用户名: 密码: 验证码:
金鸡纳生物碱衍生的亚磷酸酯配体的合成及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚磷酸酯化合物是一种非常重要的手性膦配体,它们原料易得,合成简便,性质稳定,使用方便且易于进行电性和空间结构调节,因此倍受人们青睐。
     金鸡纳生物碱是一类来源广泛的手性天然产物,它们所具有的结构特征,使之成为理想的手性配体骨架,金鸡纳碱结构中C9-OH很容易修饰为亚磷酸酯。我们以金鸡纳生物碱和手性二醇为原料合成了系列金鸡纳生物碱衍生的亚磷酸酯配体,并将它们用于催化不对称烯丙基烷基化反应。此外,还将所合成的亚磷酸酯化合物作为有机催化剂,考察其在去对称反应中的催化性能。
     光学纯的环氧化物是一类重要的有机合成中间体,而手性胺盐有机催化剂催化的α,β-不饱和酮的不对称环氧化反应是合成手性环氧化合物最直接和最简便的途径。
     本论文以金属配合物催化剂和有机催化剂催化不对称反应为切入点,主要完成了以下工作:
     1、以辛可宁、辛可尼丁、奎宁、奎尼丁、二氢奎宁和二氢奎尼丁等为原料,合成了4类(10种)金鸡纳生物碱衍生的亚磷酸酯配体,并用1H NMR、13C NMR、31P NMR和MS进行了结构表征。
     2、将上述10种亚磷酸酯配体和[Pd(η3-C3H5)Cl]2配位生成金属配合物催化剂,用于催化1,3-二苯基烯丙基醋酸酯和丙二酸二甲酯的不对称烯丙基烷基化反应,实验结果表明:
     (1) L1-CN生成的催化剂催化的烯丙基烷基化反应,催化效果最好,化学产率可达100%,光学产率可达94%ee;
     (2) L1-CN和L1-QND的钯配合物催化剂比L1-CND和L1-QN钯配合物催化剂的催化活性高,即C8、C9位构型为(8R, 9S)的金鸡纳生物碱衍生的催化剂催化效果优于C8、C9位构型为(8R, 9S)金鸡纳生物碱衍生的催化剂;
     (3)构型不同的手性1,2-二苯基-1,2-乙二醇生成的亚磷酸酯配体,其钯配合物催化烯丙基烷基化反应生成的产物构型不同;
     (4)溶剂对催化反应影响较大,以L1-CN衍生的配合物催化剂催化反应,于室温下在CH2Cl2中化学产率可达100%,在甲苯、THF或乙腈中化学产率较低,在DMF中根本不反应;
     (5)在L1-CN-钯配合物催化的反应中,加入醋酸盐添加剂,对化学产率影响不大,但会影响立体选择性。
     3、考察亲核试剂种类、反应温度对配体L1-CN、L1-CND、L1-QN和L1-QND生成的催化剂催化1,3-二苯基烯丙基醋酸酯的不对称烯丙基烷基化反应的影响,实验结果表明:
     (1)亲核试剂种类对反应活性有较大影响。乙酰基丙酮和3-甲基-2,4-戊二酮作为亲核试剂比丙二酸二甲酯的反应活性高;
     (2)反应温度对这四种配体诱导的不对称催化反应的活性和立体选择性有较大影响。降低反应温度,化学产率随之降低,但光学产率有所提高,在-40℃时光学产率均在90%ee以上。
     4、L1-CN配体和过渡金属Rh和Ir配位生成的催化剂,在不对称催化氢化和不对称氢转移反应中的催化活性不尽人意。
     5.以L1-CN、L2、L3和L4四种亚磷酸酯化合物作为有机催化剂,催化meso-1,2-二苯基-1,2-乙二醇的去对称反应,最高以42%的产率获得53%ee的产物。
     6.合成了3种金鸡纳生物碱衍生的手性胺A6、A7和A8,首次考察了它们和其它5种手性胺A1~A5形成的铵盐在链状α,β-不饱和酮的不对称环氧化反应中的催化效果,实验结果表明:
     (1)以查尔酮为底物、TBHP为氧化剂进行的不对称环氧化反应,手性胺A6的催化效果最好,光学产率可达74.8%ee;
     (2)考察了几种氧化剂对查尔酮的不对称环氧化反应的影响,其中TBHP作为氧化剂,反应的催化活性和立体选择性最高;
     (3)溶剂对不对称环氧化反应立体选择性影响甚微,但化学活性有差别,在正己烷中进行的催化反应活性最高,化学产率为75%;
     (4)首次考察了β-环糊精修饰的手性二胺衍生的催化剂催化查尔酮的不对称环氧化反应,以33%产率得到24.8%ee的环氧化物。
     (5)将A6形成的铵盐用于催化其它7种α,β-不饱和酮的不对称环氧化反应,考察了α,β-不饱和酮的结构及电性因素对反应效果的影响,其中1-苯基3-对甲氧基苯基-2-丙烯酮是最适合的底物。
In recent years, phosphites have emerged as suitable ligands for many metal -catalyzed asymmetric processes. Due to their easy preparation from readily available alcohols, phosphites ligands are extremely attractive for catalysis. Simultaneously, the availability of many alcohols makes simple ligand-tuning possible, which allows the synthesis of many series of chiral ligands screened for high activity and selectivity. In addition, phosphites are less sensitive to oxidation than phosphines, which also makes their application more convenient.
     The Cinchona alkaloids quinine, quindine, cinchonidine and cinchonine are extracted from the bark of the cinchona tree and can be produced on a commercial scale. Because of their special structure, they can be employed as“privileged”ligands backbone. The hydroxyl group at C9 in Cinchona alkaloid structure could be readily modified to give phosphites. So in our work, a novel family of phosphites was designed and synthesized from Cinchona alkaloids and enantiopure diol. The application of these new phosphites to palladium-catalyzed asymmetric allylic alkylation (AAA) of 1,3-diphenyl-2-propenyl acetate was also investigated. Furthermore, their organocatalytic ability in asymmetric desymme -trization of meso-hydrobenzoin was also examined.
