J. Org. Chem., 2002, 67(17): 6091-6096
    [38] Jusélius J, Sundholm D. The aromaticity and antiaromaticity of dehydroannulenes. Phys. Chem. Chem. Phys., 2001, 3(12): 2433-2437
    [39] Alkorta I, Rozas I, Elguero J. An ab initio study of the NMR properties (absolute shieldings and NICS) of a series of significant aromatic and antiaromatic compounds. Tetrahedron, 2001, 57(28): 6043-6049
    [40] Matzger A J, Vollhardt K P C. Benzocyclynes adhere to Hückel's rule by the ring current criterion in experiment (1H NMR) and theory (NICS). Tetrahedron Lett., 1998, 39(38): 6791-6794
    [41] Tobe Y, Ohki I, Sonoda M, et al. Generation and characterization of highly strained dibenzotetrakisdehydro[12]annulene. J. Am. Chem. Soc., 2003, 125(19): 5614-5615
    [42] Hisaki I, Eda T, Sonoda M, et al. Formation and characterization of highly strained dibenzopentakisdehydro[14]annulene and theoretical study on its aromaticity. Chem. Lett., 2004, 33(5): 620-621
    [43] Baldwin K P, Matzger A J, Scheiman D A, et al. Synthesis, crystal structure, and polymerization of 1,2:5,6:9,10-tribenzo-3,7,11,13-tetradehydro[14] annulene. Synlett, 1995, 1995(12): 1215-1218
    [44] Blanchette H S, Brand S C, Naruse H, et al. Bis(enediyne) macrocycles: synthesis, reactivity, and structural analysis. Tetrahedron, 2000, 56(49): 9581-9588
    [45] Boydston A J, Haley M M. Diatropicity of dehydrobenzo[14]annulenes: comparative analysis of the bond-fixing ability of benzene on the parent 3,4,7,8,9,10,13,14-octadehydro[14]annulene. Org. Lett., 2001, 3(22): 3599-3601
    [46] Boydston A J, Haley M M, Williams R V, et al. Diatropicity of 3,4,7,8,9,10,13,14-octadehydro[14]annulenes: a combined experimental and theoretical investigation. J. Org. Chem., 2002, 67(25): 8812-8819
    [47] Kimball D B, Haley M M, Mitchell R H, et al. Dehydrobenzoannulene- dimethyldihydropyrene hybrids: model systems for the synthesis of molecular aromatic probes. Org. Lett., 2001, 3(11): 1709-1711
    [48] Kimball D B, Haley M M, Mitchell R H, et al. Dimethyldihydropyrene-dehydrobenzoannulene hybrids: studies in aromaticity and photoisomerization. J. Org. Chem., 2002, 67(25): 8798-8811
    [49] Boydston A J, Bondarenko L, Dix I, et al. [2.2]Paracyclophane/ dehydrobenzoannulene hybrids: transannular delocalization in open-circuited conjugated macrocycles. Angew. Chem. Int. Ed., 2001, 40(16): 2986-2989
    [50] Haley M M, Brand S C, Pak J J. Carbon networks based on dehydrobenzoannulenes: dynthesis of graphdiyne substructures. Angew. Chem. Int. Ed., 1997, 36(8): 836-838
    [51] Wan W B, Brand S C, Pak J J, et al. Carbon networks based on dehydrobenzoannulenes: Part 2 Synthesis of expanded graphdiyne substructures. Chem. Eur. J., 2000, 6(11): 2044-2052
    [52] Pak J J, Weakley T J R, Haley M M. Stepwise assembly of site specifically functionalized dehydrobenzo[18]annulenes. J. Am. Chem. Soc., 1999, 121(36): 8182-8192
    [53] Sarkar A, Pak J J, Rayfield G W, et al. Nonlinear optical properties of dehydrobenzo[18]annulenes: expanded two-dimensional dipolar and octupolar NLO chromophores. J. Mater. Chem., 2001, 11(12): 2943-2945
