用户名: 密码: 验证码:
无线通信系统中的跨层优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有移动通信系统的分层结构决定了各子层技术只能保证局部最优的系统性能,跨层优化设计打破了传统的层次结构,对各子层的关键技术进行联合优化,以求达到全局最优的系统性能。跨层优化设计在下一代无线通信系统网络融合和技术融合中扮演着重要角色,甚至可以催生新的适合于无线通信的系统架构。本文主要针对跨层功率分配、多天线系统跨层建模、无线传感网络跨层优化等课题开展研究,并结合第四代移动通信系统的标准化工作对多天线检测和多基站协作等关键技术开展研究。本文的主要工作简介如下:
     首先研究了单天线系统跨层功率分配问题,运用马氏决策优化理论和双参数估计方法分别得到了最优和次优的基于队列信息的跨层功率分配策略。在无平均排队时延的系统中,长期平均发送功率一定的约束下以最小化系统丢包率为目标,得到最优的关于队列长度敏感的跨层功率分配策略。其中关键的步骤是在给定物理层目标丢包率的前提下得到最优的发送功率向量,此问题称为“内”问题。不同于传统方法的多维度优化方法,该“内”问题与平均报酬马氏决策过程问题密切相关,当把“内”问题松弛为后者,可以利用等效的线性规划模型实现问题的高效求解。由于平均报酬马氏决策过程问题解的随机性很小,因此提出了两种近似的确定性策略来消除随机性,仿真结果表明近似确定性策略的性能损失不明显。同时,从最优策略的解空间出发,提出了两种次优低复杂度的双参数功率分配策略。在上述模型的基础上又加入了平均排队时延约束,分析了时延约束对各跨层功率分配策略性能的影响。
     其次研究了多天线系统跨层建模问题,分析得到联合自适应调制、分层空时多天线结构及有限长队列模型的跨层系统性能。当系统考虑了有限长队列模型时需要重新设定自适应调制的切换门限,这时对系统的跨层性能分析显得十分必要。从分层空时结构检测后信噪比的联合概率分布出发,得到了基于自适应调制分层空时结构的服务速率分布函数,为上层的离散马尔科夫建模提供了精确的物理层接口。同时通过三个例子展示了分析结果在跨层设计中的应用。
     再次研究了多天线迭代接收机检测技术,提出了一种基于球形译码的低复杂度分步检测算法。通过星座拆分原理把高阶调制的正交幅度调制系统拆分成多个并行的正交相移键控子系统,每个子系统用高效的软球形译码算法计算各比特的对数似然比。
     然后研究了无线传感网能耗最优跨层优化问题,对多电平正交幅度调制的误比特率性能低估做了补偿处理,得到了一种改进的无线传感网跨层能耗模型,并证明了改进模型仍具有凸优的性质。分析发现改进模型增加的优化复杂度可忽略。仿真结果显示改进模型可以取得更优的能耗性能。
     最后研究了多基站协作通信系统的时频资源分配问题,提出了一种基于双时隙类型的频率规划方案。多基站协作通信系统中,协作小区与实际小区在拓扑上交错重叠,使得多基站协作系统的时频资源分配问题异常复杂。双时隙类型的频率规划方案解决了小区边缘用户得不到最优三个基站同时服务的问题,有效提升了边缘用户的通信链路质量。
The layered architecture in current mobile communication systems implies that every sublayer in the system can only guarantee a local optimal system performance. Cross-layer design can break the traditional layered architecture, and jointly optimize multiple layers to achieve better performance that is unattainable by single layer optimization technology. In the next generation wireless communication systems, the development of cross-layer de-sign technologies plays an important role in the fusion of different networks/technologies, and may motivate completely-new wireless system architectures. In this dissertation, we consider the problems of cross-layer power allocation policy, of cross-layer modeling of multiple antenna systems and of cross-layer designs in wireless sensor networks. Fol-lowing the standardization work of the fourth generation mobile communication system, the technologies of multiple antenna detector and coordinated multiple point transmis-sion/reception have also been studied.