     Catalytic asymmetric epoxidation (AE) holds a prominent place in asymmetric catalysis due to the fundamental importance of epoxides in organic chemistry. The AE reaction ofα,β-enones activated by chiral amine salts, a kind of organocatalyst, makes the preparation of chiral epoxides more simple and convenient. So some chiral diamine as organocatalyst in AE reaction ofα,β-enones were tested in our experiments.
     The work focuses on the reaction catalyzed by transitional-metal-ligands complexes and organocatalysts. It covers the following 5 aspects:
     1. Ten novel phosphites were synthesized from cinchonine, cinchonodine, quinine, quinidine, dihydroquinine and dihydroquindine with the yields ranged from 56% to 75%. Their structures were also confirmed by 1H NMR, 13C NMR, 31P NMR and MS.
     2. With the target ten ligands in hand, attention was turned to investigate their potential utilities in AAA reaction of 1,3-diphenyl-2-propenyl acetate with the dimethyl malonate as nucleophile. The results can be summarized as follows:
     (1) The best results were obtained by L1-CN with the chemical yields up to 100% and the enantioselectivities up to 94%ee.
     (2) Cinchonine and quindine-derived ligands L1-CN, L1-QND exhibited better catalytic activity and stereoselectivity than their pseudo-enantiomers L1-CND, L1-QN did. The configuration of C8, C9 have effect on the catalytic ability.
     (3) Not the structure backbone of cinchona alkaloid in ligands but that of enantiopure 1,2-diphenyl-1,2-ethanediol was responsible for the configurations of products.
     (4) The solvent was found to influence the reaction activity greatly when L1-CN was used in AAA reaction. No expected product was obtained in DMF with only lesser one in toluene, THF and CH3CN. CH2Cl2 was proved to be the proper solvent for AAA reaction.
     (5) In AAA reaction catalyzed by L1-CN-Pd complex, the base additives only influenced the asymmetric induction to some extent. The addition of KOAc could improve the enantioselectivity of AAA reaction.
     3. The effect of nucleophiles and temperature on AAA reaction was also probed.
     The conclusions were drawn as follows:
     (1) The reaction, with acetylacetone rather than dimethyl malonate as nucleophile gave the corresponding products with high yields. Similar improvement was also found in the same reaction when 3-methyl-2,4 -pentanedione was employed as nucleophile.
     (2) The dependence of temperature in the AAA reaction was also found. Like most of asymmetric catalysis reactions, the substrates conversion decreased and the enantioselectivity was improved when temperature was lowered. At -40℃, the best stereoselectivity was obtained.
     4. L1-CN ligand was also assessed in Rh and Ir-catalyzed asymmetric transfer hydrogenation and asymmetric hydrogenation. However, both failed.
     5. Phosphites L1-CN, L2, L3 and L4 were applied in organocatalytic aymmetric desymmerization of meso-hydrobenzoin. L4 gave the best result with 42% yield and 53%ee.
     6. Three kinds of cinchona alkaloids derivatives A6, A7, A8 were synthesized and applied in the amine-catalyzed AE reaction ofα,β-unsaturated enones. The catalytic activities and enantioselectivities of other amines A1~A5 in the reactions were also examined. The results were summarized as follows:
     (1) In the AE reactions of chalcone, A6 was found to give a better enantiomeric excess (74.8%ee) than other seven chiral amines.
     (2) The influence of oxidants on the reaction activity and enantioselectivity was observed. TBHP was proved to be the most suitable in amine-catalyzed AE reaction of chalcone. Simultaneously, reactions carried out in different solvents produced similar optical yields though only n-hexane can give the best chemical yield (75%).
     (3)β-CD-derived diamine A5 also showed a little asymmetric induction(33% yield, 24.8%ee). It’s the first example thatβ-CD-derived diamine be employed as organocatalyst in AE reaction.
     (4) Several chalcone derivatives were converted to the corresponding optically active epoxides in the presence of A6. But the results showed that enones with para electron-donating substituents in theβ-phenyl group can produce better enantioselectivities.
引文
[1] Blaschke, G.; Kraft, H. P.; Markgraf, H. Chromatographische racemat -trennungen, X. racemattrennung des thalidomids und anderer glutarimid-derivate Chem. Ber., 1980, 113 (6), 2318–2322.
    [2]林国强,陈耀全,陈新滋,李月明.手性合成—不对称反应及其应用. 2000, p 3.
    [3]张生勇,郭建全.不对称催化反应—原理及其在有机合成中的应用. 2002, p 2.
    [4] Trost, B. M.; Strege, P.E. Asymmetric induction in catalytic allylic alkylation. J. Am. Chem. Soc., 1977, 99 (5), 1649–1651.
    [5] Trost, B. M.; Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis. Chem. Rev., 2003, 103 (8), 2921–2944.
    [6] Helmchen ,G.; Pfaltz, Andreas. Phosphinooxazolines: A new class of versatile, modular P,N-ligands for asymmetric catalysis. Acc. Chem. Res., 2000, 33 (6), 336–345.
    [7] Tietze, L.F.; Lohmann, J. K. Synthesis of novel chiral thiophene-, benzothiophene- and benzofuran-oxazoline ligands and their use in the enantioselective Pd-Catalyzed Allylation. Synlett., 2002, 2083–2085.
    [8] a) Gilbertson, S. R.; Xie, D. -J; Fu, Z. Proline-based P, N ligands in asymmetric allylation and the Heck reaction. J. Org. Chem., 2001, 66 (22), 7240–7246. b) Gilbertson, S. R.; Xie, D-J. Proline-based P, N ligands in palladium-catalyzed asymmetricπ-allyl additions. Angew. Chem. Int. Ed., 1999, 38(18), 2750–2752.
    [9] Wu, X.-W; Yuan, K.; Sun, W.; Zhang, M.-J; Hou, X.-L. Novel planar chiral P, N-[2.2]paracyclophane ligands: synthesis and application in palladium-catalyzed allylic alkylation . Tetrahedron: Asymmetry., 2003, 14 (1), 107–112.
    [10] Park. J.; Quan, Z. -Y; Lee, S.; Ahn, K. H.; Chang, W.- C. Synthesis of chiral 1′-substituted oxazolinylferrocenes as chiral ligands for Pd-catalyzed allylic substitution reactions. J. Organomet. Chem., 1999, 584 (1), 140–146.