    [54] Haley M M, Bell M L, English J J, et al. Versatile synthetic route to and DSC analysis of dehydrobenzoannulenes: crystal structure of a heretofore inaccessible [20]annulene derivative. J. Am. Chem. Soc., 1997, 119(12): 2956-2957
    [55] Bell M L, Chiechi R C, Johnson C A, et al. A versatile synthetic route to dehydrobenzoannulenes via in situ generation of reactive alkynes. Tetrahedron, 2001, 57(17): 3507-3520
    [56] Sarkar A, Haley M M. Synthesis and characterization of dehydrothieno[18]annulenes. Chem. Commun., 2000, (18): 1733-1734
    [57] Pak J J, Weakley T J R, Haley M M, et al. Synthesis and characterization of annulene-fused pseudorotaxanes. Synthesis, 2002, 2002(9): 1256-1260
    [58] Wan W B, Haley M M. Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of“star”and“trefoil”graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. J. Org. Chem., 2001, 66(11): 3893-3901
    [59] Altmann M, Friedrich J, Beer F, et al. Synthesis of organometallic dehydroannulenes containing ferrocene or (cyclopentadienylcobalt) cyclobutadiene moieties. J. Am. Chem. Soc., 1997, 119(6): 1472-1473
    [60] Bunz U H F, Roidl G, Altmann M, et al. Synthesis and structure characterizationof novel organometallic dehydroannulenes with fused CpCo-cyclobutadiene and ferrocene units including a cyclic fullerenyne segment. J. Am. Chem. Soc., 1999, 121(46): 10719-10726
    [61] Laskoski M, Steffen W, Smith M D, et al. Is ferrocene more aromatic than benzene? Chem. Commun., 2001, (8): 691-692
    [62] Laskoski M, Smith M D, Morton J G M, et al. Organometallic dehydro[14]annulenes containing Vollhardt’s cyclobutadiene: are CpCo-complexed cyclobutadienes more aromatic than benzene? J. Org. Chem., 2001, 66(15): 5174-5181
    [63] Laskoski M, Steffen W, Morton J G M, et al. Synthesis and explosive decomposition of organometallic dehydro[18]annulenes: an access to carbon nanostructures. J. Am. Chem. Soc., 2002, 124(46): 13814-13818
    [64] Laskoski M, Roidl G, Smith M D, et al. Concave butterfly-shaped organometallic hydrocarbons?Angew. Chem. Int. Ed., 2001, 40(8): 1460-1463
    [65] Laskoski M, Steffen W, Morton J G M, et al. Synthesis and structural characterization of organometallic cyclynes: novel nanoscale, carbon-rich topologies. Angew. Chem. Int. Ed., 2002, 41(13): 2378-2382
    [66] Dosa P I, Erben C, Iyer V S, et al. Metal encapsulating carbon nanostructures from oligoalkyne metal complexes. J. Am. Chem. Soc., 1999, 121(44): 10430-10431
    [67] Boese R, Matzger A J, Vollhardt K P C. Synthesis, crystal structure, and explosive decomposition of 1,2:5,6:11,12:15,16-tetrabenzo-3,7,9,13,17,19- hexadehydro[20]annulene: formation of onion- and tube-like closed-shell carbon particles. J. Am. Chem. Soc., 1997, 119(8): 2052-2053
    [68] Baldwin K P, Simons R S, Rose J, et al. Crystal structure of 1,2 : 5,6 : 9,10 : 13,14 : 17,18 : 21,22 : 25,26 : 29,30 : 33,34 : 37,38 decabenzo-3,7,11,15,19,23, 27,31,35,39-decadehydro[40]annulene (C80H40), a 40-membered macrocyclic ring and the synthesis and characterization of its 80-(C160H80), 120-(C240H120), 160-(C320H160) and 200-(C400H200) membered ring homologues. J. Chem. Soc., Chem. Commun., 1994, (10): 1257-1258
    [69] Collins S K, Yap G P A, Fallis A G. The synthesis of a novel strained diyneparacyclophane and its dimer by metal-mediated coupling. Angew. Chem. Int. Ed., 2000, 39(2): 385-388