     For the cross-layer power allocation problem, we obtain the optimal and suboptimal queuing-aware power allocation policies using Markov decision process theory and ap-proximated two-parameter polices respectively. Here, the goal is to identify the optimal queuing-aware power allocation policy to minimize the overall system packet error rate under constraint of long-term transmit power. One crucial step which we call 'inner'prob-lem is to find the optimal power vector at a given target packet error rate at physical layer. Rather than attacking the multi-dimensional optimization problem directly using conven-tional methods, we first observe that the 'inner'problem is closely related to an average reward Markov decision process problem, and relax the former to the latter so as to take advantage of its equivalence with linear program which allows efficient solution. Since the randomness in the associated Markov decision process is only slight, we propose two approximately deterministic policies as suboptimal solutions to the 'inner'problem with negligible insignificant performance degradation. We also propose two-parameter power allocation methods to achieve suboptimal results with low complexity. When the average queuing delay constraint is added to the cross-layer model, we also analysis its effect on the performance of above policies.
     Second we analyze the performance of adaptive modulation-based Bell-labs layered space-time (BLAST) systems with finite-length queuing model. Since the thresholds values for the adaptive modulation scheme should be optimized when the queuing model is taken into account in the system, cross-layer performance analysis on the queuing behavior is necessary. Based on the joint probability distribution function of the post-detection signal-to-noise ratios of BLAST, we express the service rate distribution of adaptive modulation-based BLAST system in closed form, and provide an accurate interface of physical layer for upper layer Markov chain analysis. We also discuss three applications of the accurate numerical results in cross-layer designs.
     Then we propose a sphere decoder-based complexity-reduced multistage detection algorithm in multiple antenna iterative detection and decoding system. According to con-stellation decomposition algorithm, high order multilevel quadrature amplitude modula-tion (QAM) system can be decomposed into several parallel quadrature phase shift keying sub-systems. We apply the efficient soft sphere decoder in every sub-system to calculate log-likelihood ratio of every bit.
     Next we propose an improved energy consumption cross-layer model in wireless sen-sor network. We propose a much improved approximation of the bound on the probability of bit error for uncoded multilevel quadrature amplitude modulation, with the desirable convexity of the optimization problem preserved. Simulation results show that our method can better improve energy efficiency with slight increased complexity.
     Finally a slot type-based frequency reuse plan is proposed in the mobile system using coordinated multiple point (CoMP) technology. CoMP cluster overlapping with real cell topology makes the resource allocation problem of CoMP system more complicated. The proposed frequency reuse plan can guarantee that cell edge-users who need cooperation service can be served by the best three neighboring cells, and improves the quality of the link effectively.
     VII
引文
[1]SHANNON C E. A mathematical theory of communication[J]. Bell System Tech-nical Journal,1948,27:379-23,623-656.
    [2]YOUNG W R. Advanced mobile phone service:introduction, background, and ob-jectives[J]. Bell System Technical Journal,1979,58(1):1-14.
    [3]MOULY M, PAUTET M B. The GSM System for Mobile Communications[M]. Telecom Publishing,1992.
    [4]PRASAD R, MOHR W, KONHAUSER W. Third Generation Mobile Communica-tion Systems[M]. Norwood, MA, USA:Artech House, Inc.,2000.
    [5]DAHLMAN E.3G Evolution:HSPA and LTE for Mobile Broadband[M]. Academic Press,2007.
    [6]3GPP TR 36.814 V1.2.1. Further advancements for E-UTRA:physical layer aspect-s. TSG-RAN R9,2009.
    [7]YANG Y, HU H, XU J, et al. Relay technologies for WiMAX and LTE-advanced mobile systems[J]. IEEE Communications Magazine,2009,47(10):100-105.
    [8]GHOSH A, RATASUK R, MONDAL B, et al. LTE-advanced:next-generation wire-less broadband technology[J]. IEEE Wireless Communications,2010,17(3):10-22.
