用户名: 密码: 验证码:
长输管线在役焊接烧穿失稳机制及安全评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在役焊接是一种安全、环保、经济、高效的管道维修技术,适用于原油、成品油、化工介质、天然气等多种介质管线的正常维修改造和突发事故的抢修(如带压抢修、更换腐蚀管段、加装装置、分输改造等作业)。在役焊接修复可以保持管线的连续运行,具有巨大的经济效益和广阔的应用前景。
     在役焊接过程中容易出现烧穿失稳和氢致裂纹,其中避免烧穿失稳是实施管线在役焊接安全修复首先需要解决的问题。本文根据管线在役焊接的实际工况,采用平板腔室的设计方法,搭建了压力管道在役焊接烧穿模拟试验装置,采用该装置对X70管线钢进行了在役焊接烧穿试验。对在役焊接温度场和烧穿失稳熔池尺寸进行测量,观察分析在役焊接接头失稳形貌和显微组织的精细结构,并对在役焊接烧穿失稳机制和影响因素进行深入的研究。深入分析了在役焊接接头与管道输送介质之间的换热过程和特点,在充分考虑管道材质和管内输送介质物性参数随温度变化的基础上,修正了现行采用的换热系数公式,采用有限元软件SYSWELD建立三维有限元模型,对X70长输管线在役焊接温度场进行模拟,将管道强度降低的高温区域等效为瞬态“体积型缺陷”,计算管线允许的最大安全操作压力从而对长输管线在役焊接烧穿失稳进行判定。
     研究结果表明:在役焊接由于内部介质带走焊接接头的热量,导致其熔池尺寸和高温区范围变小,其热循环参数t_H、t_(8/5)、和t_(100)均比常规焊接时小。在役焊接失稳模式主要有膨胀失稳和烧穿失稳,在介质压力作用下,焊接接头产生了“外凸”的膨胀变形,烧穿失稳的典型形貌为熔池前端高温区形成较小的烧穿孔洞。
     在役焊接膨胀变形与焊接温度场引起的热应力、内部介质的压力作用在管壁上产生的应力、管材自身的临界失稳应力有关,当前两者的综合作用应力超过材料临界失稳应力时,就会产生膨胀变形。烧穿失稳取决于电弧在管壁上形成的温度场和管内介质压力,当熔池区域的剩余强度不足以承载内部介质压力时,烧穿失稳就会发生。将材料在高温下的承载能力换算成在常温下的有效承载厚度,将局部高温引起的强度损失转换为常温下管壁的金属损失,这样将高温的在役焊接接头看成是含瞬态“体积型缺陷”的管道,该管道的最大安全操作压力可以通过DNV-RP-F101方法计算,从而判定烧穿发生的可能性。该方法在考虑管道内介质压力基础上,只需要计算温度场,从而能提高计算效率和预测精度。以VB6.0为平台设计了长输管线在役焊接烧穿失稳评定系统,该系统通过调用SYSWELD软件对在役焊接温度场进行求解,调用Matlab软件对管线最大安全操作压力进行分析计算,然后根据计算结果判定该工况下进行在役焊接的安全性。
     在0.1 MPa~5 MPa范围内,天然气管道在役焊接的最大安全操作压力随着内部压力的升高呈上升趋势;最大安全操作压力随着焊接热输入的增加而降低,在确保安全操作的条件下,应尽量采用较高的运行压力和较小的焊接热输入,减小在役焊接对管线正常运输的影响。通过正交设计试验可知,管道壁厚、焊接热输入和介质压力是影响在役焊接烧穿的主要因素,管道直径变化对在役焊接烧穿影响较小。
In-service welding is a maintenance and emergency repairing technique for operating pipelines which features safe, environment protection, economic, high efficiency and suitable for pipeline proper maintenance, rehabilitation, rush to repair for sudden accident (such as emergency repair under pressure, replace the corroded pipe sections, fix additional devices and off-take pipeline etc). The pipeline medium can be crude oil, product oil, chemicals, natural gas etc. This in-service welding repair can maintain continuous operation of pipelines and has good economic return and extensive prospect of application.