    [70] Collins S K, Yap G P A, Fallis A G. Synthesis of novel acetylenic cyclophanes with helical chirality: potential new structures for liquid crystals. Org. Lett.,2000, 2(20): 3189-3192
    [71] Heuft M A, Collins S K, Fallis A G. Molecular folding of C60 acetylenic cyclophanes:π-stacking of superimposed aromatic rings. Org. Lett., 2003, 5(11): 1911-1914
    [72] Haley M M, Bell M L, Brand S C, et al. One-pot desilylation/dimerization of ethynyl- and butadiynyltrimethylsilanes. Synthesis of tetrayne-linked dehydrobenzoannulenes. Tetrahedron Lett., 1997, 38(43): 7483-7486
    [73] Heuft M A, Collins S K, Yap G P A, et al. Synthesis of diynes and tetraynes from in situ desilylation/dimerization of acetylenes. Org. Lett., 2001, 3(18): 2883-2886
    [74] Agrofoglio L A, Gillaizeau I, Saito Y. Palladium-assisted route to nucleosides. Chem. Rev., 2003, 103(5): 1875-1916
    [75] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50): 4467-4470
    [76] Tykwinski R R. Evolution in the palladium-catalyzed cross-coupling of sp- and sp2-hybridized carbon atoms. Angew. Chem. Int. Ed., 2003, 42(14): 1566-1568
    [77] Behr O M, Eglinton G, Galbraith A R, et al. Macrocyclic Acetylenic Compounds. 2. 1,2,7,8-Dibenzocyclododeca-1,7-Diene-3,5,9,11-Tetrayne. J. Chem. Soc. 1960, 3614-3625
    [78] H?ger S, Meckenstock A D, Pellen H. High-yield macrocyclization via Glaser coupling of temporary covalent templated bisacetylenes. J. Org. Chem., 1997, 62(14): 4556-4557
    [79] H?ger S, Meckenstock A D. Template-directed synthesis of shape-persistent macrocyclic amphiphiles with convergently arranged functionalities. Chem. Eur. J., 1999, 5(6): 1686-1691
    [80] Kawase T, Ueda N, Darabi H R. et al. [2.2.2.2]Metacyclophane-1,9,17,25- tetrayne. Angew. Chem. Int. Ed., 1996, 35(13-14): 1556-1558
    [81] Kawase T, Ueda N, Oda M. [2.2.2]Metacyclophane-1,9,17-triyne. Tetrahedron Lett., 1997, 38(38): 6681-6684
    [82] Kawase T, Hosokawa Y, Kurata H, et al. 8,16,24,32-Tetramethoxy[2.2.2.2] metacyclophane-1,9,17,25-tetrayne: a novel ionophore having a preorganized but unexpectedly flexible cavity. Chem. Lett., 1999, 28(8): 745-746
    [83] Utsumi K, Kawase T, Oda M. [2.0.2.0]Metacyclophane-1,15-diynes. A potential fragment of double-helical conjugated systems. Chem. Lett., 2003, 32(4):412-413
    [84] Srinivasan M, Sankararaman S, Dix I, et al. Synthesis and structure of a new [6,6]metacyclophane with enediyne bridges. Org. Lett., 2000, 2(24): 3849-3851
    [85] Yamaguchi Y, Kobayashi S, Wakamiya T, et al. A simple hybrid cyclyne consisting of 1,3-diethynylbenzene and ether units: synthesis and novel Ag+-induced cyclization leading to the perylene skeleton formation. J. Am. Chem. Soc., 2000, 122(30): 7404-7405
    [86] Kobayashi S, Wakumoto S, Yamaguchi Y, et al. Synthesis and properties of novel thiaarenecyclynes. Tetrahedron Lett., 2003, 44(9): 1807-1810
    [87] Bodwell G J, Houghton T J, Miller D. Expanded cyclophanes 1. Synthesis and structure of 4,17-dithia[7.7]metacyclophane-1,6,14,19-tetrayne. Tetrahedron Lett., 1998, 39(16): 2231-2234
