用户名: 密码: 验证码:
散堆硫化矿石典型导热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化矿石氧化自热引起的内因火灾一直是伴随硫化矿山开采的重大威胁之一,对硫化矿石热传导及其特性的研究是了解自燃火灾产生和发展过程的重要手段,也是对自燃火灾预测预报工作的基础性研究。
     硫化矿石堆可看作是一种散体多孔介质。本文对多孔介质的基于传统几何、分形理论以及逾渗理论的多种有效导热系数模型进行了概述,对其特点及适用性进行介绍,并选取其中的并联模型、串联模型、几何平均模型及张杨逾渗模型对硫化矿石的有效导热系数进行了计算。
     试验是获得各种物质导热系数值的最主要和最准确的来源,本文采用经典热线法对不同温度下不同粒径的散堆硫化矿石导热系数进行了测量。试验结果表明矿石的有效导热系数在0.3~0.6W/m·℃之间,并随温度上升而缓慢增大,基本上与温度呈直线关系;而导热系数与粒径的关系则是呈现出开口向上的抛物线规律。文中还进行了误差分析,结果表明试验总误差都在4%以内,满足工程的要求,同时针对误差的来源,提出了消除或减小误差的措施和方法。
     在获得了导热系数的基础上,本文建立了硫化矿石堆导热模型,并对其导热微分方程进行了数值计算和模拟。计算结果清楚的表明在约第12天时矿堆温度开始加速升高,每天的增温量逐渐上升超过40℃,矿堆在此段时间内处于高速氧化阶段;在约第20天的时候,温度上升到300℃左右,矿堆基本上已经燃烧起来了。另外模拟结果还显示导热系数值对矿堆进入加速氧化阶段的时间起决定性的作用。所得结论对硫化矿石堆自燃火灾的预测预报及防治措施的选择和制定能起到重要的指导作用。
The Internal fire caused by oxidation and self-heating of Sulfide ore is always one of the major threats accompanied by sulfide mining. It's an important means to understand the emergence and development of spontaneous combustion by researching on heat conduction and its properties of sulfide ore, and also the basic research to the forecast of spontaneous combustion.
     Sulfide ore heap can be seen as a loose porous media. In this paper, a variety of effective thermal conductivity models of porous mediums, which were based on traditional geometry, fractal theory and percolation and theory, were summed and introduced from their characters and applicability. Some of models that parallel model, series model, average geometry model and fractal model of Zhang-Yang were selected out to calculate the effective thermal conductivities of sulfide ore.
     Tests are the most important and most accurate sources of material's thermal conductivities. In this paper, the thermal conductivities of sulfide ore with different sizes were measured in different temperature by classical hotline method. Test results showed that the effective thermal conductivities of ore were between 0.3~0.6 W/m·℃, and slowly increasing with the temperature rising, basically a linear relationship. But the relationship between thermal conductivities and sizes were presenting a rule like parabola opening upwards. Then the error analyses were carried out, and the results showed that the total errors were less than 4 percent, meeting the requirements of engineering. At the same time, measures and methods were proposed to eliminate or reduce the error in cording to the source of it.
     On the basis of accessing to thermal conductivities, sulfide ores reactor model was established, and a numerical simulation was carried out to its differential equations of heat conduction. The results clearly showed that ore fill temperament started to increase accelerated gradually over 40℃from about the 12th days, when the ore fill was on high-speed oxidizing. On about the 20th days, the temperature go up to about 300℃, the ore fill was fired on the whole. The results also proved that thermal conductivities were decisive on the time of going into high-speed oxidizing period. The conclusions can play an important guiding role in selecting prediction and prevention measures to spontaneous combustion of sulfide ore.