     There are two primary concerns with welding onto in-service pipelines. The first is for burn-through, where the welding arc causes the pipe wall to be penetrated, allowing the contents to escape. The second concern is for the integrity of the pipeline following repair. Preventing burn through is the first problems need to be solved during in-service welding of pipeline. In this dissertation, based on the actual operating condition of in-service welding onto pipelines, an in-service welding burn-through test device, which was designed and established by the design method of bead-on-plate welding on chamber, was used to conduct the in-service welding experimental study of burn through onto X70 pipelines. The temperature distributions and the size of failure’s molten pool were measured. The morphology and microstructure of the burn-through joints were observed by optical microscope and scanning electron microscopy. The mechanism of bulge and burn through failure during in-service welding and its affecting parameters were studied carefully. The heat transfer process and characteristic between in-service welding joint and pipeline contents were analyzed. Heat transfer formula adopted by former researchers was modified and new formula was deduced based on considering the thermophysical parameters of pipeline steel and pipeline contents varying with temperature. A three-dimension finite element (FE) model, which is integrated into commercial finite element analysis (FEA) software SYSWELD by means of user subroutines, was established to simulate the in-service welding of X70 pipeline steel and predict temperature distributions. The calculated transient‘volume-scale defect’in the pipe wall representing the loss of strength during in-service welding, which can be calculated from the results of the simulated temperature and the yield strength of the material. The maximum allowable operating pressure (MAOP) of a pipe with a volume-scale defect in its wall can be used to evaluate the safe of in-service welding of long-distance pipeline.
     The experimental results show that the pipeline contents create a large heat loss through the pipe wall, resulting in accelerated cooling of the weld. The size of heat affected-zone (HAZ) and high temperature region is relative small during in-service welding. The parameters of welding thermal cycle such as t_H, t_(8/5) and t_(100) for in-service welding are smaller than traditional welding. The main failure modes of in-service welding are bulge deformation and burn through. The welding deformation of in-service welding joint is external convex for the effect of pipeline content’s pressure. The typical appearance of burn through is only a small hole in the high temperature region of molten pool.
     The thermal stress causing by welding temperature, the load stress causing by the content’s pressure and the material critical failure stress have an effect on bulge deformation during in-service welding. If the former two types of stress are bigger than the material critical failure stress, the welding bulge deformations will occur. Burn through depends on the pipe’s internal pressure and the localized high temperature, which creates a local reduction of pipe-wall strength in the region of the welding pool. The pipe wall may burst if the effective strength of the wall in the region of the welding pool can’t carry the pipe’s internal pressure during the welding process. The reduction in strength in the weld can be represented by an effective reduction in thickness of the pipe wall, at its original strength. The reduction of strength was changed into a local thinning region in pipe-wall. The in-service welding pipe joint can be viewed as a pipe with local volume-scale defect. The MAOP of a pipe with a volume-scale defect in its wall can be calculated by using a procedure specified in the Standard DNV-RP-F101. Then the safety of in-service welding can be predicted. This approach only requires a thermal field calculation which can improve the efficiency. In addition, this technique accounts for internal pressure which can enhance the precision of prediction. The evaluation system of the safety of in-service welding onto long-distance pipeline was design on VB6.0. The system can call SYSWELD soft to calculate the temperature during in-service welding, and Matlab soft to calculate its MAOP. Then the safety of in-service welding under specific situation can be predicted.
     The MAOP increases with the increase of pipe internal pressure at 0.1MPa~5MPa. The MAOP decreases with the increase of heat input. While carrying a safety of in-service welding on pipeline, relative higher pipe’s internal pressure and smaller heat input should be taken for decreasing the effect on pipeline. Based on orthogonal experimental design, pipe wall thickness, heat input and internal pressure have much more great effect on the safety of in-service welding, while the influence of pipe diameter is relative small.
引文
[1].薛振奎,隋永莉.国内外油气管道焊接施工现状与展望[J].焊接技术, 2001, 30(增刊): 16-18.