    [9]FOSCHINI G J, GANS M J. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personal Communications, 1998,6(3):311-335.
    [10]TELATAR E. Capacity of multi-antenna Gaussian channels[J]. European Transac-tions on Telecommunication,1999,10(6):585-595.
    [11]FOSCHINI G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal,1996,1(2):41-59.
    [12]CHANG R W. Synthesis of band-limited orthogonal signals for multichannel data transmission[J]. Bell System Technical Journal,1966,45(10):1775-1796.
    [13]王文博,郑侃.宽带无线通信OFDM技术(第二版)[M].人民邮电出版社,2007.
    [14]SENDONARIS A, ERKIP E, AAZHANG B. User cooperation diversity. Part Ⅰ. System description [J]. IEEE Transactions on Communications,2003,51(11):1927-1938.
    [15]SENDONARIS A, ERKIP E, AAZHANG B. User cooperation diversity. Part Ⅱ. Implementation aspects and performance analysis [J]. IEEE Transactions on Com-munications,2003,51(11):1939-1948.
    [16]SAWAHASHI M, KISHIYAMA Y, MORIMOTO A, et al. Coordinated multipoint transmission/reception techniques for LTE-advanced[J]. IEEE Wireless Communi-cations,2010,17(3):26-34.
    [17]VAN DER MEULEN E C. Three-terminal communication channels[J]. Advances in Applied Probability,1971,3(1):120-154.
    [18]SCHEIN B, GALLAGER R. The gaussian parallel relay network[C]. Proceedings of IEEE ISIT00. ISIT 2000:22.
    [19]MITOLA III J, MAGUIRE JR G Q. Cognitive radio:making software radios more personal[J]. IEEE Personal Communications,1999,6(4):13-18.
    [20]HAYKIN S. Cognitive radio:brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
    [21]TONG L, NAWARE V, VENKITASUBRAMANIAM P. Signal processing in ran-dom access[J]. IEEE Signal Processing Magazine,2004,21(5):29-39.
    [22]BERRY R A, YEH E M. Cross-layer wireless resource allocation[J]. IEEE Signal Processing Magazine,2004,21(5):59-68.
    [23]SRIVASTAVA V, MOTANI M. Cross-layer design:a survey and the road ahead[J]. IEEE Communications Magazine,2005,43(12):112-119. 参考文献
    [24]谢希仁.计算机网络(第五版)[M].电子工业出版社,2008.
    [25]程鹏.基于凸优化理论的无线网络跨层资源分配研究[D].博士学位论文.浙江大学,2008.
    [26]WONG C Y, CHENG R S, LATAIEF K B, et al. Multiuser OFDM with adaptive subcarrier, bit, and power allocation[J]. IEEE Journal on Selected Areas in Commu-nications,2002,17(10):1747-1758.
    [27]JAYAWEERA S K. Virtual MIMO-based cooperative communication for energy-constrained wireless sensor networks[J]. IEEE Transactions on Wireless Communi-cations,2006,5(5):984-989.
    [28]YUAN Y, HE Z, CHEN M. Virtual MIMO-based cross-layer design for wireless sensor networks[J]. IEEE Transactions on Vehicular Technology,2006,55(3):856-864.
    [29]HU H, ZHANG Y, LUO J. Distributed Antenna Systems:Open Architecture for Future Wireless Communications[M]. Auerbach,2007.
    [30]WANG D, YOU X, WANG J, et al. Spectral efficiency of distributed mimo cellular systems in a composite fading channel[C]. Proceedings of IEEE ICC08. ICC 2008: 1259-1264.
    [31]YOU X H, WANG D M, SHENG B, et al. Cooperative distributed antenna systems for mobile communications[J]. IEEE Wireless Communications,2010,17(3):35-43.
    [32]VENKATESAN S, LOZANO A, VALENZUELA R. Network mimo:Overcoming intercell interference in indoor wireless systems[C]. Proceedings of IEEE ACSS-C07. ACSSC 2007:83-87.
