用户名: 密码: 验证码:
交直流并联输电系统大扰动短期电压稳定实用动态安全域
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高压直流输电技术在我国的广泛应用和快速发展,我国电网最终将形成大区域交直流互联的结构。在这种结构下,交/直流系统间的相互作用使得系统的电压稳定问题更加突出。
     传统的动态安全评估方法是“逐点法”,它虽然是电力系统分析的基本方法,但也存在诸多不足。新近动态安全域方法的研究结果已显示出其在安全性监视、评估与控制决策方面具有逐点法所不具备的多方面的优越性,从而受到了人们更多的关注。
     正是基于述原因,本文对保证交直流并联系统大扰动短期电压稳定性的实用动态安全域(Practical Dynamic Security Regions,缩写为PDSR)的性质进行了研究。
     通过对典型交直流并联输电系统的仿真研究发现:在给定事故、直流功率及控制方式下,在发电机节点有功功率和电压幅值、负荷节点有功功率和无功功率以及直流传输有功功率的决策空间,交直流并联输电系统的保证大扰动短期电压稳定性的PDSR在较大范围内仍可用(由描述各节点注入功率下限约束的垂直于坐标轴的超平面,极少数几个分别对应于不同失稳模态的描述大扰动短期电压稳定性临界点的近似超平面和平衡机节点所对应的约束超平面围成的)超多面体近似描述;在直流输电系统采用整流侧定电流/逆变侧定电压控制方式下,保证系统的大扰动短期电压稳定性的PDSR将扩大;当直流输电控制系统中的依从于电压的电流指令限制环节的参数VL值较大时,保证系统的大扰动短期电压稳定性的PDSR将扩大且具有近似平移性;随直流传输功率的不同、直流定功率控制(传输功率值不变)测控点选择不同和感应电动机占负荷比例的不同,PDSR的临界超平面分别具有各自的近似平移性。这些发现完善了PDSR的已有研究成果,为其实用化奠定了良好的基础。
With the increased use of HVDC transmission systems in power systems, the framework of interprovincial AC/DC parallel system has come into practice. It has been found that the interaction between the parallel AC transmission system and the HVDC transmission lines in such configurations is very important to voltage stability of power systems under this framework.
     The traditional“point wise”approach is one of the most basic approach in the study of power systems analysis. But it also has a lot of deficiencies. Compared with traditional“point wise”approach, the dynamic security regions (DSR) concept is gradually being accepted by electrical power engineers for its advantages on dynamic security monitoring, assessment and optimal control of power systems.
     The paper mainly studys practical dynamic security regions (PDSR) of AC/DC parallel systems corresponding to short-term voltage stability after a large disturbance.
     The study on PDSR of the typical AC/DC parallel systems shows the short-term voltage stability PDSR can be surrounded by the vertical hyper-planes which are the upper and lower limits of every bus injection, one or several critical hyper-planes that describe approximately critical points of short-term voltage stability in injection space, and restriction planes of balance node, when the fault, the DC power and the convertor’s control mode are given. It is validated that short-term voltage stability PDSR will expand, when CC/CV control mode and high VL of VDCOL (voltage dependent current order limiter) are adopted. In addition, the critical hyper-planes corresponding to different HVDC power, different power measuring sites with same value and different induction-motor proportion in load are approximately parallel for the same fault, the same unstable mode and the same convertor’s control mode. The discovery improves the results of PDSR study.
