用户名: 密码: 验证码:
肠道菌—宿主代谢物组的分析平台的建立及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物是一个由动物体和体内共生的微生物共同组成的“超级生物体”。体内微生物主要分布在与外界相通的腔道内,其中胃肠道细菌最为复杂、对机体最为重要。肠道菌群与其宿主在长期的进化过程中建立了密切的关系,发挥着重要的生理功能,包括了生物屏障作用、免疫作用、代谢作用、营养作用、抗肿瘤作用等,并影响着机体的生长、发育和老化。哺乳动物体内的肠道菌群与宿主在正常情况下处于微生态平衡,能够维持机体的健康状态;当微生态平衡被破坏,有害的肠道菌容易诱发疾病产生。值得关注的是,肠道菌群是哺乳动物体内重要的代谢“器官”,影响着宿主的整体代谢,当改变其结构,宿主的生理代谢也会发生相应的改变。所以,宿主的代谢受自身基因和肠道菌群基因的双重影响,宿主和菌群之间进行着“共代谢”的过程。
     要研究肠道菌群和宿主之间的这一复杂的代谢体系,代谢组学是目前较为有效的研究手段。代谢组学作为一种相对全面、连续动态、无刺激的分析手段,能够客观地检测肠道微生物的代谢物组分及浓度,展示肠道菌的代谢状态。将代谢组学与元基因组学、微生态学方法相结合,并利用多维统计的分析方法,能够深入研究肠道菌群与宿主之间的交互作用,为揭示肠道菌群与哺乳动物机体的健康和疾病之间的关系提供了重要的依据。
     本课题建立基于色谱质谱联用技术的代谢物全谱和靶标分析的技术平台,检测大鼠尿液、粪便中肠道菌-宿主的代谢产物,并将开发的分析技术应用于肠道内容物中代谢物组成的空间分布规律,及三聚氰胺毒性与肠道菌群相关性的研究中。主要内容如下:
     建立肠道菌-宿主共代谢产物的全谱分析方法。利用超高效液相四级杆飞行时间质谱和气相飞行时间质谱联合的方法作为测试手段,分析用广谱抗生素亚胺培南/西司他丁钠造肠道菌群抑制大鼠模型的尿液和粪便代谢轮廓的动态变化。结果显示202个尿液代谢物和223个粪便代谢物为肠道菌-宿主共代谢产物,这些代谢物相关的机制包括,色氨酸代谢途径、吲哚类物质和褪黑素的补偿机制、酪氨酸苯丙氨酸代谢途径、神经递质类物质和脑-肠轴、短链脂肪酸和糖类物质、中长链脂肪酸和胆酸类物质、寡肽类物质转运加强等。该实验提供了全面的肠道菌群及其宿主共代谢的代谢物信息,证明了代谢物全谱分析方法对肠道菌-宿主共代谢研究的可行性,为研究代谢表型动态变化与微生物组成变化的相关性提供了平台和分子机制的依据。
     建立短链脂肪酸和支链氨基酸靶标的分析方法。该方法采用100μL氯甲酸丙酯,在水/丙醇/吡啶(8:3:2)的反应体系中进行衍生,衍生产物通过正己烷两步提取,再通过GC/QMS对样品进行测试。这个方法弥补了代谢组学全谱测试方法对于挥发性物质定量不准确的缺点,是一个精确、简便、稳定的方法,可应用于多种生物样本,为短链脂肪酸和支链氨基酸这两类物质之间以及与肠道菌群代谢的相关性的研究提供了平台。
     建立胆酸靶标的分析方法,基于超高效液相三重四级杆质谱联用检测方法对生物样品中的27种胆酸进行定量测试,其中14个游离型胆酸,6个甘氨结合型胆酸,7个牛磺结合型胆酸。该方法具有快速、简便、灵敏,预处理过程简单、重现性好,能够准确定量且具有线性范围宽、重现性好等优点。胆酸靶标分析方法的建立弥补了代谢组学全谱测试方法鉴定结构相似的同分异构体物质的缺陷,为胆酸和肠道菌群代谢的相关性研究提供了平台,对临床及生命科学的研究都有重要意义。
     整合代谢组学全谱检测方法、短链脂肪酸靶标分析方法和胆酸靶标分析方法三个测试平台,对大鼠十二指肠、空肠、回肠、盲肠、结肠、直肠六个肠段内容物中的代谢物组成进行测试,探究肠道菌群在肠道中的代谢规律。结果显示了肠道内容物中不同类型的代谢物因肠道菌的分布和数量不同,产生的代谢、吸收、及其生理意义上的差异,小肠的主要功能为吸收食源性的氨基酸和蛋白质,吸收胆碱并转化为脂类物质,吸收结合型胆酸(主要为回肠),调节肠道的渗透压,进行氧化应激的保护;大肠主要通过肠道菌群的代谢转化发挥功能,包括发酵碳水化合物(主要为盲肠)、蛋白质和肽,解离结合型胆酸成游离型胆酸(主要为盲肠和结肠),解离胆碱成为胺类(二甲胺、三甲胺、氧化三甲胺)。该研究提供了肠道菌群在不同肠段区域的基线信息,为理解不同肠段肠道菌的生理功能及其和宿主共代谢提供了理论基础,为疾病诊断和通过肠道菌提供健康调控药物和食物干预提供了重要的依据。