引文
[1]宋学义,李济吾.硫化矿石氧化自燃的研究现状及评价[J].湖南冶金,1989,17(1):35-42
    [2]邬长福.高硫金属矿床内因火灾及其灭火措施[J].矿业安全与环保,2002,29(2):21-22
    [3]占丰林,蔡关峰.高硫矿山高温采场的成因及危害与防治措施[J].矿业研究与开发,2006,26(1):71-73
    [4]吴超,孟廷让著.高硫矿井内因火灾防治理论与技术[M].北京:冶金工业出版社,1995
    [5]宋学义,吴超,谢永铜.硫化矿石氧化自热量的测定方法研究[J].湖南冶金,1991,19(6):5-8
    [6]钱柏青.铜山铜矿井下采场硫化矿石自燃的机理探讨及预防措施[J].有色金属,2005,57(3):99-102
    [7]吴超,孟廷让,王坪龙等.硫化矿石自燃的化学热力学机理研究[J].中南矿冶学院学报,1994,15(2):156-161
    [8]张虹,张春生.黄铁矿自燃机理及其预防[J].铜业工程,2004,21(3):53-54
    [9]Wu Chao,Meng Tingrang.Experimental Investigation On Chemical Thermodynamic Behaviour of Sulfide Ores during Spontaneous Combustion[J].West-China Exploration Engineering.1995,7(5):57-65
    [10]仇勇海,陈白珍.金属硫化矿体自燃的电化学机理[J].中国有色金属学报,1995,5(4):1-4
    [11]卢龙,王成,薛纪越.硫化矿物的表面反应及其在矿山环境研究中的应用[J].岩石矿物学杂志,2001,(20),4:387-394
    [12]温佩琳,仇勇海,陈自珍编著.地电化学基础及其应用[M].长沙:中南工业大学出版社,1991
    [13]李孜军.硫化矿石自燃机理及其预防关键技术研究:[博士学位论文].长沙:中南大学,2007
    [14]程传煊.表面物理化学[M].北京:科学技术出版社,1995
    [15]杨松荣,邱冠周,胡岳华.硫化矿生物氧化机理的探讨[J].有色金属,2003,55(3):80-82 矿,2004,41(12):34-38
    [17]关晓辉,赵以恒,刘海宁.硫化物(矿石)的生物氧化机制研究[J].东北电力学院学报,1999,19(2):1-9
    [18]王龙坪.硫化矿石自燃发火规律现场试验研究[J].化工矿物与加工,1995,24(5):8-10
    [19]吴大敏.新桥硫铁矿矿石自燃特征及综合防治措施[J].化工矿物与加工,2001,30(10):20-22
    [20]贺兵红,吴超.硫化矿石自燃倾向性的实验室测定方法与应用[J].安全与环境工程,2006,1(13):92-95
    [21]李济吾.硫化矿石氧化速度的实验测定研究[J].江西有色金属,1990,4(2)54-58
    [22]宋学义,李济吾.硫化矿石氧化自燃时间的研究[J].湖南方冶金,1990,18(3):7-11
    [23]阳富强,吴超,吴国珉等.硫化矿石堆自燃预测预报技术[J].中国安全科学学报,2007,17(5):89-95
    [24]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006
    [25]贝尔 J.多孔介质流体动力学[M].李竞生,陈崇希译,孙纳正校.北京:中国建筑工业出版社,1983
    [26]王唯威.分形多孔介质内导热与流动数值模拟研究:[硕士学位论文].北京:中国科学院,2006
    [27]李守德.不可逆热力学理论在多孔介质渗流问题中的应用研究:[博士学位论文].杭州:浙江大学,2003
    [28]史海明.颗粒堆积多孔介质渗流特性的研究:[硕士学位论文].沈阳:东北大学,2005
    [29]王桂荣,王富民,辛峰,等.利用分形几何确定多孔介质的孔尺寸分布[J].石油学报(石油加工),2002,18(3):86-91
    [30]薛定愕 AE.多孔介质中的渗流物理[Ml.王鸿勋,张朝深,孙书深译.北京:石油工业出版社,1982
    [31]王补宣.多孔介质中的对流传热传质[J].西安交通大学学报,1994,28(5):51-58.