    [33]HUANG H, TRIVELLATO M, HOTTINEN A, et al. Increasing downlink cellu-lar throughput with limited network MIMO coordination[J]. IEEE Transactions on Wireless Communications,2009,8(6):2983-2989.
    [34]KOBAYASHI M, DEBBAH M, BELFIORE J C. Outage efficient strategies for network mimo with partial csit[C]. Proceedings of IEEE ISIT09. ISIT 2009:249-253.
    [35]CRUZ R L, SANTHANAM A V. Optimal routing, link scheduling and power con-trol in multihop wireless networks [C]. Proceedings of IEEE INFOCOM03. ISIT 2003:702-711.
    [36]CUI S, MADAN R, GOLDSMITH A J, et al. Cross-layer energy and delay opti-mization in small-scale sensor networks [J]. IEEE Transactions on Wireless Com-munications,2007,6(10):3688-3699.
    [37]ZHANG X, TANG J, CHEN H H, et al. Cross-layer-based modeling for quality of service guarantees in mobile wireless networks[J]. IEEE Communications Maga-zine,2006,44(1):100-106.
    [38]PAVON J, CHOI S. Link adaptation strategy for ieee 802.11 wlan via received signal strength measurement[C]. Proceedings of IEEE ICC03. ICC 2003:1108-1113.
    [39]JI Z, YANG Y, ZHOU J, et al. Exploiting medium access diversity in rate adaptive wireless lans[C]. Proceedings of ACM Mobile Computing and Networking. ACM 2004:345-359.
    [40]XYLOMENOS G, POLYZOS G C. Quality of service support over multi-service wireless Internet links[J]. Computer Networks,2001,37(5):601-615.
    [41]TANG J, ZHANG X. Quality-of-service driven power and rate adaptation for mul-tichannel communications over wireless links[J]. IEEE Transactions on Wireless Communications,2007,6(12):4349-4360.
    [42]TANG J, ZHANG X. Cross-layer-model based adaptive resource allocation for sta-tistical QoS guarantees in mobile wireless networks[J]. Computer Networks,2008, 7(6):2318-2328.
    [43]HOANG A T, MOTANI M. Buffer and channel adaptive transmission over fading channels with imperfect channel state information[C]. Proceedings of IEEE WC-NC04. Atlanta, GA:WCNC,2004:1891-1896. 参考文献
    [44]KARMOKAR A K, DJONIN D V, BHARGAVA V K. Pomdp-based coding rate adaptation for type-i hybrid arq systems over fading channels with memory [J]. IEEE Transactions on Wireless Communications,2006,5(12):3512-3523.
    [45]KARMOKAR A K, DJONIN D V, BHARGAVA V K. Optimal and suboptimal packet scheduling over correlated time varying flat fading channels[J]. IEEE Trans-actions on Wireless Communications,2006,5(2):446-456.
    [46]DJONIN D V, KARMOKAR A K, BHARGAVA V K. Joint rate and power adap-tation for type-i hybrid arq systems over correlated fading channels under different buffer-cost constraints[J]. IEEE Transactions on Vehicular Technology,2008,57(1): 421-435.
    [47]KARMOKAR A K, BHARGAVA V K. Performance of cross-layer optimal adap-tive transmission techniques over diversity nakagami-m fading channels[J]. IEEE Transactions on Communications,2009,57(12):3640-3652.
    [48]PUTERMAN M. Markov Decision Processes:Discrete Stochastic Dynamic Pro-gramming[M]. New York:John Wiley & Sons.,1994.
    [49]GALLAGER R. Low-density parity-check codes[J]. IRE Transactions on Informa-tion Theory,2002,8(1):21-28.
    [50]HALL E K, WILSON S G. Design and analysis of turbo codes on Rayleigh fading channels[J]. IEEE Journal on Selected Areas in Communications,2002,16(2):160-174.