     基于肠道菌群代谢组学全谱测试的方法研究三聚氰胺致肾毒性大鼠模型的尿液代谢轮廓,发现大部分浓度有显著变化的物质为肠道菌群相关代谢物;通过广谱抗生素抑制大鼠肠道菌后,三聚氰胺毒性明显降低,肠道菌群相关代谢物的浓度波动变小。实验显示了三聚氰胺的毒性和肠道菌群代谢的相关性。进一步通过肠道菌群和三聚氰胺的体外培养,发现肠道菌群有能力在肠道中通过转氨作用代谢三聚氰胺成为三聚氰酸,两个物质在肾小管内浓缩蓄积,引起肾毒性。在肠道菌群中,存在Klebsiella菌具有较高的转化三聚氰胺的能力。将Klebsiella菌定植于大鼠肠道后,三聚氰胺的毒性明显增加。该实验为三聚氰胺的毒性研究提供了新的依据,同时,为临床研究上人的三聚氰胺结石的形成提供了新的解释。
Mammals are considered as superorganisms as a result of theirclose symbiotic associations with the gut microbiota. Gut microbesexert strong control over the mammalian host and are involved in thematuration and development of the host’s immune system,maintenance of host energy, and metabolic homeostasis. Thecomposition and activities of gut microbiota play important roles inhost health and the imbalance of dysbiosis of the microbiota inducesdifferent diseases. Mammalian metabolism involves integration ofmultiple indigenous metabolic processes which were encoded by thehost genome with those of the microbiome. Thus, the symbiotic gutmicrobiome exerts a strong influence on the metabolic phenotype ofmammalian host and participates in extensive microbial-mammlianco-metabolism.
     To gain better insight into the activity and functionality of gutmicrotiota, metabolomics is uniquely suited to assess the highlycomplex metabolic exchanges, opening a direct biochemical windowinto the metabolome. Metabolomics, as an integral part of thesystems biology, is defined as “the quantitative measurement ofmultiparametric time-related metabolic responses of a complexsystem to genetic modification or a pathophysiological intervention.”This platform offers a well-established high-throughput “omics”technology for analysis of the metabolome using an array ofspectroscopic and spectrometric techniques. Integration of gutmicrobial profiling with high-thourghput metabolic phenotyping promises to delineate the microbiome and the host metabolicphenotypes at a global level to uncover their inherent associations.Such studies help to imporve our understanding of the mechanismsunderlying complex host-microbe interactions.
