用户名: 密码: 验证码:
燃气管线在役抢修热过程分析与温度场控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气管道在长期服役过程中,由于管材原因或外界因素影响,常常出现管壁减薄、腐蚀穿孔等问题,从而引起燃气泄漏及管道破坏,因此必须对管道减薄或损坏部位进行加固和修复。运行管道在役焊接修复技术以其方便快捷、环保经济、社会效益大等优点已经成为当前管道修复的主要方式。然而,由于在役焊接时管内高压快速流动的燃气介质会带走焊缝区大量的热量,因此在役焊接的工艺参数较难制定,且焊缝容易发生烧穿和氢致开裂。通过数值模拟技术对在役焊接温度场进行计算,研究燃气流动、焊接线能量对接头热循环的影响规律,从而为抢修工艺参数的制定和改善提供指导,为预测烧穿及氢致开裂提供依据。
     本文针对L360管线钢局部燃气泄露补板在役焊接修复问题,基于焊接热过程传热基本原理,充分考虑材料性能随温度的变化关系,深入分析管内燃气与管壁的换热特点,利用有限元ANSYS软件建立补板在役焊接有限元模型,对四组焊接工艺规范进行数值模拟,获得了多道焊接的温度场及热循环曲线,并且研究分析了管内压力、燃气流速及焊接线能量对管道内壁最高温度分布的影响。
     本文通过数值模拟获得以下研究结论:
     (1)采用文中四组焊接工艺规范进行焊接时,管道内壁的最高温度在280~600℃范围内,低于美国BMI研究所提出的980℃,这说明抢修焊接时管壁不会发生烧穿现象;
     (2)随着管道内压的升高及燃气流速的增大,管道内壁对流换热系数增大,从而使热影响区冷却速度加快,管道内壁最高温度降低;
     (3)相同工艺参数及燃气流动特性下,在役间断焊可使管道内壁最高温度明显降低,这有利于控制内壁最高温度避免发生烧穿。
     通过模拟计算可知,在本文所研究的工艺参数及燃气流动条件下进行在役焊接抢修时,管道内表面最高温度低于BMI研究所提出的980℃,管壁不会发生烧穿。所以,本文的管道泄压及流速控制合理、四组工艺规范均可行。
During long-term working, the high-pressure gas pipelines are prone to partial leakage because of corrosion or human damage. At present, in-service welding is the main method to repair leaking gas pipeline. The gas pipeline can keep on serving while the welding happens, so it makes enormous benefits and has prospects. However, during the in–service welding, fast and high-pressure gas flow in the pipe. So the welding joint is prone to burn-through or hydrogen caused cracking. Controlling the welding heat input and mastering the law of welding temperature field are the focus of in-service welding.
     This thesis basing on the basic principles of heat transfer of welding, considering the relationship between material properties and temperature, analyzing the characteristics of the heat-exchange process between gas and pipe-wall, use ANSYS to establish the multi-channel welding model of steel patch and simulate the dynamic temperature filed of this 3D model.Following is the main conclusions of this thesis:
     (1)Welding with the four kinds of parameters introduced in this thesis, the maximum temperature of internal wall is between 280℃and 600℃which is lower than 980℃, so the burn-through can not happen.
     (2)With the increase of flowing-speed and internal pressure, the heat-exchange coefficient increase, so the maximum temperature of internal wall and the t8/5 decreases.
     (3)When the line-energy is the same, the temperature of pipe wall by discontinuous welding is more lower than continuous welding.
     Through the simulation, we know, when the in-service welding happens with the parameters of this thesis under this environment, the burn-through can not happen. Therefore, the pressure relief and flowing-speed control are reasonable and the welding parameters are all feasible.
引文
[1]王巨洪,姜世强.管道缺陷补强修复新技术[J].管道技术与设备,2006,(5), 30~31.
    [2]梅云新.中国管道运输的发展与建设[J].交通运输系统工程与信息,2005,5(2):108~115.
    [3]李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004,27(6):1~5.
    [4]郑朝霞.国内外管道运输情况概述[J].物流技术,2003,125(2),10~11.
    [5]贺永德.燃气应用技术手册[M].北京:化学工业出版社,2010,52~55.
    [6]史耀武.油气长输管线焊接技术的新发展[C]//.2005能源工程焊接国际论坛论文集,北京:机械工业出版社,2005:330~338.
    [7]阎光灿.世界长输燃气管道综述[J].燃气与石油,2000,18(3):9~19.
    [8]李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004,27(6):1~5.
    [9]许长青.油库输油管道泄漏的抢修方法[J].油气储运,1998,17(12):1~32.
    [10]胡忆沩.管道的泄漏及带压处理方法[J].管道技术与设备,1997,(3):43~46.
    [11] Fu Guiying.Pipeline Risk Assessment[C]//.Papers of 2005 China International Oil & Gas Pipeline Technology(Integrity)Conference,Shanghai,2005:393~395.
    [12]王玉梅.国外油气管道修复技术[J].油气储运,2005,24(12):13~16.