    [11] Zheng, W.-H; Sun, N.; Hou, X. -L. Highly regio- and enantioselective palladium -catalyzed allylic alkylation and amination of dienyl esters with 1,1‘-P,N-ferrocene ligands.Org. Lett., 2005, 7 (23), 5151–5154.
    [12] Hayashi,T.; Okada, A.; Suzuka, T.; Kawatsura, M. High enantio -selectivity in Rhodium -catalyzed allylic alkylation of 1-substituted 2-propenyl acetates. Org. Lett., 2003, 5 (10),1713–1715.
    [13] Lait, S. M.; Parvez, M.; Keay, B.A. Synthesis of a novel spiro-phosphino-oxazine ligand and its application to Pd-catalyzed asymmetric allylic alkylation. Tetrahedron: Asymmetry, 2004, 15, (1), 155–158.
    [14] Trost, B. M.; Dong, L.; Schroeder, G.M. Total synthesis of (+)-allocyathin B2. J. Am. Chem. Soc., 2005, 127 (9), 2844–2845.
    [15] Trost, B.M.; Zhang, Y. Mo-catalyzed regio-, diastereo-, and enantio-selective allylic alkylation of 3-aryloxindoles. J. Am. Chem. Soc., 2007, 129, 14548–14549.
    [16] Faller J. W.; Sarantopoulos, N. Retention of configuration and regio-chemistry in allylic alkylations via the memory effect. Organometallics, 2004, 23 (9), 2179–2185
    [17] Trost, B. M.; Oslob, J. D. Asymmetric synthesis of (?)-Anatoxin-a via an asymmetric cyclization using a new ligand for Pd-catalyzed alkylations. J. Am. Chem. Soc., 1999, 121 (13), 3057–3064.
    [18] Braga, A. L.; Vargas, F.; Sehnem, J. A.; Brag, R. C. Efficient synthesis of chiralβ-seleno amides via ring-opening reaction of 2-oxazolines and their application in the palladium -catalyzed asymmetric allylic alkylation. J. Org. Chem., 2005, 70 (22), 9021–9024.
    [19] Lamac, M.; Tauchman, J.; Císa?ová, I.; ?těpnicka, P. Preparation of chiral phosphino -ferrocene carboxamide ligands and their application to palladium-catalyzed asymmetric allylic alkylation. Organometallics, 2007, 26 (20), 5042–5049.
    [20] Trost, B. M.; Dudash, J.; Jr; Dirat, O. Application of the AAA reaction to the synthesis of the furanoside of C-2-epi-Hygromycin A: A total synthesis of C-2-epi-Hygromycin A. Chem. Eur. J. 2002, 8 (1), 259–268.
    [21] Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry, 2000, 11(8), 1645–1680.
    [22] a) Trost, B. M.; Murphy, D. J. A model for metal-templated catalytic asymmetricinduction via .pi.-allyl fragments. Organometallics, 1985, 4, 1143–1145. b) Pregosin, P. S.; Ruegger, H.; Salzmann, R.; Albinati, A.; Lianza, F.; Kunz, R. W. X-ray diffraction, multidimensional NMR spectroscopy, and MM2* calculations on chiral allyl complexes of palladium(II). Organometallics,1994, 13(1), 83–90.
    [23] Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. Asymmetric synthesis. asymmetric catalytic allylation using palladium chiral phosphine complexes. J. Am. Chem. Soc., 1985, 107, 2033–2046.
    [24] Knierzinger, A.; Scho¨nholzer, P. Axially dissymmetric diphosphines in the biphenyl series: Crystal structures of three new group-VIII metal complexes of (6,6′-dimethyl -1,1′-biphenyl-2,2′-diyl)bis(diphenyl -phosphine) (=biphemp). Helv. Chim. Acta., 1992, 75(4), 1211–1220.
    [25] Halterman, R. L.; Nimmons, H. L. Stereoselective formation of (Cs- symmetrical .pi. -allyl) palladium complexes. Organometallics, 1990, 9(1), 273–275.
    [26] Liu, D-l.; Xie, F.; Zhang, W-B. Palladium-catalyzed asymmetric allylic alkylation with an enamine as the nucleophilic reagent. Tetrahedron Lett., 2007, 48 (22), 7591–7594.
    [27] Marques, C.S.; Burke, A. J. Palladium catalysed enantioselective asymmetric allylic alkylations using the Berens’DIOP analogue. Tetrahedron: Asymmetry, 2007, 18 (15), 1804–1808.
    [28] Bonnet, L.G. ; Douthwaite, R. E.; Kariuki, B. M. Synthesis of new chiral N-heterocyclic carbene?imine ligands and their application to an asymmetric allylic alkylation reaction. Organometallics, 2003, 22 (21), 4187–4189.
    [29] Veldhuizen, J. J. V.; Campbell, J. E.; Giudici, R.E.; Hoveyda, A. H. A readily available chiral Ag-based N-heterocyclic carbene complex for use in efficient and highly enantioselective Ru-catalyzed olefin metathesis and Cu-catalyzed allylic alkylation reactions. J. Am. Chem. Soc., 2005, 127 (18), 6877–6882.
    [30] Uozumi, Y.; Danjo, H.; Hayashi. T. Palladium-catalyzed asymmetric allylic substitutionin aqueous media using amphiphilic resin-supported MOP ligands. Tetrahedron Lett. 1998, 39, (45), 8303–8306.
    [31] Ryan, N. C.; Naomi, K.; Richard, C. B. Hammett studies of enantiocontrol by PHOX ligands in Pd-catalyzed allylic substitution reactions.Org. Lett., 2003, 5 (13), 2279–2282.
    [32] Berkessel,A.; groger, H. Asymmetric Organocatalysis, 2005. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim.
    [33] (a) Shi, Y. Organocatalytic asymmetric epoxidation of olefins by chiral ketones. Acc. Chem. Res., 2004, 37 (8), 488–496 (b) Yang, D.; Wang, X. -C; Wong, M. -K; Yip, Y. -C; Tang, M. -W. Highly Enantio -selective epoxidation of trans-stilbenes catalyzed by chiral ketones. J. Am. Chem. Soc., 1996, 118(45), 11311–11312. (c) Yang, D. Ketone-catalyzed asymmetric epoxidation reactions. Acc. Chem. Res., 2004, 37 (8), 497–505.