    [51]BERRY R A, GALLAGER R G. Communication over fading channels with delay constraints[J]. IEEE Transactions on Information Theory,2002,48(5):1135-1149.
    [52]TELATAR I E, GALLAGER R G. Combining queueing theory with information theory for multiaccess[J]. IEEE Journal on Selected Areas in Communications, 2002,13(6):963-969.
    [53]KELLY F P. Notes on effective bandwidths[J]. Stochastic networks:theory and applications,1996,4:141-168.
    [54]WU D, NEGIR. Effective capacity:a wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications,2003,2(4):630-643.
    [55]ALOUINI M S, GOLDSMITH A J. Adaptive modulation over Nakagami fading channels[J]. Kluwer Journal Wireless Communications,2000,13(1-2):119-143.
    [56]GOLDSMITH A J, CHUA S G. Variable-rate variable-power mqam for fading chan-nels[J]. IEEE Transactions on Communications,2002,45(10):1218-1230.
    [57]CHUNG S T, GOLDSMITH A J. Degrees of freedom in adaptive modulation:a unified view[J]. IEEE Transactions on Communications,2002,49(9):1561-1571.
    [58]ZHOU Z, VUCETIC B, DOHLER M, et al. Mimo systems with adaptive modula-tion[J]. IEEE Transactions on Vehicular Technology,2005,54(5):1828-1842.
    [59]LIU Q W, ZHOU S L. Queuing with adaptive modulation and coding over wireless links:cross-layer analysis and design [J]. IEEE Transactions on Wireless Communi-cations,2005,4(3):1142-1153.
    [60]WANG X, LIU Q W, GIANNAKIS G B. Analyzing and optimizing adaptive mod-ulation coding jointly with ARQ for QoS-guaranteed traffic[J]. IEEE Transactions on Vehicular Technology,2007,56(2):710-720.
    [61]BAI X, SHAMI A. Two dimensional cross-layer optimization for packet transmis-sion over fading channel [J]. IEEE Transactions on Wireless Communications,2008, 7(10):3813-3822.
    [62]FEMENIAS G, RAMIS J, CARRASCO L. Using two-dimensional markov models and the effictive-capacity approach for cross-layer design in amc/arq-based wireless networks[J]. IEEE Transactions on Vehicular Technology,2009,58(8):4193-4203.
    [63]HARSINI J S, LAHOUTI F. Queuing with adaptive modulation over MIMO wire-less links for deadline constrained traffic:cross-layer analysis and design[C]. Pro-ceedings of IEEE ICC07. Glasgow, Scotland:ICC,2007:235-240.
    [64]KARMOKAR A K, BHARGAVA V K. Optimal packet scheduling using adaptive M-QAM and orthogonal STBC in MIMO Nakagami-m fading channels[C]. Pro-ceedings of IEEE ICC06. Istanbul, Turkey:ICC,2006:5271-5276.
    [65]NIYATO D, HOSSAIN E, WAVEGEDARA K C, et al. Queue-aware power alloca-tion for space-time block coded MIMO systems[C]. Proceedings of IEEE WCNC07. Hong Kong, China:WCNC,2007:2200-2204.
    [66]MAAREF A, AiSSA S. Combined adaptive modulation and truncated ARQ for packet data transmission in MIMO systems[C]. Proceedings of IEEE GLOBE-COM04. Dallas, USA:GLOBECOM,2004:3818-3822.
    [67]TOLEDO A L, WANG X D, LU B. A cross-layer TCP modelling framework for MIMO wireless systems[J]. IEEE Transactions on Wireless Communications,2006, 5(4):920-929.
    [68]ZHOU S, ZHANG K, NIU Z S, et al. Queuing analysis on MIMO systems with adaptive modulation and coding[C]. Proceedings of IEEE ICC08. Beijing, China: ICC,2008:3400-3405.
    [69]JAFARI A, MOHAMMADI A. A cross layer approach based on queuing and adap-tive modulatin for mimo systems[J]. Telecommunication Systems,2009,42(1):85-96.