    [2].陈春刚,王毅,杨振坤.长输油气管道泄漏检测技术综述[J].石油与天然气化工, 2002, 31(1): 52.
    [3].高慧临,董玉华,周好斌.管线钢的发展趋势与展望[J].焊管, 1999, 22(3): 4-8.
    [4].高惠临.管线钢—组织、性能、焊接行为[M].西安:陕西科学技术出版社, 1995.
    [5]. Pontremoli Mauro. A new generation of ultra-high strength X100/120 pipelines: A break through for economic long distance gas transportation[C]. Proceedings of the Fifteenth (2005) International Offshare and Polar Engineering Conference. 2005. Seaul, Korea: The International Society of Offshare and Polar Engineers.
    [6].冯耀荣.当前国际油气管道工业的发展动向[J].油气储运, 2001, 20(7): 1-6.
    [7].楼定波,俞方群.宝钢管线钢十年发展的历史回顾[C].中国石油石化工程技术和物装守册(第二分册), 2003.
    [8].辛希贤.管线钢的焊接[M].西安:陕西科学技术出版社, 1997.
    [9].智彦利. X80管线钢焊接热影响区组织与性能的分析与研究[D].西安石油大学,西安: 2004.
    [10].赫彪.自动焊技术在涩宁兰输气管道X70钢试验段上的应用[J].石油工程建设, 2002, 28(1): 44-45.
    [11]. Gr(a|¨)琚啁啾(zhou jiu)f Michael, Schr?der Jens, Schwinn Volker, et al. Production of large diameter pipes grade X70 with high toughnessusing acicular ferrite microstructures[C]. International Conference on Application and Evaluation of High Grade Linepipes in Hostile Environments. 2002. Yokohama, Japan.
    [12].陈怀宁,林泉洪,钱百年.运行管道在线焊接工艺研究(一)流动介质和结构因素对t8/5的影响[C].第八次全国焊接会议论文集,第三册. 1997.北京:机械工业出版社.
    [13]. Bellamy G., Jouanneau J. F., Quin R., et al. Pipeline repair technique cuts downtime[J]. Oil & Gas Journal, 1985, (11): 101-102, 105, 107.
    [14].郎需庆,赵志勇,宫宏,等.油气管道事故统计分析与安全运行对策[J].安全、健康和环境, 2006, 6(10): 15-17.
    [15].潘家华.油气管道断裂力学分析[M].北京:石油工业出版社, 1989.
    [16]. Starostinv. Pipeline disaster in the USSR[J]. Pipes & Pipelines International, 1990, 35(2): 7-8.
    [17]. Li Helin, Zhao Xinwei, Ji Lingkang. Failure analysis and integrity management of oil & gas pipeline[C]. International Oil & Gas Pipeline Technology (Integrity) Conference. 2005. Shanghai, China.
    [18].李鹤林.油气管道运行安全与完整性管理[J].石油科技论坛, 2007, 26(2): 18-25.
    [19]. Sridhar N., Dunn D. S., Anderko A. Prediction of conditions leading to stress corrosion cracking of gas transmission lines[C]. Environmentally Assisted Crackig: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment, and Structures. 2000. West Conshohocken PA USA: American Society for Testing and Materials.
    [20].李光福,杨武.埋地重要管线的腐蚀与防护[J].腐蚀与防护, 2009, 30(9): 620-630, 644.
    [21].陈静,贺三,袁宗明,等.管线钢应力腐蚀开裂[J].管道技术与设备, 2009(1): 45-46, 53.
    [22]. Manfredi C., Otegui J. L. Failures by SCC in buried pipelines[J]. Engineering Failure Analysis, 2002, 9(5): 495-509.
    [23].阎钟山,米莹,高建华.天然气长输管道泄漏的抢修与维护[J].天然气与石油, 2002, 20(2): 13-15.
    [24].王可中.长距离输油管道阴极保护死区的腐蚀控制[J].腐蚀与防护, 2003, 24(4): 172-174.