    [34] Kelly, D. R.; Roberts, S. M. Oligopeptides as catalysts for asymmetric epoxidation. Peptide Science. 2006, 84(1), 74–89.
    [35] Shigeru, A.; Hiroki, T.; Makoto, O.; Motoko, M.; Takayuki, S. Catalytic asymmetric epoxidation of enones under phase-transfer catalyzed conditions. Tetrahedron, 2002, 58(8), 1623–1630.
    [36] Sandra, Lee.; David, W.C.; Mac, M. Enantioselective organocatalytic epoxidation using hypervalent iodine reagents. Tetrahedron, 2006, 62 (49), 11413–11424.
    [37] Corey, E. J.; Zhang, F. -Y. Mechanism and conditions for highly enantioselective epoxidation ofα,β-enones using charge-accelerated catalysis by a rigid quaternary ammonium salt. Org. Lett., 1999, 1, 1287–1290.
    [38] Shigeru, A.; Hiroki, T.; Makoto, O.; Motoko, M.; Takayuki, S. Catalytic asymmetric epoxidation of enones under phase-transfer catalyzed conditions. Tetrahedron., 2002, 58(8), 1623–1630.
    [39] Adam, W.; Rao, P. B.; Degen, H. -G.; Saha-M?ller, C. R. Asymmetric Weitz–Scheffer epoxidation of conformationally flexible and fixed enones with sterically demanding hydroperoxides mediated by optically active phase-transfer catalysts. Tetrahedron: Asymmetry, 2001, 12 (1), 121–125.
    [40] Adam, Waldemar. Rao, P. B.; Degen, H.-G.; Levai, A.; Patonay, T.; Saha-M?ller, C. R. Asymmetric Weitz-Scheffer epoxidation of isoflavones with hydroperoxides mediated by optically active phase-transfer catalysts. J. Org. Chem., 2002, 67, 259–264.
    [41] Jew, S.; Lee, J. -H.; Jeong, B. -S.; Yoo, M. -S.; Kim, M. -J.; Lee, Y. -J.; Lee, J.; Choi, S.; Lee, K.; Lah, M. S.; Park, H. Highly enantioselective epoxidation of 2,4-diarylenones by using dimeric cinchona phase-transfer catalysts: Enhancement of enantioselectivity by surfactants. Angew. Chem. Int. Ed., 2005, 44, 1383–1385.
    [42] Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K. Design of new chiral phase-transfer catalysts with dual functions for highly enantioselective epoxidation ofα,β-unsaturated ketones. J. Am. Chem. Soc., 2004, 126, 6844–6845.
    [43] (a) Bakó, P.; Bakó, T.; Mészáros, A.; Keglevich, G.; Sz?ll?sy,á.; Bodor, S.; Makó, A.; T?ke, L. Phase transfer catalysed asymmetric epoxidation of chalcones using chiral crown ethers derived from D-glucose and D-mannose. Synlett., 2004, 643–646. (b) Bakó, T.; Bakó, P.; Keglevich, G.; Bombicz, P.; Kubinyi, M.; Pál, K.; Bodor, S.; Makó, A.; Tǎke, L. Phase-transfer catalyzed asymmetric epoxidation of chalcones using chiral crown ethers derived from D-glucose, D-galactose, and D-mannitol. Tetrahedron: Asymmetry., 2004, 15: 1589–1595. (c) Bakó, P.; Makó, A.; Keglevich, G.; Kubinyib, M.; Pál, K. Synthesis of D-mannose -based azacrown ethers and their application in enantioselective reactions. Tetrahedron: Asymmetry., 2005, 16, 1861–1871.
    [44] Juliá, S.; Masana, J.; Vega, J. C. Synthetic enzyme: highly stereoselective epoxidation ofchalcone in the three-phase system toluene-water -poly-(S)-alanine. Angew. Chem., Int. Ed. Engl., 1980, 19, 929–931.
    [45] Bently, P. A.; Bergeron, S.; Cappi, M. W.; Hibbs, D. E.; Hursthouse, M. B.; Nugent, T. C.; Pulido, R.; Roberts, S. M.; Wu, L. E. Asymmetric epoxidation of enones employing polymeric aipha-amino acids in non-aqueous media. J. Chem. Soc. Chem. Commun., 1997, 739–740.
    [46] Geller, T.; Roberts, S. M. A new procedure for the Juliá- Colonna stereoselective epoxidation reaction under non-aqueous condition: the development of a catalyst comprising polyamino acid on silica(PaaSiCat). J. Chem. Soc., Perkin Trans. 1, 1999, 1397–1398.
    [47] Tsogoeva, S. B.; W?ltinger, J.; Jost, C.; Reichert, D.; K?hnle, A.; Krimmer, H. -P.; Drauz, K. Juliá-Colonna asymmetric epoxidation in a continuously operated chemzyme membrane reactor. Synlett., 2002, 707–710.
    [48] Yi, H.; Zou, G.; Li, Q.; Chen, Q.; Tanga, J.; Hea, M. -Y. Asymmetric epoxidation ofα,β-unsaturated ketones catalyzed by silica-grafted poly-(L)-leucine catalysts. Tetrahedron Lett., 2005, 46, 5665–5668.
    [49] a) Kelly, D. R.; Roberts, S. M. Oligopeptides as catalysts for asymmetric epoxidation. Peptide Science., 2006, 84 (1),74–89. b) Berkessel, A.; Koch, B.; Toniolo, C.; Rainaldi, M.; Broxterman,Q. B.; Kaptein. B. Asymmetric enone epoxidation by short solid-phase bound peptides: Further evidence for catalyst helicity and catalytic activity of individual peptide strands. Peptide Science., 2006, 84 (1), 90–96.
    [50] Lattanzi, A. Bis(3,5-dimethylphenyl)-(S)-pyrrolidin-2-ylmethanol: an improved organo -catalyst for the asymmetric epoxidation ofα,β-enones. Adv. Synth. Catal., 2006, 348, 339–346.
    [51] Lattanzi, A. Enantioselective epoxidation ofα,β-enones promoted byα,α-diphenyl-L-prolinol as bifunctional organocatalyst. Org. Lett., 2005, 7 (13), 2579–2582.