    [88] Nakamura K, Okubo H, Yamaguchi M. Synthesis and self-aggregation of cyclic alkynes containing helicene. Org. Lett., 2001, 3(8): 1097-1099
    [89] H?ger S, Enkelmann V. Synthesis and X-ray structure of a shape-persistent macrocyclic amphiphile. Angew. Chem. Int. Ed., 1995, 34(23-24): 2713-2716
    [90] H?ger S, Meckenstock A D, Müller S. Synthesis and properties of shape-persistent macrocyclic amphiphiles with switchable amphiphilic portions. Chem. Eur. J., 1998, 4(12): 2423-2434
    [91] H?ger S, Bonrad K, Karcher L, et al. Structure and temperature effects on the cyclization of rigid bisacetylenes. J. Org. Chem., 2000, 65(5): 1588-1589
    [92] H?ger S, Morrison D L, Enkelmann V. Solvent triggering between conformational states in amphiphilic shape-persistent macrocycles. J. Am. Chem. Soc., 2002, 124(23): 6734-6736
    [93] Morrison D L, H?ger S. Shape-persistent macrocyclic amphiphiles: molecular reversible coats. Chem. Commun., 1996, (20): 2313-2314
    [94] H?ger S, Enkelmann V, Bonrad K, et al. Alkyl-substituted shape-persistent macrocycles: the first discotic liquid crystal composed of a rigid periphery and a flexible core. Angew. Chem. Int. Ed., 2000, 39(13): 2267-2270
    [95] H?ger S, Bonrad K, Mourran A, et al. Synthesis, aggregation, and adsorption phenomena of shape-persistent macrocycles with extraannular polyalkyl substituents. J. Am. Chem. Soc., 2001, 123(24): 5651-5659
    [96] Rosselli S, Ramminger A D, Wagner T, et al. Coil-ring-coil block copolymers as building blocks for supramolecular hollow cylindrical brushes. Angew. Chem. Int. Ed., 2001, 40(17): 3137-3141
    [97]ünsal ?, Godt A. Synthesis of a [2]catenane with functionalities and 87-membered rings. Chem. Eur. J., 1999, 5(6): 1728-1733
    [98] Godt A, Duda S,ünsal ?, et al. An efficient synthesis of liquid crystalline gigantocycles combining banana-shaped and rod-like mesogenic units. Chem. Eur. J., 2002, 8(22): 5094-5106
    [99] Shah M R, Duda S, Müller B, et al. Facile access to monodisperse ultralarge rings. J. Am. Chem. Soc., 2003, 125(18): 5408-5414
    [100] Kawase T, Darabi H R, Oda M. Cyclic [6]- and [8]paraphenylacetylenes. Angew. Chem. Int. Ed., 1996, 35(22): 2664-2666
    [101] Kawase T, Ueda N, Tanaka K, et al. The newly modified McMurry reaction toward the improved synthesis of cyclic paraphenylacetylenes. Tetrahedron Lett., 2001, 42(32): 5509-5511
    [102] Kawase T, Seirai Y, Darabi H R, et al. All-hydrocarbon inclusion complexes of carbon nanorings: cyclic [6]- and [8]paraphenyleneacetylenes. Angew. Chem. Int. Ed., 2003, 42(14): 1621-1624
    [103] Kawase T, Tanaka K, Fujiwara N, et al. Complexation of a carbon nanoring with fullerenes. Angew. Chem. Int. Ed., 2003, 42(14): 1624-1628
    [104] Ohkita M, Ando K, Tsuji T. Synthesis and characterization of [46]paracyclophanedodecayne derivative. Chem. Commun., 2001, (24): 2570-2571
    [105] Ohkita M, Ando K, Yamamoto K, et al. First Dewar benzene approach to acetylenic oligophenylene macrocycles: synthesis and structure of a molecular rectangle bearing two spindles. Chem. Commun., 2000, (1): 83-84
    [106] Ohkita M, Ando K, Suzuki T, et al. Syntheses of acetylenic oligophenylene macrocycles based on a novel Dewar benzene building block approach. J. Org. Chem., 2000, 65(14):4385-4390