    [25].陈志昕,蔡克,张良,等.在役管道涂层及阴极保护失效模式探讨[J].腐蚀与防护, 2010, 31(3): 198-201, 204.
    [26].王珂,罗金恒,董保胜,等.我国在役油气老管道运行现状[J].焊管, 2009, 32(12): 61-65.
    [27].熊庆人,冯耀荣.国外输气管道失效事故调查分析[C]. in全国油气储运技术交流研讨会论文集. 2002.东营:石油大学出版社.
    [28]. Kiefner J.F. Defect repair procedures[C]. American Gas Association synposium on linepipe research. 1979. Houston, TX, USA: American Gas Association, Arlington, VA, USA.
    [29]. Kiefner J. F. Repair of line pipe defects by full-encirclement sleeves[J]. Welding Journal, 1977(6): 26-33.
    [30]. Kiefner J.F., Duffy A.R. Study of two methods for repairing defects in line pipe[M]. Arlington, VA: American Gas Association, 1975.
    [31]. API 1104. Welding of Pipelines and Related Facilities, Appendix B: in-service welding[S]. USA: American Petroleum Institute, 1999.
    [32]. Bruce W. A. Qualification of Procedures for Welding Onto In-Service Pipelines[C]. 4th International Pipeline Conference. 2002.
    [33]. Wahab M. A., Sabapathy P. N., Painter M. J. The onset of pipewall failure during "in-service" welding of gas pipelines[J]. Journal of Materials Processing Technology, 2005, 168(3): 414-422.
    [34]. Sabapathy P. N., Wahab M. A., Painter M. J. Numerical methods to predict failure during the in-service welding of gas pipelines[J]. The Journal of Strain Analysis for Engineering Design, 2001, 36(6): 611-619.
    [35]. Sabapathy P. N., Wahab M. A., Painter M. J. Numerical models of in-service welding of gas pipelines[J]. Journal of Materials Processing Technology, 2001, 118(1-3): 14-21.
    [36]. Slater G. The effect of repair welds on service performance[J]. Welding Journal, 1985(3): 22-29.
    [37]. Mellon B. Extending life of offshore pipe lines by hot tapping[J]. Pipe Line Industry, 1986, 65(5): 63-66.
    [38]. Otegui J. L., Cisilino A., Rivas A. E., et al. Influence of multiple sleeve repairs on the structural integrity of gas pipelines[J]. International Journal of Pressure Vessels and Piping, 2002, 79(11): 759-765.
    [39]. Cisilino A. P., Chapetti M. D., Otegui J. L. Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines[J]. International Journal of Pressure Vessels and Piping, 2002, 79(1): 67-76.
    [40]. Chapetti M. D., Otegui J. L., Motylicki J. Fatigue assessment of an electrical resistance welded oil pipeline[J]. International Journal of Fatigue, 2002, 24(1): 21-28.
    [41]. Bang I. W., Son Y. P., Oh K. H., et al. Numerical simulation of sleeve repair welding of in-service gas pipelines[J]. Welding Journal, 2002, 81(12): 273.
    [42]. Kim Woo-Sik, Kim Young-Pyo, Oh Kyu Hwan. The Effects of Heat Input and Gas Flow Rate on Weld Integrity for Sleeve Repair Welding of In-Service Gas Pipelines[C]. ASME Conference Proceedings. 2002: ASME.
    [43]. RIETJENS I. P. Safely weld and repair in-service pipe lines[J]. Pipe Line Industry, 1986, 65(6): 26-29.
    [44].蔡星,艾颖,邵应梅.海上腐蚀管线的复合修复[J].国外油气工程, 2002, 18(9): 50.
    [45]. Lianwen Zhang, Shiqing Wan. Two restoring pipelies technologies and their application [C]. China International Oil & Gas Pipeline Technology Conference. 2005. Shanghai China.
    [46]. Bormuth A., Mueller M., Will J., et al, Clock Spring. 2009, Patent WO/2009/062,961.
    [47]. Jones Roland Palmer, Eyre David, Mckenny Steve, et al. Pipeline inspection and rehabilitation[C]. China International Oil & Gas Pipeline Technology Conference. 2005. Shanghai China.