    [52] Cui, H-F; Li, Y-W; Zheng, C-W; Zhao, G; Zhu, S-Z. Enantioselective catalytic epoxidation ofα,β-enones promoted by fluorousα,α-diaryl-l-prolinols. J. Fluorine Chem., 2008, 129 (1), 45–50.
    [53]柳文敏,王巧峰,张生勇.手性β-氨基醇催化α,β-不饱和酮的不对称环氧化反应.有机化学. 2007, 27, 862–864.
    [54] Wang, X.-W; Reisinger, C.M.; Benjamin, L.; Catalytic asymmetric epoxidation of cyclic enones. J. Am. Chem. Soc., 2008, 130 (19), 6070–6071.
    [55] Lu, X-J; Liu,Y.; Sun, B-F; Brittany, C.; Deng, L. Catalytic enantioselective peroxidation ofα,β-unsaturated ketones. J. Am. Chem. Soc., 2008, 130 (26), 8134–8135.
    [56]曾庆乐,宓爱巧,蒋耀忠.铑催化不对称氢化官能烯烃的进展—单齿磷配体的兴起.化学进展. 2004, 16 (04), 603–612.
    [57] Reetz, M. T.; Gosberg, A.; Goddard, R.; Kyung, S. H.; Diphosphonites as highly efficient ligands for enantioselective rhodium-catalyzed hydrogenation. Chem. Commun., 1998, 19, 2077–2078.
    [58] Reetz, M.T.; Neugebauer, T. New diphosphite ligands for catalytic asymmetric hydrogenation: The crucial role of conformationally enantiomeric diols. Angew. Chem. Int. Ed., 1999, 38 (1-2), 179–181.
    [59] Owens, S. B. J.; Gray ,G. M. Study of the effects of alkali metal salts on styrene hydroformylation reactions catalyzed by Rhodium(I) complexes of bis(phosphite) ligands. Organometallics., 2008, 27 (17), 4282–4287.
    [60] Isabelle, F.; Montserrat, G.; Guillermo, M.; Axet, M. R.; Castillón, S.; Claver, C.; Susanna J.; Bruno, C.; Karine, P. Palladium catalytic species containing chiral phosphites: Towards a discrimination between molecular and colloidal catalysts. Adv. Synth. Catal. 2007, 349 (16), 2459–2469.
    [61] a) Amy, G.; Katie, H.; David, J. H.; Aina, M.; Orpen, A. G.; Paul, G. P.; Carmen, C.;Elena. F. Biarylphosphonites: a class of monodentate phosphorus(III) ligands that outperform their chelating analogues in asymmetric hydrogenation catalysis. Chem. Commun., 2000, 961–962. b) Michel, B.; Adriaan, J. M.; Schudde, E. P.; Esch, J.; André, H. M. V.; Johannes, G. V.; Feringa, B.L Highly enantioselective Rhodium-catalyzed hydrogenation with monodentate ligands. J. Am. Chem. Soc., 2000, 122 (46), 11539–11540.
    [62] Reetz, M.T.; Gerlinde, M. Highly enantioselective Rh-catalyzed hydrogenation reactions based on chiral monophosphite ligands. Angewandte Chemie., 2000, 39 (21), 3889–3890.
    [63] Chen, W. -P; Xiao, J. -L; Enantioselective hydrogenation with inexpensive, easily available monodentate phosphite ligands. Tetrahedron Lett., 2001, 42 (15), 2897–2899.
    [64] Andrei, K; Axel, M; Christine, F.; Armin, B. BINOL derived monodentate acylphosphite ligands for homogeneously catalyzed enantioselective hydrogenation. Tetrahedron: Asymmetry, 2004, 15 (6), 1001–1005.
    [65] Gavrilov, K. N.; Lyubimov, S. E.; Zheglov, S. V.; Benetsky, E. B.; Davankov, V. A. Enantioselective Pd-catalysed allylation with BINOL-derived monodentate phosphite and phosphoramidite ligands. J. Mol. Catal. A: Chemical, 2005, 231 (1-2), 255–260.
    [66] Konstantin, N. G.; Sergey, E. L.; Sergey ,V. Z.; Eduard, B. B.; Pavel, V. P.; Eugenie, A. R.; Tatiana, B. G.; Vadim, A. D. MOP-Type binaphthyl phosphite and diamidophosphite ligands and their application in catalytic asymmetric transformations. Adv. Synth. Catal., 2007, 349 (7), 1085–1094.
    [67] Konstantin, N. G.; Sergey, E. L.; Oleg, G. B.; Marina, G. M.; Sergey, V. Z.; Pavel, V. P.; Vadim, A. D.; Reetz. M. T. Chiral ionic phosphites and diamidophosphites: A novel group of efficient ligands for asymmetric catalysis. Adv. Synth. Catal., 2007, 349 (4-5), 609–616.
    [68] Mata, Y.; Diéguez, M.; Pàmies, O.; Claver, C.Chiral phosphite-oxazolines: A new classof ligands for asymmetric Heck reactions. Org. Lett., 2005, 7 (25), 5597–5599.
    [69] Mata,Y.; Diéguez, M; Pàmies, O; Claver, C. New carbohydrate-based phosphate -oxazoline ligands as highly versatile ligands for palladium-catalyzed allylic substitution reactions. Adv. Synth. Catal., 2005, 347 (15), 1943–1947.
    [70] Dieguez, M.; Mazuela, J.; Pamies, O.; Verendel, J. J.; Andersson, P.G. Chiral pyranoside phosphite?oxazolines: A new class of ligand for asymmetric catalytic hydrogenation of alkenes. J. Am. Chem. Soc., 2008, 130 (23), 7208–7209.
    [71] Pàmies, O.; Diéguez, M.; Claver, C. New phosphite?oxazoline ligands for efficient Pd-catalyzed substitution reactions. J. Am. Chem. Soc., 2005, 127 (11), 3646–3647.
    [72] Mata, Y.; Diéguez, M.; Pàmies, O.; Woodward, S. Screening of a modular sugar-based phosphite ligand library in the asymmetric nickel-catalyzed trialkylaluminum addition to aldehydes. J. Org. Chem., 2006, 71 (21), 8159–8165.
    [73] Hilgraf, R.; Pfaltz, A. Chiral bis(N-tosylamino)phosphine- and TADDOL -phosphite- oxazolines as ligands in asymmetric catalysis. Synlett., 1999, 1814–1816.