    [32]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995
    [33]李建锋,吴爱祥,姜立春.堆积散体孔隙空间结构的研究尺度及描述方法[J].山西建筑,2004,30(9):14-15
    [34]Adler P M,Thovert J F.Fractal porous media[J].Transport in Porous Media,1993,13:41-78
    [35]郁伯铭.多孔介质输运性质的分形分析研究进展[J].力学进展,2003,33(3):333-346
    [36]王达健,陈书荣,张雄飞,等.多孔介质孔隙模型及其应用——毛细管束模型[J].计算机与应用化学,2001,18(5):429-432
    [37]Blunt M J,Jackson M D,Piri M,et al.Detailed physics,predictive capabilities and macroscopic consequences for pore-network models of multiphase flow[J].Advances in Water Resource,2002,25:1069-1089
    [38]陈书荣,王达健,张雄飞,等.多孔介质孔隙结构的网络模型应用[J].计算机与应用化学,2001,18(6):531-535
    [39]王克文,关继腾,范业活,等.孔隙网络模型在渗流力学研究中的应用[J].力学进展,2005,35(3):353-360
    [40]姜志强.分形理论应用研究若干问题及现状与前景分析[J].吉林大学学报(信息科学版),2004,22(1):57-61
    [41]张济中.分形[M].北京:清华大学出版社,1995
    [42]朱纪磊,奚正平,汤慧萍,等.多孔结构表征及分形理论研究简况[J].稀有金属材料与工程,2006,35(2):452-456
    [43]马永亭.多孔介质热导率的分形几何模型研究:[硕士学位论文].武汉:华中科技大学,2004
    [44]曾文曲,王向阳.分形理论与分形的计算机模拟[M].沈阳:东北大学出版社,2001
    [45]郁伯铭,分形介质的传热与传质分析(综述)[J].工程热物理学报,2003,24(3):481-483
    [46]Yu B M,Li J H.Some fractal characters of porous media[J].Fractals,2001,9(3):365-372
    [47]Majumdar A,Bhushan B.Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J].J of Tribology,1990,112:205-216
    [48]黄文宇,孙业志,赵国彦.散体渗流的分形行为及其计算机模拟[J].矿业研究与开发,2002,22(1):13-15.
    [49]赵晓彤.基于分形和逾渗的散体热导率模型研究:[博士学位论文].保定:华北电力大学,1998
    [50]文虎,徐精彩.煤自燃过程的动态数学模型及数值分析[J].北京科技大学学报,2003,25(5):387-390
    [51]张海林.提高散体有效导热系数模型准确度的理论与实验研究:[博士学位论文].保定:华北电力大学,2004
    [52]Yang S.R.,Xu Z.M.,Zhao X.T.,et al.A Fractal Model for Thermal Conductivity in a Disperse System of Even Particles[J].Heat Transfer-Asian Research,2000,29(7):535-544
    [53]Liang X.G.,Xu J.Thermal Conductance of Randomly Oriented Composites of Thin Layers[J].Int.J.Heat and Mass Transfer,2000,43:3633-3640
    [54]Devpura A.,Phelan P.E.,Prasher R.S.Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology[J].Inter Society Conference on Thermal Phenomena,IEEE,2000,21-28
    [55]Alder P M.Transports in fractal porous media[J].J of Hydrology,1996,187:195-213
    [56]Thovert J F,Wary F,Alder P M.Thermal conductivity of random media and regular fractals[J].J Appl Phys,1990,68(8):3872-3883
    [57]Thomposn A H,Katz A J,Krohn C E.The microgeometry and transport properties of sedimentary rock[J].Advances in Phys,1987,36(5):625-694