    [48].陈玉华. X70管线钢在役焊接性研究[D].中国石油大学,东营: 2006.
    [49].李作琨,肖军,孙维,等.管路带压开孔封堵新技术在海洋平台上的应用[J].中国修船, 2005(3): 38-41.
    [50].秦红.不停输带压封堵技术研究[J].管道技术与设备, 2009(02).
    [51].牛健壮.输气管道不停输带压封堵技术的应用[J].油气储运, 2009(7): 63.
    [52]. Belanger R. J., Patchett B. M. The influence of working fluid physical properties on weld qualification for in-service pipelines[J]. Welding Journal, 2000, 79(8): 209-214.
    [53]. McElligott J. A., Delanty J., Delanty B. Use of hot taps for gas pipelines can be expanded[J]. Oil and Gas Journal, 1998, 96(48): 66-76.
    [54].王巨洪,姜世强.管道缺陷补强修复新技术[J].管道技术与设备, 2006(5): 30-31, 44.
    [55]. Bruce W. A., Li V., Citterberg R., et al. Improved Cooling Rate Model for Welding on In-Service Pipelines, for Pipeline Research Council International(PRCI) [R]. EWI Project No. 42508CAP. Edison Welding Institute PRCI Contract No. PR-185-9633. Columbus, OH. 2001.
    [56].陈怀宁,钱百年,祝时昌,等.运行管道在线焊接时的氢致开裂与防止方法[J].焊接学报, 1998, 19(1): 29-36.
    [57]. Otegui J. L., Rivas A., Manfredi C., et al. Weld failures in sleeve reinforcements of pipelines[J]. Engineering Failure Analysis, 2001, 8(1): 57-73.
    [58]. Bruce W. A. Repair of in-service pipelines by welding[J]. Pipes & Pipelines International, 2001, 46(5): 5-11.
    [59].陈怀宁,林泉洪,钱百年.运行管道在线焊接工艺研究之评述[J].焊管, 1997, 20(3): 1-8.
    [60]. SY/T6554-2003,在用设备的焊接或热分接程序[S].
    [61]. Lin Q., Chen H., Qian B. Investigation on welding procedures for in-service pipelines[J]. China Welding, 1998, 7(1): 7-14.
    [62]. Bruce W. A., Holdren R. L., Kiefner J. F. Repair of Pipelines by Direct Deposition of Weld Metal– Further Studies, PR-185-9515[R]. Edison Welding Institute. 1996. 1-63.
    [63]. Fischer R. D., Kiefner J. F., Whitacre G. R. User's Manual for Model 1 and 2 Computer Programs for Predicting Critical Cooling Rates and Temperatures during Repair and Hot-Tap Welding on Pressurized Pipelines[R]. 1981.
    [64]. Bruce W. A., Threadgill P. L. Welding onto in-service pipelines[J]. Welding Design and Fabrication, 1992, 64(2): 19-24.
    [65]. Kiefner J. F., Fischer R. D. Models aid pipeline-repair welding procedure[J]. Oil & Gas Journal, 1988, 86(10): 41-46.
    [66]. Boring Matthew A., Zhang Wei, .Bruce William A. Improved Burnthrough Prediction Model for In-Service Welding Applications[C]. Proceedings of IPC2008, 7th International Pipeline Conference. 2008. Calgary, Alberta, Canada.
    [67]. Phelps B., Cassie B. A., Evans N. H. Welding onto live natural gas pipeline[J]. British Welding Journal, 1976, 8(8): 350-354.
    [68]. Chapetti M. D., Otegui J. L., Manfredi C., et al. Full scale experimental analysis of stress states in sleeve repairs of gas pipelines[J]. International Journal of Pressure Vessels and Piping, 2001, 78(5): 379-387.
    [69]. Kim Y. P., Baek J. H., Kim W. S. Allowable heat input and mechanical properties of repair weld by direct deposition of weld metal[C]. 18th International Conference onOffshore Mechanics and Arctic Engineering. 1999: New York: American Society of Mechanical Engineers.