    [13]薛振奎,于海燕.国内外油气管道焊接施工现状与展望[J].焊接技术,2001,30(增刊):16~18.
    [14]刘光云,王义,曹英俊.管道不停输维抢修焊接技术[J].金属加工,2009,(8):64~66.
    [15]袁平凡,余立,左松涛.不停输带压封堵技术在川渝地区的应用[J].燃气工业,2008,28(9):108~110.
    [16] P N Sabapathy, M A Wahab, M J Painter.The prediction of burn-through during in-service welding of gas pipelines [J]. International Journal of Pressure Vessels and Piping, 2000, 77: 669~677.
    [17] I-W BANG, Y-P SON, Numerical simulation of sleeve repair welding of in-service gas pipelines[J].Welding Journal,2002,81(12):273-282.
    [18] W A Bruce. Repair of in-service pipelines by welding [J]. Pipes & pipelines, 2001, 9(10):5~11.
    [19] Goodfellow R, Belanger R. Hot tap installed on operating sour-gas line[J].Oil and Gas Journal, 2001, 99(12):50-55.
    [20]黎超文,王勇,韩彬,等.高压气管线在役焊接烧穿研究进展[J].压强容器,2008,25(8):40~44.
    [21]高强.油气管线在役焊接烧穿的影响因素及研究现状[J].现代制造技术与装备,2008(1):13~14.
    [22]靳海成,王勇,韩彬,等.压强管道在役焊接修复的研究现状及前景[J].热加工工艺与设备,2006,(4):100~101.
    [23] P N Sabapathy, M A Wahab, M J Painter.Numerical models of in-service welding of gas pipelines [J]. Journal of Materials Processing Technology, 2001, 118(1):14~21.
    [24] R J Belanger, B M Patchett. The influence of working fluid physical properties on weld qualification for in-service pipelines [J]. Welding Journal, 2000, (8):209~214.
    [25] A P Cisilino, M D Chapetti. Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines[J].International Journal of Pressure Vessels And Piping,2002,(79):67~76.
    [26]陈怀宁.胡强.运行管道在线焊接工艺的数值模拟[A].第九次全国焊接会议论文集,1999:171~174.
    [27]武传松.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990,1~34.
    [28]周春亮.P92钢焊接温度场及应力场数值模拟[D].天津:天津大学,2008.
    [29]毕艳霞.T型接头焊接温度场与应力场的数值模拟[D].杭州:浙江大学,2007.
    [30]陆权森.双丝推挽式脉冲MIG焊接温度场的有限元模拟[D].天津:天津大学,2007.
    [31] Gareth A Taylor, Michael Hughes, eta1. Finite Volume Methods Applied to the Computational Modeling of Welding Phenomena [J]. Applied Mathematical Modeling, 2002,26(2):309~320.
    [32]刘高典.温度场的数值模拟[M].重庆:重庆大学出版社,1990.
    [33]李景涝.有限元法[M].北京:北京邮电大学出版社,1999.
    [34]王勖成.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [35]刘枢楷,杨森,赵永辉.L360焊接钢管在燃气次高压管道的应用[J].煤气与热力,2003,20(9):540~542.
    [36]潘正军.X52石油管线钢的性能与焊接[J].中国造船,2002,43(增刊):120~123.
    [37]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003.
    [38]汪建华.三位瞬态温度场的有限元模拟[J].上海交通大学学报,1996,30(3):120~123.
    [39]卓宁.工程对流换热[M].北京:机械工业出版社,1982.
    [40]任瑛.传热学[M].东营:石油大学出版社,1988.
    [41]薛小龙,王志亮,桑芝富,等.压强管道在线焊接的数值模拟[J].机械强度,2007,29(1):118~123.
    [42]秦华.浅谈带压封堵技术在燃气管道改线中的应用[J].石油化工应用,28(1):58~61.
    [43]陈玉华.X70管线钢在役焊接性研究[D].东营:中国石油大学,2006.
    [44]贺永德.燃气应用技术手册[M].北京:化学工业出版社,2010,52~55.
    [45]叶海明,杜卫国,江强,等.管道不停输焊接的发展现状和研究重点[J].机械制造,2009,47(534):57~60.
    [46]薛小龙.介质流速对在线焊接管道极限压强的影响[J].石油机械,2006,34(4):8~13.
    [47]薛小龙.不同介质对在线焊接温度场的影响[J].金属铸锻焊技术,2009,38(17):120~122.
    [48]熊震宇.T形接头焊接温度场的三维数值模拟[J].焊接技术,2008,37(6):21~23.
    [49]王春生.t8/5对低合金碳奥-贝球铁焊接热影响区组织和力学性能影响[J].焊接学报,1997,18(3):146~150.
    [50]薛小龙,桑芝富,姜卫忠.带压开孔结构多道间断焊的数值模拟[J].焊接学报,2005,26(4):25~28.
    [51]魏凯丰,姚传荣,吕克桥.燃气气体粘度和雷诺数计算[J].哈尔滨理工大学学报,2006,11(3):65~67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700