    [70]SELLATHURAI M, HAYKIN S. Wireless sensor networks:A survey on the state of the art and the 802.15.4 and ZigBee standards[J]. Computer Communications, 2007,30(7):1655-1695.
    [71]YE W, HEIDEMANN J, ESTRIN D. Medium access control with coordinated adap-tive sleeping for wireless sensor networks[J]. IEEE/ACM Transactions on Network-ing,2004,12(3):493-506.
    [72]SICHITIU M L. Cross-layer scheduling for power efficiency in wireless sensor networks[C]. Proceedings of IEEE INFOCOM04. INFOCOM 2004:1740-1750.
    [73]CUI S, GOLDSMITH A J, BAHAI A. Energy-constrained modulation optimiza-tion[J]. IEEE Transactions on Wireless Communications,2005,4(5):2349-2360.
    [74]CUI S, MADAN R, GOLDSMITH A, et al. Joint routing, MAC, and link layer optimization in sensor networks with energy constraints[C]. Proceedings of IEEE ICC05. ICC 2005:725-729.
    [75]CUI S, GOLDSMITH A, BAHAI A. Joint modulation and multiple access optimiza-tion under energy constraints[C]. Proceedings of IEEE GLOBECOM04. GLOBE-COM 2004:151-155.
    [76]ZHENG L Z, TSE D N C. Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels[J]. IEEE Transactions on Information Theory,2003, 49(5):1073-1096.
    [77]ALAMOUTI S M. A simple transmit diversity technique for wireless communica-tions[J]. IEEE Journal on Selected Areas in Communications,1998,16(8):1451-1458.
    [78]GORE D A, HEATH R W, PAULRAJ A J. Transmit selection in spatial multiplexing systems[J]. IEEE Communications Letters,2002,6(11):491-493.
    [79]LI P, PAUL D, NARASIMHAN R, et al. On the distribution of SINR for the MMSE MIMO receiver and performance analysis[J]. IEEE Transactions on Information Theory,2006,52(1):271-286.
    [80]VUCETIC B, YUAN J. Space-Time Coding[M]. John Wiley & Sons Inc,2003.
    [81]汪凡MIMO系统检测算法研究及收发技术联合设计[D].博士学位论文.浙江大学,2008.
    [82]WOLNIANSKY P W, FOSCHINI G J, GOLDEN G D, et al. V-blast:An architec-ture for realizing very high data rates over the rich-scattering wireless channel[C]. Proceedings of IEEE ISSSE98. ISSSE 1998:1740-1750. 参考文献
    [83]KIM K, YUE J, ILTIS R, et al. A qrd-m/kalman filter-based detection and channel estimation algorithm for mimo-ofdm systems[J]. IEEE Transactions on Wireless Communications,2005,4(2):710-721.
    [84]DOUCET A, GODSILL S, ANDRIEU C. On sequential monte carlo sampling methods for bayesian filtering[J]. Statistics and Computing,2000,10(3):197-208.
    [85]FINCKE U, POHST M. Improved methods for calculating vectors of short length in a lattice, including a complexity analysis[J]. Mathematics of Computation,1985, 44(170):463-471.
    [86]HASSIBI B, VIKALO H. On the sphere-decoding algorithm I. expected complexi-ty[J]. IEEE Transactions on Signal Processing,2005,53(8):2806-2818.
    [87]YANG Z, LIU C, HE J. A new approach for fast generalized sphere decoding in mimo systems[J]. IEEE Signal Processing Letters,2004,12(1):41-44.
    [88]LIU Q, YANG L. A novel method for initial radius selection of sphere decoding[C]. Proceedings of IEEE VTC04. ISSSE 2004:1280-1283.
    [89]CHAN A, LEE I. A new reduced-complexity sphere decoder for multiple antenna systems[C]. Proceedings of IEEE ICC02. ICC 2002:460-464.