     In this dissertation, the untargeted metabolomics platform as wellas targeted analysis of short-chain fatty acids, branched-chain aminoacid and bile acids were developed and validated, characterizing apanel of urinary and fecal metabolites related to microbialmammalian co-metabolism. These approaches were applied in theinvestigations of topographical metabolic signatures of ratgastrointestinal contents and the impact of gut microbiota onmelamine-induced renal toxicity. Main methods and results:
     A combined GC/MS and LC/MS untargeted metabolomicsapproach was applied to profile the urinary and fecal metabolitesfrom Wistar rats with gut microbiota suppressed by a broad spectrumantibiotic imipenem/cilastatin sodium. A panel of202urinary and223fecal metabolites were significantly altered as a readout of a gutmicrobial-mammalian co-metabolism, many of which have not beenpreviously reported. This study shows extensive gut microbiotamodulation of host systemic metabolism involving tryptophan,tyrosine and phenylalanine metabolism, short-chain fatty acids,medium and long chain fatty acids, bile acids, oligopeptidestransportation, and possibly a compensatory mechanism ofindole-melatonin production. It appeared that the recovery of theglobal metabolomic changes takes about two-weeks. Given theintegral nature of the mammalian genome and metagenome, thispanel of metabolites will provide a new platform for potentialtherapeutic markers and mechanistic solutions to complex problemscommonly encountered in pathology, toxicology or drug metabolismstudies.
     A targeted metabolomic protocol was developed to determineshort-chain fatty acids and branched-chain amino acids using propylchloroformate derivatization followed by GC/MS analysis. Aone-step derivatization using100μL of propyl chloroformate in a reaction system of water, propanol, and pyridine (v/v/v=8:3:2) at pH8provided the optimal derivatization efficiency. The best extractionefficiency of the derivatized products was achieved by a two-stepextraction with hexane. The method exhibited good derivatizationefficiency and recovery for a wide range of concentrations with a lowlimit of detection for each compound and can be applied in differentbiological samples. This is a complementary assay for the untargetedmetabolomics approach, providing a comprehensive metabolicsignature of gut micribiota and host co-metabolism.
     A UPLC/TQMS method was established for targeted bile acidsprofiling in biological samples, allowing the simultaneousquantification of27bile acids including14unconjugated,6glycine-conjugated and7taurine-conjugated bile acids. This methodprovides good results in terms of intra-and interday precision,accuracy and linearity. It is also a complementary method forunbiased metabolomics analysis, providing the capability todistinguish isomers with identical m/z values by different daughterions. This method has great values in the investigations of gutmicrobiota metabolism and can readily be extended to clinicalstudies.
     Integrating above three metabolomics platforms, the metabolitecomposition of contents in different regions of the intestine of normalrats were analyzed, investigating spatially the metabolism of gutmicrobiota in different regions of the intestine. Statistical analysiswere applied to differentiate metabolomic profiles of different regionsand revealed that the metabolite composition in gut contents weregreatly altered along different parts of the intestine, especiallybetween small intestine and large intestine.
     Based on urinary metabilomics approach, the mechanism ofmelamine-induced renal toxicity was investigated. Cyanuric acidserving as an integral component of the kidney stones is producd inthe gut by microbial transformation of melamine. We demonstratethat melamine-induced toxicity in Wistar rats was attenuated after gutmicrobiota suppression, along with increased melamine excretion. We further demonstrated that melamine can be converted to cyanuric acidin vitro by the cultured bacteria from normal rat feces and Klebsiellawas identified in cultivation of fecal samples by16S rDNAsequencing analysis. In addition, the cultures of Klebsiella terrigena,a species of Klebsiella genus, were able to convert melamine tocyanuric acid. Melamine-induced toxicity in kidneys was exacerbatedwhen rats were colonized with K. terrigena. Cyanuric acid wasdetected in kidneys of rats administered melamine alone and theconcentration was significantly increased after Klebsiellacolonization.
引文
[1] Lederberg J. Infectious history[J]. Science.2000,288(5464):287-293.
    [2] Gill S.R., Pop M., Deboy R.T.,etc. Metagenomic analysis of the human distal gutmicrobiome[J]. Science.2006,312(5778):1355-1359.
    [3] Suau A., Bonnet R., Sutren M.,etc. Direct analysis of genes encoding16s rrna from complexcommunities reveals many novel molecular species within the human gut[J]. Appl EnvironMicrobiol.1999,65(11):4799-4807.
    [4] Nicholson J.K., Holmes E.,Wilson I.D. Gut microorganisms, mammalian metabolism andpersonalized health care[J]. Nat. Rev. Microbiol.2005,3(5):431-438.