    [107] Hopf H, Jones P G, Bubenitschek P, et al. para- and ortho-Quinodimethane intermediates with cumulative double bonds. Angew. Chem. Int. Ed., 1995, 34(21): 2367-2368
    [108] Haley M M, Langsdorf B L. Cyclophyne chemistry: synthesis and study of an octacobalt complex of [8.8]paracyclophaneoctayne. Chem. Commun., 1997, (12): 1121-1122
    [109] Tobe Y, Furukawa R, Sonoda M, et al. [12.12]Paracyclophanedodecaynes C36H8 and C36Cl8: the smallest paracyclophynes and their transformation into the carbon cluster ion C36?. Angew. Chem. Int. Ed., 2001, 40(21): 4072-4074
    [110] Ensley H E, Mahadevan S, Mague J. Multiply bridged acetylenic thiacyclophanes. Tetrahedron Lett., 1996, 37(35): 6255-6258
    [111] Collins S K, Yap G P A, Fallis A G. A novel strained undecadiyne cyclophane with interesting dienophilic character. Org. Lett., 2002, 4(1): 11-14
    [112] Tobe Y, Kishi J, Ohki I, et al. Facile intramolecular cyclization in oxidative coupling of acetylenes linked to 1,3-positions of benzene: strained [12]metacyclophanedienetetrayne system. J. Org. Chem., 2003, 68(8): 3330-3332
    [113] Tobe Y, Nakanishi H, Sonoda M, et al. Pyridine analogue of macrocyclic polyyne C58H4N2 as a precursor to diazafullerene C58N2. Chem. Commun., 1999, (17): 1625-1626
    [114] Wu Z, Lee S, Moore J S. Synthesis of three-dimensional nanoscaffolding. J. Am. Chem. Soc., 1992, 114(22): 8730-8732
    [115] Wu Z, Moore J S. A freely hinged macrotricycle with a molecular cavity. Angew. Chem. Int. Ed., 1996, 35(3): 297-299
    [116] Moore J S, Zhang J. Efficient synthesis of nanoscale macrocyclic hydrocarbons. Angew. Chem. Int. Ed., 1992, 31(7): 922-924
    [117] Zhang J, Pesak D J, Ludwick J L, et al. Geometrically-controlled and site-specifically-functionalized phenylacetylene macrocycles. J. Am. Chem. Soc., 1994, 116(10): 4227-4239
    [118] Shortell D B, Palmer L C, Tour J M. Solid-phase approaches toward cyclic oligomers. Tetrahedron, 2001, 57(44): 9055-9065
    [119] Ge P H, Fu W, Herrmann W A, et al. Structural characterization of a cyclohexameric meta-phenyleneethynylene made by alkyne metathesis with in situ catalysts. Angew. Chem. Int. Ed., 2000, 39(20): 3607-3610
    [120] Vidal-Ferran A, Müller C M, Sanders J K M. A convergent approach to unsymmetrical porphyrin oligomers. J. Chem. Soc., Chem. Commun., 1994, (23): 2657-2658
    [121] Anderson S, Anderson H L, Sanders J K M. Template-directed synthesis of linear and cyclic butadiyne-linked porphyrin oligomers up to a linear octamer. J. Chem. Soc. Perkin Trans. 1 1995, (18): 2247-2254
    [122] Anderson S, Anderson H L, Sanders J K M. The roles of templates in the syntheses of porphyrin oligomers. J. Chem. Soc. Perkin Trans. 1 1995, (18), 2255-2267
    [123] Anderson S, Anderson H L, Sanders J K M. Expanding roles for templates insynthesis. Acc. Chem. Res., 1993, 26(9): 469-475
    [124] Li J, Ambroise A, Yang S I, et al. Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel of porphyrins. J. Am. Chem. Soc., 1999, 121(38): 8927-8940
    [125] Rucareanu S, Mongin O, Schuwey A, et al. Supramolecular assemblies between macrocyclic porphyrin hexamers and star-shaped porphyrin arrays. J. Org. Chem., 2001, 66(15): 4973-4988