    [70]. Kim W. S., Kim Y. P., Oh K. H. The effects of heat input and gas flow rate on weld integrity for sleeve repair welding of in-sevrice gas pipelines[C]. 4th Internal Pipeline Conference. 2002: New York: American Society of Mechanical Engineers.
    [71]. Goldak J. A., Oddy A. S., Dorling D. V. Finite Element Analysis of Welding on Fluid-Filled, Pressurized Pipelines[C]. 1992: International Trends in Welding Science and Technology.
    [72].薛小龙,朱加贵,桑芝富.在线焊接管道设计压力的影响因素[J].中国科学(E辑:信息科学), 2006(69-79).
    [73].薛小龙,王志亮,桑芝富,等.管壁厚度对在线焊接管道承压能力的影响[J].压力容器, 2006, 23(3): 15-18, 43.
    [74].薛小龙,王志亮,桑芝富,等.介质流速对在线焊接管道极限压力的影响[J].石油机械, 2006, 34(4): 8-13.
    [75]. Kiefner J.F. Effects of flowing product on line weldability[J]. Oil & Gas Journal, 1988, 86(29): 49-54.
    [76]. Kiefner J. F., Fischer R. D., Mishler H. W. Development of Guidelines for Repair and Hot Tap Welding on Pressurized Pipelines[R]. Phase 1 Final Report, Repair and Hot Tap Welding Group, Battelle Columbus Division,. Columbus, OH. 1981.
    [77]. Painter M. J. In-Service Welding on Gas Pipelines, [R]. software Documentation for In-Service, for Cooperative Research Center for Welded Structures (CRC-WS) and Australian Pipeline Industry association(APIA), Commonwealth Scientific and Industrial Research Organization, Adelaide, SA, Austrailia.
    [78]. Smith K, Wilson M. Stress analysis of a fillet weld between a pipe and sleeve reinforcement[J]. Gas Council Engineering Research Station, File Nos. 2633/5 and 2597, July, 1972.
    [79]. Gordon J. R., Dong P., Wang Y. Y., et al. Fitness-for-purpose assessment procedures for sleeve in pipelines: summary report[R]. J7193 & J7215 to the american Gas Association EWI project Nos. J7185, December. 1994.
    [80]. Fazzini P.G., Otegui J.L. Influence of old rectangular repair patches on the burst pressureof a gas pipeline[J]. International Journal of Pressure Vessels and Piping, 2006, 83(1): 27-34.
    [81]. Sabapathy P. N., Wahab M. A., Painter M. J. Numerical models of in-service welding of gas pipelines[C]. International Conference on Advances in Materials and Prpcessing Technologies. 1999.
    [82]. Oddy A. S., McDill J. M. J. Burnthrough prediction in pipeline welding[J]. International Journal of Fracture, 1999, 97(1): 249-261.
    [83].汪建华,戚新海,钟小敏.压缩机焊接变形的三维数值模拟[J].机械工程学报, 1996, 32(1): 85-91.
    [84].汪建华,钟小敏,戚新海.管板接头三维焊接变形的数值模拟[J].焊接学报, 1995, 16(3): 140-145.
    [85].鹿安理,史清宇,赵海燕,等.厚板焊接过程温度场、应力场的三维有限元数值模拟[J].中国机械工程, 2001, 12(2): 183-186.
    [86].陈怀宁,胡强,杨成文.运行管道在线焊接工艺的数值模拟[C].第九次全国焊接会议论文集(第二册). 1999.
    [87]. Xue Xiaolong., Zhu Jiagui, Sang Zhifu. Study on design pressure of in-service welding pipes[J]. Science in China Series E: Technological Science, 2006, 49: 434-444.
    [88].陈玉华,王勇.基于SYSWELD的运行管道在役焊接热循环数值模拟[J].焊接学报, 2007, 28(01): 85-88.