    [5] Backhed F., Ley R.E., Sonnenburg J.L.,etc. Host-bacterial mutualism in the human intestine[J].Science.2005,307(5717):1915-1920.
    [6] Tannock G.W. New perceptions of the gut microbiota: Implications for future research[J].Gastroenterol Clin North Am.2005,34(3):361-382, vii.
    [7] Savage D.C. Microbial ecology of the gastrointestinal tract[J]. Annu Rev Microbiol.1977,31:107-133.
    [8] Goodacre R. Metabolomics of a superorganism[J]. J Nutr.2007,137(1Suppl):259S-266S.
    [9]李旻.人体肠道菌群结构与宿主代谢的相关性研究[博士论文].上海:上海交通大学.2009.
    [10] Backhed F., Ding H., Wang T.,etc. The gut microbiota as an environmental factor thatregulates fat storage[J]. Proc Natl Acad Sci U S A.2004,101(44):15718-15723.
    [11] Eckburg P.B., Bik E.M., Bernstein C.N.,etc. Diversity of the human intestinal microbialflora[J]. Science.2005,308(5728):1635-1638.
    [12] Sears C.L. A dynamic partnership: Celebrating our gut flora[J]. Anaerobe.2005,11(5):247-251.
    [13] Palmer C., Bik E.M., DiGiulio D.B.,etc. Development of the human infant intestinalmicrobiota[J]. PLoS Biol.2007,5(7):e177.
    [14] Gronlund M.M., Lehtonen O.P., Eerola E.,etc. Fecal microflora in healthy infants born bydifferent methods of delivery: Permanent changes in intestinal flora after cesarean delivery[J]. JPediatr Gastroenterol Nutr.1999,28(1):19-25.
    [15] Ley R.E., Lozupone C.A., Hamady M.,etc. Worlds within worlds: Evolution of the vertebrategut microbiota[J]. Nat Rev Microbiol.2008,6(10):776-788.
    [16]王保红.肠道微生物多样性及其与人体代谢相关性的研究[博士论文].浙江:浙江大学.2007.
    [17] Bik E.M., Eckburg P.B., Gill S.R.,etc. Molecular analysis of the bacterial microbiota in thehuman stomach[J]. Proc Natl Acad Sci U S A.2006,103(3):732-737.
    [18] Franks A.H., Harmsen H.J., Raangs G.C.,etc. Variations of bacterial populations in humanfeces measured by fluorescent in situ hybridization with group-specific16s rrna-targetedoligonucleotide probes[J]. Appl Environ Microbiol.1998,64(9):3336-3345.
    [19]尹军霞,林德荣.肠道菌群与疾病[J].生物学通报.2004,39(3):26-28.
    [20]能德鑫(1986)厌氧菌的分离和鉴定. in南昌:江西科学技术出版社, p127.
    [21]李兰娟.感染微生态研究进展——肠道菌群对机体代谢影响[J].中华医学会第十一届全国营养支持学术会议论文汇编.2008.
    [22] Dziarski R. Recognition of bacterial peptidoglycan by the innate immune system[J]. CellMol Life Sci.2003,60(9):1793-1804.
    [23]徐凯进,李兰娟.肠道正常菌群与肠道免疫[J].国外医学.流行病学传染病学分册.2005,32(3):181-183.
    [24] Tannock G.W. Molecular assessment of intestinal microflora[J]. Am J Clin Nutr.2001,73(2Suppl):410S-414S.
    [25] Sinkora M., Sun J.,Butler J.E. Antibody repertoire development in fetal and neonatal piglets.V. Vdj gene chimeras resembling gene conversion products are generated at high frequency bypcr in vitro[J]. Mol Immunol.2000,37(17):1025-1034.
    [26] Helgeland L., Vaage J.T., Rolstad B.,etc. Microbial colonization influences composition andt-cell receptor v beta repertoire of intraepithelial lymphocytes in rat intestine[J]. Immunology.1996,89(4):494-501.
    [27] Cebra J.J., Periwal S.B., Lee G.,etc. Development and maintenance of the gut-associatedlymphoid tissue (galt): The roles of enteric bacteria and viruses[J]. Dev Immunol.1998,6(1-2):13-18.