    [126] Kr?mer J, Rios-Carreras I, Fuhrmann G, et al. Synthesis of the first fullyα-conjugated macrocyclic oligothiophenes: cyclo[n]thiophenes with tunable cavities in the nanometer regime. Angew. Chem. Int. Ed., 2000, 39(19): 3481-3486
    [127] Fuhrmann G, Debaerdemaeker T, B?uerle P. C–C bond formation through oxidatively induced elimination of platinum complexes-a novel approach towards conjugated macrocycles. Chem. Commun., 2003, (8): 948-949
    [128] Henze O, Lentz D, Schlüter A D. Synthesis and an X-ray structure of soluble phenylacetylene macrocycles with two opposing bipyridine donor sites. Chem. Eur. J., 2000, 6(13): 2362-2367
    [129] Henze O, Lentz D, Sch?fer A, et al. Phenylacetylene macrocycles with two opposing bipyridine donor sites: syntheses, X-ray structure determinations, and Ru complexation. Chem. Eur. J., 2002, 8(2): 357-365
    [130] Grave C, Lentz D, Sch?fer A, et al. Shape-persistant macrocycles with terpyridine units: synthesis, characterization, and structure in the crystal. J. Am. Chem. Soc., 2003, 125(23): 6907-6918
    [131] Kobayashi S, Yamaguchi Y, Wakamiya T, et al. Shape-persistent cyclyne-type azamacrocycles: synthesis, unusual light-emitting characteristics, and specific recognition of the Sb(V) ion. Tetrahedron Lett., 2003, 44(7): 1469-1472
    [132] Yamaguchi Y, Kobayashi S, Amita N, et al. Creation of nanoscale oxaarenecyclynes and their C60 complexes. Tetrahedron Lett., 2002, 43(18): 3277-3280
    [133] Sun S S, Lees A J. Synthesis and photophysical properties of dinuclear organometallic rhenium(I) diimine complexes linked by pyridine-containing macrocyclic phenylacetylene ligands. Organometallics, 2001, 20(11): 2353-2358
    [134] T. Kawase, H.R. Darabi, M. Oda. Cyclic [6]- and [8]Paraphenylacetylenes . Angew.Chem. Int. Ed. Engl. 1996, 35, 2664–2666
    [135] Rubin Y, Parker T C, Khan S I, et al. Precursors to endohedral metal fullerene complexes: synthesis and X-ray structure of a flexible acetylenic cyclophane C60H18. J. Am. Chem. Soc., 1996, 118(22): 5308-5309
    [136] Rubin Y. Organic approaches to endohedral metallofullerenes: cracking open or zipping up carbon shells? Chem. Eur. J., 1997, 3(7): 1009-1016
    [137] Rubin Y, Parker T C, Pastor S J, et al. Acetylenic cyclophanes as fullerene precursors: formation of C60H6 and C60 by laser desorption mass spectrometry of C60H6(CO)12. Angew. Chem. Int. Ed., 1998, 37(9): 1226-1229
    [138] Tobe Y, Nakagawa N, Naemura K, et al. [16.16.16](1,3,5)Cyclo- phanetetracosayne (C60H6): a precursor to C60 fullerene. J. Am. Chem. Soc., 1998, 120(18): 4544-4545
    [139] Tobe Y, Nakagawa N, Kishi J, et al. Polyyne cyclization to form carbon cages: [16.16.16](1,3,5)cyclophanetetracosayne derivatives C60H6 and C60Cl6 as precursors to C60 fullerene. Tetrahedron, 2001, 57(17): 3629-3636
    [140] Noyori R, Takaya H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res., 1990, 23(10): 345-350
    [141]殷元骐,蒋耀忠.不对称催化反应进展.第一版.北京:科学出版社,2000, 36-37
    [142] Cooke A S, Harris M M. Ground-state strain and other factors influencing optical stability in the 1,1’-binaphthyl series. J. Chem. Soc., 1963, 2365-2373