    [89]. Wang Yong, Chen Yuhua, Han Bin. Influence of pipe parameters and heat input on thermal cycle of in-service welding onto active gas pipeline[J]. China Welding, 2007, 16(4): 32-36.
    [90].宋立新,王勇,韩涛,等.管道在役焊接接头残余应力的研究[J].焊管, 2008, 31(02): 31-34.
    [91].宋立新,王勇,韩涛,等.管线钢在役焊接多道焊的数值模拟[J].压力容器, 2007(11).
    [92].祁世芳,王东.工业管线安全评估模式的比较与分析[J].特种钢结构, 2002, 17(4): 53-56.
    [93]. Kiefner J. F., Maxey W. A., Eiber R. J., et al. Failure stress levels of flaws in pressurized cylinders[R]. ASTM special technical publication 536. Philadelphia: ASTM. 1973.461-481.
    [94]. CAN/CSA Z184一M86—1986 Gas Pipelines Systems[S]. Ottawa, CSA, 1986.
    [95]. F101-1999, Corroded Pipelines[S]. Oslo, DNV, 1999.
    [96]. Manual for Determining the Remaining Strength of Corroded Pipelines-A Supplement to ANSI/ASME B31 Code for Pressure Piping[S]. American Society of Mechanical Engineers, 1991.
    [97]. PD6493 BSI. Guidance on methods for assessing the acceptability of flaws in fusion welded structures[J]. British Standards Institution, London, 1991.
    [98]. Szary T. The Finite Element Method Analysis for Assessing the Remaining Strength of Corroded Oil Field Casing and Tubing: 2007.
    [99]. Brown S., Song H. Finite element simulation of welding of large structures[J]. Journal of engineering for industry, 1992, 114(4): 441-451.
    [100]. Kamala V., Goldak J. A. Error due to two dimensional approximation in heat transfer analysis of welds[J]. Welding Journal, 1993, 72(9): 440.
    [101]. Habib L.M., Kleen U., Otremba F. Numerical simulation of weld residual stresses and countermeasures in austenitic steel piping[C]. International Conference on Nuclear Engineering, Proceedings, ICONE. 1997.
    [102].郝建柄,武新娟,张水清.在役管道修复与抢修焊接工艺模拟试验方法[J].油气储运, 2006, 25(2): 37-40.
    [103]. Recommended Pipeline Maintenance welding Practices, API RP 1107[S]. USA, Third Edition, April 1991.
    [104].王志强.管道不停输状态封堵三通焊接工艺模拟试验[J].石油和化工设备, 2009(02): 29-30.
    [105].童彦刚,候廷红,胡旺.智能式焊接热循环测试仪的研究[J].电焊机, 2003, 33(4): 32-35.
    [106]. Bruce W.A. Industry standards catch up with in-service welding[J]. Welding Journal, 1999, 78(11).
    [107]. Michaleris P., DeBiccari A. Prediction of welding distortion[J]. Welding Journal, 1997, 76(4): 172.
    [108].陈翠欣,李午申,王庆鹏,等.焊接温度场的三维动态有限元模拟[J].天津大学学报, 2005, 38(5): 466-470.
    [109].鲁丽君,白世武,丁红胜.焊接接头有限元模拟的研究进展[J].金属世界, 2008(2): 35-39, 54.
    [110].武传松,孙俊生,高进强.焊接过程计算机模拟的新进展[C].第十次全国焊接会议论文集(第一册). 2001.哈尔滨:黑龙江人民出版社.
    [111].吴言高,李午申,邹宏军,等.焊接数值模拟技术发展现状[J].焊接学报, 2002, 23(3): 89-92.
    [112].汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社, 2003.
    [113]. Schlichting H., Gersten K. Boundary-layer theory[M]: Springer Verlag, 2000.
    [114]. Inc FLIR Systems. ThermaCAMTM Researcher User’s Manua1[M], 2003.
    [115].李长俊.天然气管道输送[M].北京:石油工业出版社, 2000.
    [116]. Tsirkas S. A., Papanikos P., Kermanidis T. Numerical simulation of the laser welding process in butt-joint specimens[J]. Journal of Materials Processing Technology, 2003, 134(1): 59-69.