    [28]黄颖.双歧杆菌bb12治疗炎症性肠病及其作用机制研究[博士论文].吉林:吉林大学.2007.
    [29]任平,夏天,李平,etc.脾虚腹泻患者肠道菌群的研究[J].中医杂志.1992,33(6):33-33.
    [30]康白.双歧杆菌的微生态学及临床意义[J].中华儿科杂志.1999,5(37).
    [31]陈敏聪(1989)厌氧菌及其感染. in上海:上海医科大学出版社, pp12-14.
    [32] Hughes R., Cross A.J., Pollock J.R.,etc. Dose-dependent effect of dietary meat onendogenous colonic n-nitrosation[J]. Carcinogenesis.2001,22(1):199-202.
    [33] O'Mahony L., Feeney M., O'Halloran S.,etc. Probiotic impact on microbial flora,inflammation and tumour development in il-10knockout mice[J]. Aliment Pharmacol Ther.2001,15(8):1219-1225.
    [34] Heilig H.G., Zoetendal E.G., Vaughan E.E.,etc. Molecular diversity of lactobacillus spp. Andother lactic acid bacteria in the human intestine as determined by specific amplification of16sribosomal DNA[J]. Appl Environ Microbiol.2002,68(1):114-123.
    [35] Gilmore M.S.,Ferretti J.J. Microbiology. The thin line between gut commensal andpathogen[J]. Science.2003,299(5615):1999-2002.
    [36]申剑.寡果糖对人源菌群仔猪肠道菌群结构和宿主代谢的影响[博士论文].上海:上海交通大学.2008.
    [37] Cummings J.H.,Macfarlane G.T. The control and consequences of bacterial fermentation inthe human colon[J]. J Appl Bacteriol.1991,70(6):443-459.
    [38] Salminen S., Bouley C., Boutron-Ruault M.C.,etc. Functional food science andgastrointestinal physiology and function[J]. Br J Nutr.1998,80Suppl1:S147-171.
    [39] Miller T.L., Weaver G.A.,Wolin M.J. Methanogens and anaerobes in a colon segmentisolated from the normal fecal stream[J]. Appl Environ Microbiol.1984,48(2):449-450.
    [40] Cummings J.H., Beatty E.R., Kingman S.M.,etc. Digestion and physiological properties ofresistant starch in the human large bowel[J]. Br J Nutr.1996,75(5):733-747.
    [41] Cummings J.H., Pomare E.W., Branch W.J.,etc. Short chain fatty acids in human largeintestine, portal, hepatic and venous blood[J]. Gut.1987,28(10):1221-1227.
    [42] McNeil N.I. The contribution of the large intestine to energy supplies in man[J]. Am J ClinNutr.1984,39(2):338-342.
    [43] Roediger W.E. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa inman[J]. Gut.1980,21(9):793-798.
    [44] Wong J.M.W., de Souza R., Kendall C.W.C.,etc. Colonic health: Fermentation and shortchain fatty acids[J]. Journal of Clinical Gastroenterology.2006,40(3):235-243.
    [45] Miller T.L.,Wolin M.J. Enumeration of methanobrevibacter smithii in human feces[J]. ArchMicrobiol.1982,131(1):14-18.
    [46] Macfarlane G.T., Cummings J.H.,Allison C. Protein degradation by human intestinalbacteria[J]. J Gen Microbiol.1986,132(6):1647-1656.
    [47] Smith K.L., Bradley L., Levy H.L.,etc. Inadequate laboratory technique for amino acidanalysis resulting in missed diagnoses of homocystinuria[J]. Clin Chem.1998,44(4):897-898.
    [48] Blaut M.,Clavel T. Metabolic diversity of the intestinal microbiota: Implications for healthand disease[J]. J Nutr.2007,137(3Suppl2):751S-755S.
    [49] Magee E.A., Richardson C.J., Hughes R.,etc. Contribution of dietary protein to sulfideproduction in the large intestine: An in vitro and a controlled feeding study in humans[J]. Am JClin Nutr.2000,72(6):1488-1494.