    [74] Heldmann, D.K.; Seebach, D. Catalytic enantioselective hydrosilylation of ketones with Rhodium-phosphite complexes containing a TADDOL and a dihydrooxazole unit. HeIv. Chim. Acta, 1999, 82 (7), 1096–1110.
    [75] Moteki, S.A.; Wu, D.; Chandra, K. L., Reddy, D. S.; Takacs, J.M. TADDOL-derived phosphites and phosphoramidites for efficient rhodium-catalyzed asymmetric hydroboration. Org. Lett., 2006, 8 (14), 3097–3100.
    [76] Smith, S. M.; Thacker, N. C.; Takacs, J. M. Efficient amide-directed catalytic asymmetric hydroboration. J. Am. Chem. Soc., 2008, 130 (12), 734–3735.
    [77] Shi, W-J; Wang, L-X; Fu,Y.; Zhu, S-F; Zhou, Q-L. Highly regioselective asymmetric copper-catalyzed allylic alkylation with dialkylzincs using monodentate chiral Spiro phosphoramidite and phosphite ligands. Tetrahedron: Asymmetry., 2003, 4 (24), 3867–3872.
    [78] Hou, G. -H; Xie, J. -H; Wang, L. -X; Zhou, Q. -L. Highly efficient Rh(I)-catalyzed asymmetric hydrogenation of enamines using monodente Spiro phosphonite ligands. J. Am. Chem. Soc., 2006, 128, 11774–11775.
    [79] Yang,Y.; Zhu, S. -F; Duan, H. -F; Zhou, C. -Y; Wang, L. -X; Zhou, Q. -L. Asymmetric reductive coupling of dienes and aldehydes catalyzed by nickel complexes of Spiro phosphoramidites: Highly enantioselective synthesis of chiral bishomoallylic alcohols. J. Am. Chem. Soc., 2007, 129 (8), 2248–2249.
    [80] Duan, H. -F; Jia, Y. -X; Wang, L. -X; Zhou, Q. -L. Enantioselective Rh-catalyzed arylation of N-tosylarylimines with arylboronic acids. Org. Lett., 2006, 8 (12), 2567–2569.
    [81] Duan, H. -F; Xie, J. -H; Shi, W. -J; Zhang, Q; Zhou, Q. -L. Enantioselective Rhodium -catalyzed addition of arylboronic acids to aldehydes using chiral Spiro monophosphite ligands. Org. Lett., 2006, 8 (7), 1479–1481.
    [82] Hattori, G.; Hori, T.; Miyake, Y.; Nishibayashi,Y. Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: Application to Rhodium-catalyzed enantio -selective hydrogenation of enamides. J. Am. Chem. Soc., 2007, 129 (43), 12930–12931.
    [83] Pàmies, O.; Diéguez, M.; Claver, C. New highly effective phosphate -phosphoramidite ligands for palladium-catalysed asymmetric allylic alkylation reactions. Adv. Synth. Catal., 2007, 349 (6), 836–840.
    [1] Caner,H.; Biedermann, P. U.; Agranat, I. Conformational spaces of cinchona alkaloids. Chirality., 2003, 15 (7), 637–645.
    [2] Franco,P.; Philipp, M. K.; Minguillón, C.; Lindner, W. Evaluation of the contribution to enantioselectivity of quinine and quinidine scaffolds in chemically and physically mixed chiral selectors. Chirality., 2001, 13 (4), 177–186.
    [3] Hoffmann, C.V.; Reinhard, P.; Michael, L.; Lindner, W. Synergistic effects on enantio -selectivity of Zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. Anal. Chem., 2008, 80 (22), 8780–8789.
    [4] Schuur, B.; Floure, J.; Andrew J. H.; Winkelman, J.G. M.;Johannes, G. V.; Heeres, H. J. Continuous chiral separation of amino acid derivatives by enantioselective liquid?liquid extraction in centrifugal contactor separators. Org. Process Res. Dev., 2008, 12 (5), 950–955.
    [5] Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lubben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. New ligands double the scope of the catalytic asymmetric dihydroxylation of olefins. J. Org. Chem., 1991, 56(15), 4585–4588.
    [6] O′Brien, P. Sharpless asymmetric aminohydroxylation: Scope, limitations, and use in synthesis. Angew. Chem. 1999, 38, (3), 326–329.
    [7] Benincor, T.; Piccolo, O.; Rizzo, S.; Sannicolo, F. 3,3'-Bis (diphenylphosphino)-1,1' -disubstituted-2,2'-biindoles: Easily accessible, electron-rich, chiral diphosphine ligands for homogeneous enantioselective hydrogenation of oxoesters. J. Org. Chem., 2002, 65(24), 8340–8342.
    [8] Satto, T.; Yokazawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. New chiral diphosphine ligands designed to have a narrow dihedral angle in the biaryl backbone. Adv. Synth. Catal., 2001, 343 (3), 264–267.
    [9] Herold, P.; Indolese, A. F.; Studer, M.; Jalett, H. P.; Blaser, H. U. New technical synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate of high enantiomeric purity. Tetrahedron., 2000, 56 (35), 6497–6499.
    [10] He, W.; Liu, P.; Zhang, B. -L; Sun, X. -L; Zhang, S. -Y. Efficient iridium and rhodium -catalyzed asymmetric transfer hydrogenation using 9-amino(9-deoxy)cinchona alkaloids as chiral ligands. Appl. Organomet. Chem., 2006, 20 (5), 328–334.
    [11] Tan, B.; Chua, P. -J.; Li, Y. -X.; Zhong G. -F. Organocatalytic asymmetric tandem Michael-Henry reactions: a highly stereoselective synthesis of multifunctionalized cyclohexanes with two quaternary stereocenters. Org. Lett., 2008, 10(12), 2437–2440.
    [12] Li, P. -F.; Wen, S. -G.; Yu, F.; Liu, Q. -X.; Li, W. -J.; Wang, Y. -C.; Liang, X.-M.; Ye, J.-X. Enantioselective organocatalytic Michael addition of malonates toα,β-Unsaturated ketones. Org. Lett., 2009, 11(3), 753–756.