    [58]Kuwahare F,Nakayama A,Koyama H.A numerical study of thermal dispersion in porous media[J].ASME J of Heat Transfer,1996,118(4):756-761
    [59]Yu B.M.,Lee L.J,Cao H.Q.A fractal in-plane permeability model for fabrics[J].Polymer Composites,2002,22(2):201-221
    [60]Shashwati R,Tarafsar S.Archie's law from a fractal model for porous rocks[J].Physical Review B,1997,55(13):8083-8041
    [61]Tavman I H.Effective Thermal Conductivity of Granular Porous Materials[J].Int.Comm.Heat Mass Transfer,1996,23(2):169-176
    [62]Maxwell J C.A Treatise on Electricity and Magnetism[M].Dover,3~(rd) Ed,NewYork,1954
    [63]Francl J,Kingery W D.Thermal Conductivity:Ⅸ,Experimental Investigation of Effect of Porosity on Thermal Conductivity[J].J.Am.Ceram.Soc.,1954,37(2):99
    [64]Loeb A L.Thermal conductivity:Ⅷ,A Theory of Thermal Conductivity of Porous Material[J].J.Am.Ceram.Soc.,1954,37(2):96
    [65]Kaganer M.G.Heat Transfer Insulation in the Low-Temperature Engineering[M].Moscow:Mashinostroenie,1968
    [66]Nikitin V.S.Candidate of Techn:[dissertation].Minsk,1969
    [67]Zumbrunnen D.A.,Viskanta R.,Incropera F.P.Heat Transfer Through Porous Solids with Complex Internal Geometries[J].Int.J.Heat Mass Transfer,1986,2(92):275-284
    [68]Zehner P,Schlunder E U.Thermal Conductivity of Granular Material at Moderate Temperatures[J].Chemie.Ingr.Tech,1997,(42):933-941
    [69]Hsu C T,Cheng P,Wong K W.A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media[J].ASME J Heat Transfer,1995,117(2):264-269
    [70]Park S.,Hartley J.G.Predicting Effective Thermal Conductivities of Unbonded and Bonded Silica Sands[J].Journal of Applied Physics,1999,86(9):5263-5269
    [71]公维平,刘英义.多孔材料有效导热系数的试验研究[J].山东电力高等专科学校学报,1999,2(2):64-67
    [72]钱吉裕,李强,余凯,等.确定复杂多孔材料有效导热系数的新方法[J].工程科学(材料科学),2004,34(11):1247-1255
    [73]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报,2001,25(3):257-261
    [74]梁基照,刘冠生.无机粒子填充聚合物复合材料传热模型及有限元模拟[J].特种橡胶制品,2006,27(5):35-38
    [75]陈永平,施明恒.基于分形理论的多孔介质导热系数的研究[J].工程热物理学报,1999,20(5):605-609
    [76]施明恒,樊荟.多孔介质导热的分形模型[J].热科学与技术,2002,1(1):28-31
    [77]赵晓彤,杨善让,徐志明,等.粒径均匀散体导热系数的分形描述,工程热物理学报,1997,20(4):477-481
    [78]姚仲鹏,王瑞君.传热学[M].北京:北京理工大学出版社,2003
    [79]张省现.散体的分形特征和热物性的分形表征:[硕士学位论文].北京:北京科技大学,2004
    [80]陈奎.硬硅酸钙石多孔绝热材料的导热系数及测量:[硕士学位论文].北京:北京科技大学,2004