    [50]温俊,孙冬岩,孙笑非.肠道菌群的重要性及微生态制剂对肠道的调节作用[J].饲料研究.2010,2:70-72.
    [51] Younes H., Coudray C., Bellanger J.,etc. Effects of two fermentable carbohydrates (inulinand resistant starch) and their combination on calcium and magnesium balance in rats[J]. Br JNutr.2001,86(4):479-485.
    [52] Gibson G.R., Cummings J.H.,Macfarlane G.T. Competition for hydrogen betweensulphate-reducing bacteria and methanogenic bacteria from the human large intestine[J]. J ApplBacteriol.1988,65(3):241-247.
    [53] Gibson G.R., Macfarlane G.T.,Cummings J.H. Occurrence of sulphate-reducing bacteria inhuman faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in thelarge gut[J]. J Appl Bacteriol.1988,65(2):103-111.
    [54] Gibson G.R.,Roberfroid M.B. Dietary modulation of the human colonic microbiota:Introducing the concept of prebiotics[J]. J Nutr.1995,125(6):1401-1412.
    [55] Gibson G.R., Probert H.M., Loo J.V.,etc. Dietary modulation of the human colonicmicrobiota: Updating the concept of prebiotics[J]. Nutr Res Rev.2004,17(2):259-275.
    [56] Roberfroid M. Prebiotics: The concept revisited[J]. J Nutr.2007,137(3Suppl2):830S-837S.
    [57]孙英姿,张月霞,李佳璇.人肠道菌群失调的研究现状[J].中国误诊学杂志.2010,10:5313-5314.
    [58] Ott S.J., Musfeldt M., Wenderoth D.F.,etc. Reduction in diversity of the colonic mucosaassociated bacterial microflora in patients with active inflammatory bowel disease[J]. Gut.2004,53(5):685-693.
    [59] Manichanh C., Rigottier-Gois L., Bonnaud E.,etc. Reduced diversity of faecal microbiota incrohn's disease revealed by a metagenomic approach[J]. Gut.2006,55(2):205-211.
    [60] Loubinoux J., Bronowicki J.P., Pereira I.A.,etc. Sulfate-reducing bacteria in human feces andtheir association with inflammatory bowel diseases[J]. FEMS Microbiol Ecol.2002,40(2):107-112.
    [61] Bull T.J., McMinn E.J., Sidi-Boumedine K.,etc. Detection and verification of mycobacteriumavium subsp. Paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individualswith and without crohn's disease[J]. J Clin Microbiol.2003,41(7):2915-2923.
    [62] Bohr U.R., Glasbrenner B., Primus A.,etc. Identification of enterohepatic helicobacterspecies in patients suffering from inflammatory bowel disease[J]. J Clin Microbiol.2004,42(6):2766-2768.
    [63] Balli F., Bertolani P., Giberti G.,etc.[high-dose oral bacteria-therapy for chronic non-specificdiarrhea of infancy][J]. Pediatr Med Chir.1992,14(1):13-15.
    [64] Balamurugan R., Janardhan H.P., George S.,etc. Molecular studies of fecal anaerobiccommensal bacteria in acute diarrhea in children[J]. J Pediatr Gastroenterol Nutr.2008,46(5):514-519.
    [65]毕洪玲,张桂兰,何嫱.便秘患者肠道菌的调查[J].临床军医杂志.2003,31(3):82-84.
    [66] Moore W.E.,Moore L.H. Intestinal floras of populations that have a high risk of coloncancer[J]. Appl Environ Microbiol.1995,61(9):3202-3207.
    [67]魏华.不同外源扰动因素对肠道菌群组成结构影响的研究[博士论文].上海:上海交通大学.2008.
    [68] Bolognani F., Rumney C.J., Pool-Zobel B.L.,etc. Effect of lactobacilli, bifidobacteria andinulin on the formation of aberrant crypt foci in rats[J]. Eur J Nutr.2001,40(6):293-300.
    [69]侯晓华,张锦坤,代立人.慢性腹泻病人肠道菌群的研究[J].中华消化杂志.1990,10:22.
    [70]吕苏成,蒙昌金,冯桂香.小鼠饮食限量对其肠道菌群和寿命关系的影响[J].中国老年学杂志.2000,2.