引文
[1] A. Cheimanoff and C. Curroyer, The Power Failure of Dec. 19, 1978, Revue Generale de 1’electricite, 1980, Vol.89:280-320
    [2] IEEE Commitee Report, Voltage Stability of Power Systems: Concepts, Analytical Tools, and Industry Experiences, IEEE/PES 90TH0358-2-PWR,1990
    [3]王梅义,吴竞昌,蒙定中.大电网技术,中国电力出版社,1995
    [4]傅书逖,倪以信,薛禹胜.直接法稳定分析,中国电力出版社, 1999
    [5] U.S.Canada Power System Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations. Apr., 2004
    [6] J.阿律莱加[新西兰].高压直流输电.任震等译.重庆:重庆大学出版社,1987
    [7]浙江大学发电教研组直流输电科研组著.直流输电.北京:水利电力出版社, 1985
    [8] AIEE Subcommittee on Interconnections and Stability Factors,“First report of power system stability,”AIEE Trans., pp. 51–80, 1926
    [9] S. B. Crary, I. Herlitz, B. Favez. CIGRE SC32 Report:“System stability and voltage, power and frequency control,”CIGRE, Appendix 1, Rep. 347, 1948
    [10] CIGRE Report:“Definitions of general terms relating to the stability of interconnected synchronous machine,”CIGRE, paper no. 334a, 1966
    [11] C. Barbier, L. Carpentier, F. Saccomanno. CIGRE SC32 Report: Tentative classification and terminologies relating to stability problems of power systems,”ELECTRA, no. 56, 1978
    [12] IEEE TF Report,“Proposed terms and definitions for power system stability,”IEEE Trans. Power Apparatus and Systems, vol. PAS-101, pp.1894–1897, July 1982
    [13] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and Classification of Power System Stability. IEEE Transactions on Power Systems, 2004, 19(2): 1387-1401
    [14]余贻鑫,陈礼义.电力系统的安全性与稳定性.北京:科学出版社, 1988
    [15]余贻鑫,王成山.电力系统稳定性理论与方法.北京:科学出版社, 1999
    [16]余贻鑫.电压稳定研究述评.电力系统自动化, 1999, 23(21):1-8
    [17] P. Kundur. Power System Stability and Control. McGraw-Hill, NY, 1993
    [18] C.W.Taylor. Power System Voltage Stability[M], EPRI Power System Engineering Series. McGraw-Hill, 1994
    [19] CIGRE Task Force 38.02.10,“Criteria and countermeasures for voltage collapse”, CIGRE, October 1995
    [20] CIGRE Working Group 34.08,“Protection against voltage collapse”, Edited by D.Karlsson, CIGRE, 21 rue d’Artois-F-75008 PARIS
    [21] CIGRE Task Force 38.02.10,“Cigre technical brochure:Modeling of voltage collapse including dynamic phenomena”, ELECTRA No.147 April.1993
    [22]中华人民共和国电力行业标准,电力系统安全稳定导则(DL 755-2001),中国电力出版社,2001年6月
    [23] T.V. Cutsem. Voltage Instability: Phenomena, Countermeasures, and Analysis Methods. Proceedings of the IEEE, 2000, 88(2): 208-227
    [24]郭永基.电力可靠性原理和应用(、下).北京:清华大学出版社, 1986
    [25]韩祯祥.电力系统稳定.北京:中国电力出版社,1995
    [26] T. E. Dy Liacco. The Adaptive Reliability Control System. IEEE Transactions on Power Apparatus and Systems, 1967, PAS-86 (5): 517~531
    [27] T. E. Dy Liacco. Real time Computer Control of Power Systems. Proceedings of the IEEE, 1974, 62 (4): 884~891
    [28] T. E. Dy Liacco. System Security: the Computer's Role. IEEE Spectrum, 1978, 15(6): 43~50
    [29]程浩忠,吴浩.电力系统无功与电压稳定性.北京:中国电力出版社,2004
    [30] THIERRY Van Cutsem, Costas Vournas. Voltage stability of electric power systems. Kluwer Academic Publishers. Boston/London/Dordrecht, 1998
    [31] Ainsworth J D,Gavrilovic A,Thanawala H L. Static and synchronous compensators for HVDC transmission converters connected to weak AC systems [A]. International Conference on Large High Voltage Electric Systems [c]. International Conference on Large High Voltage Electric Systems,Paris,Fr,1980
    [32] Hammad A E. A computation algorithm for assessing voltage stability at AC/DC interconnections[J].IEEE Trans on PWRS. 1986, 1(1):209-216