    [90]WANG R, GIANNAKIS G B. Approaching MIMO channel capacity with reduced-complexity soft sphere decoding[C]. Proceedings of IEEE WCNC04. WCNC 2004: 1620-1625.
    [91]SELLATHURAI M, HAYKIN S. Turbo-BLAST for wireless communications:the-ory and experiments[J]. IEEE Transactions on Signal Processing,2002,50(10): 2538-2546.
    [92]DE JONG Y L C, WILLINK T J. Iterative tree search detection for MIMO wireless systems[J]. IEEE Transactions on Communications,2005,53(6):930-935.
    [93]HOCHWALD B M, TEN BRINK S. Achieving near-capacity on a multiple-antenna channel[J]. IEEE Transactions on Communications,2003,51(3):389-399.
    [94]GOLDSMITH A, JAFAR S A, JINDAL N, et al. Capacity limits of mimo channel-s[J]. IEEE Journal on Selected Areas in Communications,2003,21(5):684-702.
    [95]VENKATESAN S, LOZANO A, VALENZUELA R. Network MIMO:overcoming intercell interference in indoor wireless systems[C]. Signals, Systems and Comput-ers,2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on. ACSSC 2008:83-87.
    [96]HUANG H, TRIVELLATO M, HOTTINEN A, et al. Increasing downlink cellu-lar throughput with limited network MIMO coordination[J]. IEEE Transactions on Wireless Communications,2009,8(6):2983-2989.
    [97]SHAMAI S, ZAIDEL B M. Enhancing the cellular downlink capacity via co-processing at the transmitting end[C]. Proceedings of IEEE VTC01-Spring. Rhodes, Greece:VTC,2001:1745-1749.
    [98]BAI X F, SHAMI A. Two dimensional cross-layer optimization for packet trans-mission over fading channel[J]. IEEE Transactions on Wireless Communications, 2008,7(10):3813-3822.
    [99]FAINBERG E A. Non-randomized markov and semi-markov strategies in dynamic programming[J]. Theory of Probability and its Applications,1982,27(1):116-126.
    [100]SADEGHI P, KENNEDY R A, RAPAJIC P B, et al. Finite-state markov modeling of fading channels:a survey of principles and applications[J]. IEEE Signal Processing Magazine,2008,25(5):57-80.
    [101]JOHNSTON L A, KRISHNAMURTHY V. Opportunistic file transfer over a fad-ing channel:a pomdp search theory formulation with optimal threshold policies[J]. IEEE Transactions on Wireless Communications,2006,5(2):394-405.
    [102]MEYN S P, TWEEDIE R L. Markov Chains and Stochastic Stability[M]. Springer-Verlag,1993.
    [103]KLEINROCK L. Queueing Systems, Vol.1, Theory[M]. Wiley-Interscience,1975. 参考文献
    [104]DERMAN C. Finite State Markovian Decision Processes[M]. Orlando, FL, USA.: Academic Press, Inc.,1970.
    [105]PAPADIMITRIOU C H, TSITSIKLIS J N. The complexity of markov decision processes[J]. Mathematics of operations research,1987,12(3):441-450.
    [106]VANDERBEI R J. Linear Programming:Foundations and Extensions[M]. Kluwer, 1996.
    [107]BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge University Press,2003.
    [108]RASHID M M, HOSSAIN E, BHARGAVA V K. Cross-layer analysis of downlink v-blast mimo transmission exploiting multiuser diversity[J]. IEEE Transactions on Wireless Communications,2009,8(9):4568-4579.
    [109]MAIWALD D, KRAUS D. On moments of complex Wishart and complex inverse Wishart distributed matrices[C]. Proceedings of IEEE ICASSP97. Munich, Ger-many:ICASSP,1997:3817-3820.
    [110]ROSS S M. Introduction to probability models[M].7th ed. San Diego:CA:Aca-demic,2000.
    [111]ROBERT C P, CASELLA G. Monte Carlo statistical methods[M].2nd ed. Springer Verlag,2004.