    [71] Uauy R. Nonimmune system responses to dietary nucleotides[J]. J Nutr.1994,124(1Suppl):157S-159S.
    [72] Forchielli M.L.,Walker W.A. The role of gut-associated lymphoid tissues and mucosaldefence[J]. Br J Nutr.2005,93Suppl1:S41-48.
    [73] Bottcher M.F., Nordin E.K., Sandin A.,etc. Microflora-associated characteristics in faecesfrom allergic and nonallergic infants[J]. Clin Exp Allergy.2000,30(11):1590-1596.
    [74] Vael C., Nelen V., Verhulst S.L.,etc. Early intestinal bacteroides fragilis colonisation anddevelopment of asthma[J]. BMC Pulm Med.2008,8:19.
    [75]郑军.肠道菌群失调与脂肪肝患者血脂和丙氨酸氨基转移酶的变化研究[J].中国微生态学杂志.2007,19:161-162.
    [76] Tsukumo D.M., Carvalho B.M., Carvalho-Filho M.A.,etc. Translational research into gutmicrobiota: New horizons in obesity treatment[J]. Arq Bras Endocrinol Metabol.2009,53(2):139-144.
    [77]吴小平,贺杰.重视肠道菌群失调与肠外疾病关系的研究[J].国际消化病杂志.2012.
    [78] Dumas M.E., Barton R.H., Toye A.,etc. Metabolic profiling reveals a contribution of gutmicrobiota to fatty liver phenotype in insulin-resistant mice[J]. Proc Natl Acad Sci U S A.2006,103(33):12511-12516.
    [79]高玲娟,杨景云,刘柱.实验大鼠肝性病肠道菌群失调与血氨的关系[J].中国微生态学杂志.2005,17:105-106.
    [80]缪应雷,肖玉良,段丽平.寡聚核苷酸芯片检测溃疡性结肠炎患者基因表达谱的研究[J].中华消化杂志.2009,19:775-777.
    [81]张亚超,孙晓利,刘颖.肠道菌群失调对小鼠il-3,gm-gsf水平的影响[J].临床合理用药杂志.2009,2:5-6.
    [82] Daenen S., Goris H., de Boer F.,etc. Influence of high versus low intestinal concentration ofgram-negative bacteria and endotoxin on the susceptibility of murine myelopoiesis in bonemarrow and spleen to cytostatic treatment with ara-c[J]. Leuk Res.1992,16(10):985-991.
    [83] Hatheway C.L. Toxigenic clostridia[J]. Clin Microbiol Rev.1990,3(1):66-98.
    [84] Bolte E.R. Autism and clostridium tetani[J]. Med Hypotheses.1998,51(2):133-144.
    [85] Parracho H.M., Bingham M.O., Gibson G.R.,etc. Differences between the gut microflora ofchildren with autistic spectrum disorders and that of healthy children[J]. J Med Microbiol.2005,54(Pt10):987-991.
    [86] Langendijk P.S., Schut F., Jansen G.J.,etc. Quantitative fluorescence in situ hybridization ofbifidobacterium spp. With genus-specific16s rrna-targeted probes and its application in fecalsamples[J]. Appl Environ Microbiol.1995,61(8):3069-3075.
    [87] Olsen G.J., Lane D.J., Giovannoni S.J.,etc. Microbial ecology and evolution: A ribosomalrna approach[J]. Annu Rev Microbiol.1986,40:337-365.
    [88]金红芝,李堃宝.人肠道微生态系统的研究进展[J].自然杂志.2004,2.
    [89] Zoetendal E.G., Ben-Amor K., Akkermans A.D.,etc. DNA isolation protocols affect thedetection limit of pcr approaches of bacteria in samples from the human gastrointestinal tract[J].Syst Appl Microbiol.2001,24(3):405-410.
    [90] Muyzer G.,Smalla K. Application of denaturing gradient gel electrophoresis (dgge) andtemperature gradient gel electrophoresis (tgge) in microbial ecology[J]. Antonie VanLeeuwenhoek.1998,73(1):127-141.
    [91] Handelsman J. Metagenomics: Application of genomics to uncultured microorganisms[J].Microbiol. Mol. Biol. Rev.2004,68(4):669-685.