    [143] Pincock R E, Perkins R R, Ma A S, et al. Probability distribution of enantiomorphous forms in spontaneous generation of optically active substances. Science, 1971, 174(4013): 1018-1020
    [144] Hall D M, Turner E E. 9:10-Dihydrophenanthrenes. 3. Optically active 9:10-dihydro-3:4-5:6-dibenzophenanthrene. J. Chem. Soc., 1955, 1242-1251
    [145] Akimoto H, Shioiri T, Iitaka Y, et al. Determination of the absolute configuration of 1,1′-binaphthyl and its derivatives by x-ray diffraction. Tetrahedron Lett., 1968, 9(1): 97-102
    [146] Orita A, An D L, Nakano T, et al. Sulfoximine version of double elimination protocol for synthesis of chiral acetylenic cyclophanes. Chem. Eur. J., 2002, 8(9): 2005-2010
    [147] Anderson S, Neidlein U, Gramlich V, et al. A new family of chiral binaphthyl-derived cyclophane receptors: complexation of pyranosides. Angew. Chem. Int. Ed., 1995, 34(15): 1596-1600
    [148] Jiang H, Lin W. Expeditious assembly of mesoscopic metallocycles. J. Am.Chem. Soc., 2004, 126(24): 7426-7427
    [149] Lehn J M. Supramolecular chemistry - scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed., 1988, 27(1): 89-112
    [150] Lehn J M. Perspectives in supramolecular chemistry - from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed., 1990, 29(11): 1304-1319
    [151] Hill D J, Mio M J, Prince R B, et al. A field guide to foldamers. Chem. Rev., 2001, 101(12): 3893-4012
    [152] Albrecht M. How do they know? Influencing the relative stereochemistry of the complex units of dinuclear triple-stranded helicate-type complexes. Chem. Eur. J., 2000, 6(19): 3485-3489
    [153] Holliday B J, Mirkin C A. Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Ed., 2001, 40(11): 2022-2043
    [154] Lehn J M, Rigault A. Helicates: tetra- and pentanuclear double helix complexes of CuI and poly(bipyridine) strands. Angew. Chem. Int. Ed., 1988, 27(8): 1095-1097
    [155] Hasenknopf B, Lehn J M. Trinuclear double helicates of iron(II) and nickel(II): self-assembly and resolution into helical enantiomers. Helv. Chim. Acta, 1996, 79(6): 1643-1650
    [156] Horn C J, Blake A J, Champness N R, et al. Helical templating of polyiodide networks at a binuclear metallo complex. Chem. Commun., 2003, (3): 312-313
    [157] Libman J, Tor Y, Shanzer A. Helical ferric ion binders. J. Am. Chem. Soc.,1987, 109(19): 5880-5881
    [158] Stahl J, Bohling J C, Bauer E B, et al. sp Carbon chains surrounded by sp3 carbon double helices: a class of molecules that are accessible by self-assembly and models for“insulated”molecular-scale devices. Angew. Chem. Int. Ed., 2002, 41(11): 1871-1876
    [159] An D L, Nakano T, Orita A, et al. Enantiopure double-helical alkynyl cyclophanes. Angew. Chem. Int. Ed., 2002, 41(1): 171-173
    [160] Paul N. W. Baxter. Synthesis and Properties of a Twistophane Ion Sensor: A New Conjugated Macrocyclic Ligand for the Spectroscopic Detection of Metal Ions. J. Org. Chem. 2001, 66, 4170-4179
    [161]安德烈,张志扬,杨少辉等.以手征性联萘为模板合成一种新的螺旋环芳分子.化学学报,2005,63(9):861-865
    [162] Orita A, Nakano T, An D L, et al. Metal-assisted assembly of pyridine-containing arylene ethynylene strands to enantiopure double helicates. J. Am. Chem. Soc., 2004, 126(33): 10389-10396