    [13] Tan, B.; Chua, P. -J.; Zeng, X. -F.; Lu, M.; Zhong, G. -F. A highly diastereo-and enantio -selective synthesis of multisubstituted cyclopentanes with four chiral carbons by the organocatalytic domino Michael-Henry Reaction. Org. Lett, 2008, 10(16), 3489–3492.
    [1] Pàmies, O.; Diéguez, M.; Claver, Carmen. New phosphite?oxazoline ligands for efficient Pd-catalyzed substitution reactions. J. Am. Chem. Soc., 2005, 127 (11), 3646–3647.
    [2] Reetz, M.T.; Mehler, G. Highly enantioselective Rh-catalyzed hydrogenation reactions based on chiral monophosphite ligands. Angew. Chem. 2000, 39 (21), 3889–3890.
    [3] Zaitsev, Al. B.; Adolfsson, H. Recent developments in asymmetric dihydroxylations. Synthesis, 2006, 1725–1756.
    [4] (a) Bell, M.; Thomas B. P.; J?rgensen, K. A. Organocatalytic enantioselective nucleophilic vinylic substitution byα-substituted-α-cyanoacetates under phase-transfer conditions. J. Org. Chem., 2007, 72 (8), 3053–3056. (b) Bernardi, L.; Jesus, L. C.; Barbara, N.; Karl, A. J. Organocatalytic asymmetric1,6-additions ofβ-ketoesters and glycine imine. J. Am. Chem. Soc., 2007, 129, 5772–5778.
    [5] (a)Bernardi L., Fini F., Herrera R.P.; Ricci A.; Sgarzani V., Enatioselective Aza -Henry reaction using cinchona organocatalyst, Tetrahedron, 2006, 62, 375–380. (b) Li, P. -F.; Wen, S. -G.; Yu, F.; Liu, Q. -X.; Wen, J. Enantioselective organocatalytic Michael addition of malonates toα,β-unsaturated ketones. Org. Lett. 2009, 11 (3), 753–756. (C) Singh, R. P.; Bartelson, K.; Wang, Y.; Su, H.; Lu, X.-J.; Deng, L. Enantioselective Diels-Alder reaction of simpleα,β-unsaturated ketones with a cinchona alkaloid catalyst. J. Am. Chem. Soc., 2008, 130, 2422–2423.
    [6] Vannoorenberghe,Y.; Buono, G. Phosphinites from cinchona alkaloids; catalytic application in hydrosilylation reaction. Tetrahedron Lett, 1988, 29 (26), 3235–3238.
    [7] Mizuta, S.; Sadamori, M.; Fujimoto, T.; Yamamoto, I. Asymmetric desymmetrization of meso-1,2-diols by phosphinite derivatives of cinchona alkaloids. Angew. Chem. 2003, 115 (29), 3505–3507.
    [8] Brunel, J. M.; Buono, G. A new and efficient method for the resolution of 1,1'-binaph -thalene-2,2'-diol. J. Org. Chem., 1993, 58 (25), 7313–7314.
    [9] S. Y. Zhang, C. Girard, H. Kagan, Nonlinear effects involving two competing pseudo -enantiomeric catalysts: Example in asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 1995, 6 (11), 2637–2640.
    [10]张生勇,张三奇,刘瑞蓝.几种手性二醇的合成,化学试剂, 1992, 14 (2), 80–82.
    [11] Godfried, J. H. B.; Paul, C. J. K.; Piet W. N. M. L. Rhodium catalysed asymmetric hydroformylation with chiral diphosphite ligands. Tetrahedron: Asymmetry, 1993, 4 (7), 1625–1634.
    [12] Pastor, S. D.; Rodebaugh, R. K.; Odorisio, P. A. 112.Sterically congested molecules: 2, 2'-[(Biaryldiyl)bis(oxy)]bis[1, 3, 2-oxazaphospholidines]. HeIv. Chim. Acta., 1991,74, 925–927.
    [13] (a) Kohler, E. P.; Chadwell, H. M. Org. Synth. Col. Vol. I, 1932, p. 78. (b) A. H.勃拉特主编,南京大学化学系有机化学教研组译.有机合成(Ⅰ),科学出版社,北京, 1957, 61–62.
    [14] Luche, J. L. Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J. Am. Chem. Soc., 1978, 100 (7), 2226–2227.
    [15] Hayashi, T.; Yamamoto, A.; Hagihara, T.; Ito, Y. Modification of optically active ferrocenylphosphine ligands for palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Lett. 1986, 27 (2), 191–194.
    [16] Brunner, H.; Schmidt, Peter. Asymmetric catalysis, 131 naproxen derivatives by enantioselective decarboxylation. Eur. J. Org. Chem., 2000, 11, 2119–2133.
    [17] Hashizume,T.; Yonehara, K.; Ohe, K.; Uemura, S. A novel amphiphilic chiral ligand derived from D-glucosamine. Application to palladium-catalyzed asymmetric allylic substitution reaction in an aqueous or an organic medium, allowing for catalyst recycling. J. Org. Chem., 2000, 65 (17), 5197–5201.
    [18] Uozumi, Y.; Danjo, H.; Hayashi, T. Palladium-catalyzed asymmetric allylic substitution in aqueous media using amphiphilic resin-supported MOP ligands. Tetrahedron Lett. 1998, 39 (45), 8303–8306.
    [19] Tang, W. -J; Huang, Y. -H; He, Y. -M; Fan, Q. -H. Dendritic MonoPhos: Synthesis and application in Rh-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry, 2006, 17, 536–543.
    [20] He, W.; Liu, P.; Zhang, B. -L; Sun, X. -L; Zhang, S. -Y. Efficient iridium and rhodium-catalyzed asymmetric transfer hydrogenation using 9-amino(9-deoxy) cinchona alkaloids as chiral ligands. Appl. Organomet. Chem. 2006, 20 (5), 328–334.
    [1] (a) Hill, J. G.; Rossiter,B. E.; Sharpless K. B. Anhydrous tert-butyl hydroperoxide in toluene: the preferred reagent for applications requiring dry TBHP. J. Org. Chem., 1983, 48 (20), 3607–3608. (b) Zhang, W.; Loebach, J. L.; Wilson, S.R.; Jacobsen E. N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc., 1990, 112 (7), 2801–2803.(c) Collman, J. P.; Lee, V. J.; Zhang, X.; Ibers, J. A.; Brauman, J. I. Enantioselective epoxidation of unfunctionalized olefins catalyzed by threitolstrapped manganese porphyrins.J. Am. Chem. Soc., 1993, 115 (9), 3834–3835.