    [112]GRADSHTEYN I S, RYZHIK I M. Table of Integrals, Series, and Products[M].7th ed. Elsevier Inc.,2007.
    [113]VITERBO E, BOUTROS J. A universal lattice code decoder for fading channels[J]. IEEE Transactions on Information Theory,2002,45(5):1639-1642.
    [114]AGRELL E, ERIKSSON T, VARDY A, et al. Closest point search in lattices[J]. IEEE Transactions on Information Theory,2002,48(8):2201-2214.
    [115]CALDERBANK A R. Multilevel codes and multistage decoding[J]. IEEE Transac-tions on Communications,1989,37(3):222-229.
    [116]TAROKH B, SADJADPOUR H R. Construction of OFDM M-QAM sequences with low peak-to-average power ratio[J]. IEEE Transactions on Communications,1989, 51(1):25-28.
    [117]BOYD S P, VANDENBERGHE L. Convex Optimization[M].7th ed. Cambridge University Press,2004.
    [118]KIANI S G, OIEN G E, GESBERT D. Maximizing multicell capacity using distributed power allocation and scheduling[C]. Proceedings of IEEE WCNC07. Rhodes, Greece:WCNC,2007:1690-1694.
    [119]3GPP TSG-RAN WG1 #56 R1-090613. Discussions on CoMP SU-MIMO. Sam-sung, Feb.9-13,2009.
    [120]3GPP TSG-RAN WG1 #56 R1-090657. Dynamic cell clustering for CoMP. LG Electronics, Feb.9-13,2009.
    [121]3GPP TSG-RAN WG1 #56 R1-091189. Cell clustering and feedback for CoMP. LG Electronics, Mar.23-27,2009.
    [122]3GPP TSG-RAN WG1 #56BIS R1-091354. Setup of CoMP cooperation areas. Nokia Siemens Networks, Nokia, Mar.23-27,2009.
    [123]3GPP TSG-RAN WG1 #56BIS R1-091377. Updates on cell clustering for CoMP transmission/reception. Nortel, Mar.23-27,2009.
    [124]WONG C Y, CHENG R S, LATAIEF K B, et al. Multiuser OFDM with adaptive subcarrier, bit, and power allocation[J]. IEEE Journal on Selected Areas in Commu-nications,2002,17(10):1747-1758.
    [125]李智伟,冯春燕,张天魁,等.用于OFDMA系统多小区干扰协调的功率分配算法[J].北京邮电大学学报,2008,31(1):71-74.
    [126]陈斌,胡宏林,张小东,等.未来移动通信系统中的小区间干扰协调技术[J].电信科学,2006,22(6):38-42.
    [127]3GPP TSG-RAN WG1 #54BIS R1-083569. Further discussion on inter-cell inter-ference mitigation through limited coordination. Samsung, Sep.29-Oct.03,2008.
    [128]3GPP TSG-RAN WG1 #56BIS R1-091415. Further discussion of frequency plan scheme on CoMP-SU-MIMO. Potevio, Mar.23-27,2009.
    [129]3GPP TR 25.996 V6.1.0. Spatial channel model for multiple input multiple output (MIMO) simulations[OL]. http://www.3gpp.org/ftp/Specs/html-info/25996.htm, Sep.2003.
    [130]BAUM D S, HANSEN J, SALO J. An interim channel model for beyond-3G sys-tems:extending the 3GPP spatial channel model (SCM)[C]. Proceedings of IEEE VTC05-Spring. VTC 2005:3132-3136.
    [131]KUO P H, SMITH P J, GARTH L M. Joint density for eigenvalues of two correlated complex Wishart matrices:characterization of MIMO systems[J]. IEEE Transac-tions on Wireless Communications,2007,6(11):3902-3906.
    [132]IVANIS P, DRAJIC D, VUCETIC B. Performance evaluation of adaptive MIMO-MRC systems with imperfect CSI by a Markov model[C]. Proceedings of IEEE VTC07-Spring. Dublin:VTC,2007:1496-1500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700