    [163] Saiki Y, Nakamura K, Nigorikawa Y, et al. [3+3]Cycloalkyne oligomers: linking groups control intra- and intermolecular aggregation byπ-πinteractions. Angew. Chem. Int. Ed., 2003, 42(4): 5190-5192
    [164] Saiki Y, Sugiura H, Nakamura K, et al. [3+3]Cycloalkyne dimers linked by an azo group: a stable cis-azo compound forms polymeric aggregates by nonplanarπ-πinteractions. J. Am. Chem. Soc., 2003, 125(31): 9268-9269
    [165] Lukin O, Recker J, B?hmer A, et al. A topologically chiral molecular dumbbell. Angew. Chem. Int. Ed., 2003, 42(4): 442-445
    [166] Ikeda A, Yoshimura M, Tani F, et al. Construction of a homooxacalix[3]arene- based dimeric capsule cross-linked by a Pd(II)-pyridine interaction. Chem. Lett., 1998, 27(7): 587-588
    [167] Ikeda A, Yoshimura M, Udzu H, et al. Inclusion of [60]fullerene in a homooxacalix[3]arene-based dimeric capsule cross-linked by a PdII-pyridine interaction. J. Am. Chem. Soc., 1999, 121(17): 4296-4297
    [168] Ikeda A, Udzu H, Yoshimura M, et al. Inclusion of [60]fullerene in a self-assembled homooxacalix[3]arene-based dimeric capsule constructed by a PdII–pyridine interaction. The Li+-binding to the lower rims can improve the inclusion ability. Tetrahedron, 2000, 56(13): 1825-1832
    [169] David OKrongly, Samuel R. Denmeade, Ronald Breslow', et al. Efficient Triple Coupling Reaction To Produce a Self-Adjusting Molecular Cage. J. Am. Chem. SOC. 1985, 107, 5545-5546
    [170] Rajca A, Safronov A, Rajca S, et al. Double helical octaphenylene. Angew. Chem. Int. Ed., 1997, 36(5): 488-491
    [171] Lewis C A, Tykwinski R R. Chiral, cross-conjugated isopolydiacetylenes. Chem. Commun., 2006, (34): 3625-3627
    [172] Moore J S, Weinstein E J, Wu Z. A convenient masking group for aryl iodides Tetrahedron Lett., 1991, 32(22): 2465-2466
    [173] Han S, Bond A D, Disch R L, et al. Total syntheses and structures of angular
    [6]- and [7]phenylene: the first helical phenylenes (heliphenes). Angew. Chem. Int. Ed., 2002, 41(17): 3223-3227
    [174] Scott L T, Cooney M J, Johnels D. Homoconjugated cyclic poly(diacetylene)s. J.Am. Chem. Soc., 1990, 112(10): 4054-4055
    [175] Lu Y F, Fallis A G. An intramolecular diels-alder approach to tricyclic taxoid skeletons. Tetrahedron Lett., 1993, 34(21): 3367-3370
    [176] Diederich F, Stang P J. Metal-catalized cross-coupling reactions[1]. Weinheim: wiley, 1998, 214-214
    [177] Diercks R, Armstrong J C, Boese R, et al. Hexaethynylbenzene. Angew. Chem. Int. Ed., 1986, 25(3): 268-269
    [178] Siemsen P, Livingston R C, Diederich F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed., 2000, 39(15): 2632-2657
    [179] Tobe Y, Nagano A, Kawabata K, et al. Synthesis and association behavior of butadiyne-bridged [44](2,6)pyridinophane and [46](2,6)pyridinophane derivatives. Org. Lett., 2000, 2(21): 3265-3268
    [180] Kiyooka S, Tada M, Kan S, et al. Synthesis of chiral crown ethers having bromoarylene moieties on their rim. Bull. Chem. Soc. Jpn., 1996, 69, 2595-2601
    [181] Akagi K, Guo S, Mori T, et al. Synthesis of Helical Polyacetylene in Chiral Nematic Liquid Crystals Using Crown Ether Type Binaphthyl Derivatives as Chiral Dopants. J. Am. Chem. Soc., 2005, 127(42), 14647-14654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700