    [81]杨群,郭忠印,陈立平,等.级配碎石分形特征分析及其在路面工程中的应用[J].建筑材料学报,2006,9(4):418-422
    [82]GB/T 5990-2006.耐火材料导热系数试验方法(热线法)[S]
    [83]李才对.非稳态法测量不良导体导热系数的研究:[硕士学位论文].昆明:昆明理工大学,2003
    [84]张亚静,余先彬.平行热线法测定耐火材料导热系数的理论基础及技术[J].耐火材料,1997,31(1):48-50
    [85]刘放,庄志军,张卫华.比较法测取导热系数[J].吉林化工学院学报,2001,3(18):26-28
    [86]于帆,张欣欣,何小瓦.非稳态平面热源法同时测量材料的导热系数和热扩散率[J].宇航计测技术,2006,26(6):13-21
    [87]陈昭栋.平面热源法瞬态测量材料热物性的研究[J].电子科技大学学报,2004,33(5):551-554
    [88]张建明,盛煜,赖远明.铁路碎石道碴层导热系数测试研究[J].冰川冻土,2003,25(6):628-631
    [89]于帆,张欣欣.热带法测量材料导热系数的实验研究[J].计量学报,2005,26(1):27-29
    [90]金文桂.用线热源法测定非盒属材料的导热系数[J].吉林工业大学学报,1981,(4):36-43
    [91]王补宣,虞维平.热线法同时测定含湿多孔介质导热系数和导温系数的实验技术[J].工程热物理学报,1986,7(4):381-386
    [92]张忠进,郎敏.断电热线法测试材料导热系数的研究[J].东北电力学院学报,1995,15(4):16-20
    [93]赵晓彤,赵景林,孙灵芳,等.均匀粒径堆积体热导率的实验研究[J].东北电力学院学报,1997,17(3):7-11
    [94]徐桂转,梁新,岳建芝.利用热线法对松散类生物质导热系数的测试[J].可再生能源,2004,22(3):23-25
    [95]范有明,宁练,时章明,等.热线法快速测量微粒导热系数的研究[J].工业计量,2006,16(6):1-3
    [96]唐明云,张国枢,张朝举,等.平行热线法测定松散煤体导热系数试验[J.矿业安全与环保,2006,33(5):13-15.
    [97]张忠进,徐英弟.提高热线法测量精度的数据处理方法[J].东北电力学院学报,1996,16(3):19-23
    [98]Outzourhit A.,Trefny J.U.Simple Apparatus for Thermal Conductivity Measurements of Unconsolidated Powders.Experimental Heat Transfer,1994,(7):319-331
    [99]陈善雄,陈守义.砂土热导率的试验研究[J].岩土工程学报,1994,16(5): 47-51
    [100]陈福,徐志明,杨善让.散体热导率的试验研究[J].东北电力大学学报,1997,17(2):1-5
    [101]李建伟,葛岭梅,徐精彩,等.松散煤体导热系数测定实验[J].辽宁工程技术大学学报,2004,23(1):5-8
    [102]赵为平,沈晶.堆积煤等效导热系数的试验研究[J].黑龙江电力技术,1997,19(2):72-74
    [103]岳宁芳.松散煤体导热系数的分析[J].矿业安全与环保,2006,33(3):26-30
    [104]刘中良,施明恒.热丝法测导热系数的固有误差分析及修J下[J].计量学报,1996,17(4):314-318
    [105]何刚,张国枢,陈清华.热线法测松散煤体变导热系数[J].煤矿安全,2007,38(6):19-21
    [106]何利民等.电工手册[M].北京:中国建筑工业出版社,2002
    [107]Leith J.R.and Haji-Sheikh A.A Transient Technique for Finding Effective Thermal Conductivity of Fluid-Saturated Porous Media.In "Heat Transfer in Porous Media"(eds.Beck J.V.and Yao L.S.).New York:ASME,1982,93-101
    [108]Aduda B.O.Effective Thermal Conductivity of Loose Particulate Systems[J].Journal of Materials Science,1996,31:6441-6448
    [109]张洪济.热传导[M].北京:高等教育出版社,1992
    [110]田禾.关于二维非稳态导热的可视化研究:[硕士学位论文].天津:天津师范大学,2003
    [111]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988
    [112]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社.1981
    [113]S.V.帕坦卡.张政译,蒋章焰校.传热与流体流动的数值计算[M].北京:科学出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700