    [2] Peris, G.; Jakobsche, C. E.; Miller, S. J. Aspartate-Catalyzed Asymmetric Epoxidation Reactions. J. Am. Chem. Soc. 2007, 129 (28), 8710–8711.
    [3] (a) Shi, Y. Organocatalytic asymmetric epoxidation of olefins by chiral ketones. Acc. Chem. Res., 2004, 37 (8), 488–496 (b) Yang, D.; Wang, X. -C; Wong, M. -K; Yip, Y. -C; Tang, M. -W. Highly enantio -selective epoxidation of trans-stilbenes catalyzed by chiral ketones. J. Am. Chem. Soc., 1996, 118(45), 11311–11312. (c) Yang, D. Ketone-catalyzed asymmetric epoxidation reactions. Acc. Chem. Res., 2004, 37 (8), 497–505.
    [4] Kelly, D. R.; Roberts, S. M. Oligopeptides as catalysts for asymmetric epoxidation. Peptide Science. 2006, 84(1), 74-89.
    [5] (a) Adam, W.; Rao, P. B.; Degen, H. G.; Levai, A.; Patonay, T.; Saha,C. R. Asymmetric Weitz?Scheffer epoxidation of isoflavones with hydroperoxides mediated by optically active phase-transfer catalysts. J. Org. Chem. 2002, 67(1), 259–264. (b) Shigeru, A.; Hiroki, T.; Makoto, O.; Motoko, M.; Takayuki, S. Catalytic asymmetric epoxidation of enones under phase-transfer catalyzed conditions. Tetrahedron, 2002, 58(8), 1623–1630.
    [6] Wang, X-W; Reisinger, C.M.; Benjamin, L.; Catalytic asymmetric epoxidation of cyclic enones. J. Am. Chem. Soc., 2008, 130 (19), 6070–6071.
    [7] Lu, X. -J; Liu,Y.; Sun, B. -F; Brittany, C.; Deng, L. Catalytic enantioselective peroxidation ofα,β-unsaturated ketones. J. Am. Chem. Soc., 2008, 130 (26), 8134–8135.
    [8] Manfred T. Reetz, Mark W. Drewes, Schwickardi, R. Organic Synthesis. Col. Vol (10), p. 256.
    [9] Sundermeier, U.; Dobler, C.; Mehltretter, G. M.; Baumann, W.; Beller, M.; Synthesis of 9-N-cinchona alkaloid peptide hybrid derivatives: preparation and conformational study of 9-N-acylamino(9-deoxy)cinchona alkaloids. Chirality. 2003, 15 (2), 127–134
    [10]丁奎岭,范青花.不对称催化新概念与新方法..化学工业出版社,2008,北京,p.394.
    [11]侯软玲,林军.黄皮酰胺的研究进展.广西药学. 2007, 29 (3), 377–379.
    [12] Feng, Z. -Q; Li, X. -Z.; Zheng, G. -J.; Huang, L. Synthesis and activity in enhancing long-term potentiation (LTP)of clausenamide stereoisomers Bioorganic & Medicinal Chemistry Letters. 2009, 19, 2112–2115.
    [13] Michael, W. -C.;Chen, W.-P.; Robert, W. -F.; Liao, Y.-W.; Stanley, M. -R.; John, S.; John, A. S.; Williamsom, N. M. New procedures for the Juliá-Colonna asymmetric epoxidation: Synthesis of (+)-clausenamide.Chem.Commun. 1998, 1159–1160.
    [14] Baures, P. -W.; Eggleston, D. S; Flisak, J. R.; Gombatz, K.; Lantos, I.; Mendelson, W.; Remich, J. J. An efficient asymmetric synthesis of substituted phenyl glycidic esters. Tetrahedron lett. 1990, 31 (45), 6501–6504.
    [15] Huang ,F.; Huang ,L.Asymmetric synthesis of (-)-dehydroclausenmide.Tetrahedron, 1990, 46 (9), 3135–3141.
    [16] Zheng, G. -J.; Yuan, Q. -P.; Yang, L.; Zhang, X.; Wang, J. -J.; Sun, W. -R. Preparation of (2S, 3R)-methyl-3-phenylglycidate using whole cells of Pseudomonas putida. J. Mol. Catal. B: Enzymatic, 2000, 10, 523–529.
    [1] Kuang Y Q, Zhang S Y, J iang R. A free ligand for the asymmetric djhydroxylation of olefins utilizing one phase catalysis and two phase separation. Tetrahedron Lett. 2002, 43 (20), 3669–3671.
    [2] (a) Kohler, E. P.; Chadwell, H. M. Org. Synth. Col. Vol. I, 1932, p. 78. (b) A. H.勃拉特主编,南京大学化学系有机化学教研组译.有机合成(Ⅰ),科学出版社,北京, 1957: 61–62.
    [3] Chatt J.; Venanzi L. M. Olefin coordination compounds. PartⅥ.Diene complexes of rhodium(Ⅰ). J. Chem. Soc., 1957, 4735–4741.
    [4] Winkhaus G.; Singer, H. Rhodium(Ⅰ)-olefinkomplexe. Chem.Ber.,1966, 99 (11), 3610–3618.
    [5] Kumaraswamy, G.; Sastry, M. N. V.; Jena, N.; Kumarb, K. R.; Vairamanic, M. Enantioenriched (S)-6,6'-diphenylbinol-Ca: a novel and efficient chirally modified metal complex for asymmetric epoxidation ofα,β-unsaturated enones. Tetrahedron: Asymmetry, 2003, 14 (23), 3797–3803.
    [6] Shi, D. -Q; Zhang, S.; Zhang, Q. -Y.; Wang, X. -S.; Tu, S.-J.; Hu, H.-W. Clean synthesis in water: Darzens condensation reaction of aromatic aldehydes with phenacyl chloride. Chinese J. Chem., 2003, 21, 680–682.
    [7] Lattanzi, A. Enantioselective epoxidation ofα,β-enones promoted byα,α-diphenyl-L -prolinol as bifunctional organocatalyst. Org. Lett., 2005, 7 (13), 2579–2582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700