    [117]. Deng Dean, Murakawa Hidekazu. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37(3): 269-277.
    [118].陈楚,汪建华,杨洪庆.数值分析在焊接中的应用[M].上海:上海交通大学出版社, 1985.
    [119].拉达伊D.焊接热效应—温度场、残余应力、变形[M]:机械工业出版社, 1997.
    [120]. Goldak J., Chakravarti A., Bibby M. A new finite element model for welding heat sources[J]. Metallurgical and Materials Transactions B, 1984, 15(2): 299-305.
    [121].张华,潘际銮.基于二维焊接温度场检测的三维温度场计算机模拟[J].焊接学报, 1999, 20(4): 225-232.
    [122].莫春立,钱百年,国旭明,等.焊接热源计算模式的研究进展[J].焊接学报, 2001, 22(3): 93-96.
    [123].孔祥谦.热应力单元有限单元法分析[M].上海:上海交通大学出版社, 1999.
    [124]. Zhu X. K., Chao Y. J. Effects of temperature-dependent material properties on welding simulation[J]. Computers & Structures, 2002, 80(11): 967-976.
    [125].陈婷,徐光,李光强,等.钛微合金化X70管线钢动态CCT曲线研究[J].钢铁研究, 2009, 37(6): 30-32.
    [126]. SYSWELD. Engineering guide of training and Toolbox[M]. France: ESI Group, 2004.
    [127].徐琳,严仁军. T形焊接接头残余应力与变形的三维数值模拟[J].江苏船舶, 2007, 24(1): 5-8.
    [128]. Wade J. B. Effect of diameter and thickness on hot-tapping practice[J]. Australian Welding Reserach, 1982, 11: 55–56.
    [129].赵金洲,喻西崇,李长俊.缺陷管道适用性评价技术[M].北京:中国石化出版社, 2005.
    [130]. Anon. Gas transmission distribution and piping systems, ASME B31.8-2000[J]. The American Society of Mechanical Engineers, 2000.
    [131]. Kiefner J. F., Vieth P. H. New method corrects criterion for evaluating corroded pipe[J]. Oil and Gas Journal, 1990, 88(32): 56-59.
    [132]. Maxey W. A. Ductile fracture initiation, propagation and arrest in cylindrical vessels, fracture toughness,[C]. Proceeding of the 1971 Nationa Symposium on Fracture Mechanics, PartⅡ. 1971: ASTM STP 514.
    [133]. Kiefner J. F. Failure stress levels of flaws in pressurized cylinders, ASTM STP 536[C]. American Society for Testing and Materials. 1973. Philadelphia.
    [134]. American Society of Mechanical Engineering. ANSI/ASME B31G-1984. Manual for determining the remaining strength of corroded pipelines[S]. New York: ASME B31 Committee, 1984.
    [135]. API 579. Recommended Practice for fitness-for-service[S]. 2000.
    [136].杨绪运,何仁洋,刘长征,等.腐蚀管道体积型缺陷评价方法[J].管道技术与设备, 2009(1): 47.
    [137].韩德辉.在役管道焊接承压的计算[J].河南科技, 2005(4): 21.
    [138]. Sabapathy P. N., Wahab M. A., Painter M. J. The prediction of burn-through during in-service welding of gas pipelines[J]. International Journal of Pressure Vessels and Piping, 2000, 77(11): 669-677.
    [139].华建敏.十二五末我长输油气管道总里程超10万公里[EB/OL]. http://energy.people.com.cn/GB/12811459.html, 2010-09-25.
    [140]. Vakili-Tahami F., Masumi-Asl H. A Two-Dimensional Thermomechanical Analysis ofBurn-Through at In-Service Welding of Pressurized Canals[J]. Journal of Applied Sciences, 2009, 9(4): 615-626.
    [141]. Bruce W. A., Boring M. A. Comparison of methods for predicting safe parameters for welding onto in-service pipelines[C]. Proceedings of the ASME International Pipeline Conference 2006. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700