    [33] Aik D L H,Andersson G.Impact of dynamic system modeling on the power stability of HVDC systems[J].IEEE Transactions on Power Delivery, 1999, 14(4): 1427~1437
    [34] Aik D L H,Andersson G.Voltage stability analysis of multi-infeed HVDC system[J].IEEE Trans. on Power Delivery, 1997, 12(3): 1309-1318
    [35] HillD J. Nonlinear dynamic load models with recovery for voltage stability studies [J]. IEEE Trans. on PW RS. 1993, 8(1): 166-176
    [36]王庆平,陈超英,陈礼义.暂态全过程仿真中面向对象的负荷自适应模型[J].电网技术,2002,26(8):29-33
    [37] F. F. Wu, Y. K. Tsai and Y. X. Yu. Probabilistic Steady-State and Dynamic Security Assessment. IEEE Transactions on Power Systems, 1988, PWRS-3 (1): 1~9
    [38] F. F.Wu. Real-time Network Security Monitoring. Assessment and Optimization, International Journal of Electrical Power and Energy Systems, 1987, 10(2): 83-100
    [39]余贻鑫,栾文鹏.利用拟合技术决定实用电力系统动态安全域.中国电机工程学报, 1990, 10 (增刊): 22-28
    [40]曾沅,樊纪超,余贻鑫.电力大系统实用动态安全域.电力系统自动化, 2001, 25(16): 6-10
    [41]余贻鑫,曾沅,冯飞.电力系统注入空间动态安全域的微分拓扑特性.中国科学E辑,2002,32(4): 503-509
    [42]闵亮,余贻鑫.失稳模态识别方法及其在动态安全域中的应用[J].电力系统自动化, 2003, 28(11): 28-32
    [43]余贻鑫,曾沅.电力系统动态安全域的实用解法.中国电机工程学报, 2003, 23(5): 24-28
    [44]余贻鑫,林济铿.电力系统动态安全域边界的实用解析表示.天津大学学报, 1997, 30 (1): 1-8
    [45]曾沅,余贻鑫. Stephen T. Lee, Pei Zhang.基于有功功率小扰动分析的动态安全域快速求解方法[J].电力系统自动化(已录用)
    [46] Y. X. Yu, H. Liu and Y. Zeng. A Novel Optimization Method of Transient Stability Emergency Control based on Practical Dynamic Security Region (PDSR) of Power Systems. Science in China (Series E), 2004, 47(3): 376-384
    [47]刘辉,余贻鑫.基于实用动态安全域的电力系统安全性综合控制[J].中国电机工程学报, 2005,25(20):31-36
    [48]董存,余贻鑫.功率大扰动下电压稳定域的研究[J].电力系统自动化, 2005, 29(2):13-19
    [49]董存.考虑大扰动下电压稳定和功角稳定的电力系统实用动态安全域研究.博士学位论文,天津大学, 2005
    [50]樊纪超,余贻鑫.交直流并联输电系统实用动态安全域研究[J].中国电机工程学报, 2005, 25(23): 19-24
    [51]王锡凡.现代电力系统分析.北京:科学出版社, 2003
    [52]徐政.交直流电力系统动态行为分析.北京:机械工业出版社, 2004
    [53]李兴源.高压直流输电系统的运行和控制.北京:科学出版社, 1998
    [54]王官洁,任震.高压直流输电技术.重庆大学出版社. 1997
    [55]赵畹君.高压直流输电工程技术.北京:中国电力出版社, 2004
    [56]汤涌,卜广全,印永华,等.中国版BPA暂态稳定程序用户手册[Z].中国电力科学研究院, 2000
    [57]冯兆飞,余贻鑫,曾沅等.确定电力系统动态安全域的截距法[J].电网技术, 2006, 30(6): 18-22
    [58] Larchs W R. Voltage Instability in Interconnected Power Systems: A Simulation Approach[C]. IEEE Trans. On PWRS. 1992, 7(2): 753-761
    [59] Brownell G, Clark H. Analysis and solutions for bulk system voltage instability [J]. Computer Applications in Power, IEEE. 1989, 3(2): 31-35
    [60] Diaz de Leon, J A , II, Taylor, C W. Understanding and solving short-term voltage stability problems[C]. Power Engineering Society Summer Meeting. 2002, 2: 745-752
    [61] Shoup D J, Paserba J J, Taylor C W. A survey of current practices for transient voltage dip/sag criteria related to power system stability[C]. Power Systems Conference and Exposition, 2004. IEEE PES. 2004,2: 1140-1147
    [62] Huang G M, Nair N-K C. Voltage Stability Constrained Load Curtailment Procedure to Evaluate Power system Reliability Measures [C]. Power Engineering Society Winter Meeting, 2002. IEEE, 2002, 1(2): 761-765
    [63]陈辉祥,王仲鸿.广东电网电压稳定研究[J].电力系统自动化,2004,28(7): 86-89
    [64]吴红斌,丁明,李生虎.直流输电模型和调节方式对暂态稳定影响的统计研究.中国电机工程学报, 2003, 23(10): 32-37
    [65] O. B. Nayak, A. M. Gole, D. G. Chapman, J. B. Davies. Control Sensitivity Indices for Stability Analysis of HVDC Systems. IEEE Transactions on Power Delivery, 1995, 10(4): 2054-2060
    [66]张建设,张尧.直流系统控制方式对大扰动后交直流混合系统电压和功率恢复的影响.电网技术, 2005, 5(29):20-24
    [67]扬卫东,薛禹胜等.直流系统的控制策略对南方电网暂态稳定性的影响[J].电力系统自动化, 2003, 27(18): 57-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700