    [92] Gill S.R., Pop M., DeBoy R.T.,etc. Metagenomic analysis of the human distal gutmicrobiome[J]. Science.2006,312(5778):1355-1359.
    [93] Turnbaugh P.J., Hamady M., Yatsunenko T.,etc. A core gut microbiome in obese and leantwins[J]. Nature.2009,457(7228):480-484.
    [94] Margulies M., Egholm M., Altman W.E.,etc. Genome sequencing in microfabricatedhigh-density picolitre reactors[J]. Nature.2005,437(7057):376-380.
    [95] Sogin M.L., Morrison H.G., Huber J.A.,etc. Microbial diversity in the deep sea and theunderexplored "rare biosphere"[J]. Proc Natl Acad Sci U S A.2006,103(32):12115-12120.
    [96] Hayashi H., Sakamoto M., Kitahara M.,etc. Molecular analysis of fecal microbiota in elderlyindividuals using16s rdna library and t-rflp[J]. Microbiol Immunol.2003,47(8):557-570.
    [97] Nicholson J.K., Lindon J.C.,Holmes E.'Metabonomics': Understanding the metabolicresponses of living systems to pathophysiological stimuli via multivariate statistical analysis ofbiological nmr spectroscopic data[J]. Xenobiotica.1999,29(11):1181-1189.
    [98] Vaughan E.E., Heilig H.G., Ben-Amor K.,etc. Diversity, vitality and activities of intestinallactic acid bacteria and bifidobacteria assessed by molecular approaches[J]. FEMS Microbiol Rev.2005,29(3):477-490.
    [99] Walter J., Hertel C., Tannock G.W.,etc. Detection of lactobacillus, pediococcus, leuconostoc,and weissella species in human feces by using group-specific pcr primers and denaturing gradientgel electrophoresis[J]. Appl Environ Microbiol.2001,67(6):2578-2585.
    [100] Nicholson J.K., Holmes E.,Wilson I.D. Gut microorganisms, mammalian metabolism andpersonalized health care[J]. Nat Rev Microbiol.2005,3(5):431-438.
    [101]王晓艳.应激及其药物干预的代谢组学研究[博士论文].上海:上海交通大学.2007.
    [102] Nicholson J.K.,Wilson I.D. Opinion: Understanding 'global' systems biology:Metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov.2003,2(8):668-676.
    [103] Taylor J., King R.D., Altmann T.,etc. Application of metabolomics to plant genotypediscrimination using statistics and machine learning[J]. Bioinformatics.2002,18Suppl2:S241-248.
    [104]李昕.基于色谱质谱联用技术的出生缺陷代谢组学和金属组学的研究[博士论文].上海:上海交通大学.2009.
    [105]邱云平.基于色谱质谱联用技术的大肠癌代谢组学研究[博士论文].上海:上海交通大学.2008.
    [106] Wilson I.D., Plumb R., Granger J.,etc. Hplc-ms-based methods for the study ofmetabonomics[J]. Journal of chromatography.2005,817(1):67-76.
    [107] Wagner S., Scholz K., Sieber M.,etc. Tools in metabonomics: An integrated validationapproach for lc-ms metabolic profiling of mercapturic acids in human urine[J]. Analyticalchemistry.2007,79(7):2918-2926.
    [108] Williams R.E., Major H., Lock E.A.,etc. D-serine-induced nephrotoxicity: Ahplc-tof/ms-based metabonomics approach[J]. Toxicology.2005,207(2):179-190.
    [109] Plumb R.S., Stumpf C.L., Gorenstein M.V.,etc. Metabonomics: The use of electrospraymass spectrometry coupled to reversed-phase liquid chromatography shows potential for thescreening of rat urine in drug development[J]. Rapid Commun Mass Spectrom.2002,16(20):1991-1996.
    [110] Rezzi S., Ramadan Z., Fay L.B.,etc. Nutritional metabonomics: Applications andperspectives[J]. J Proteome Res.2007,6(2):513-525.
    [111] Lindon J.C., Holmes E.,Nicholson J.K. Metabonomics and its role in drug development anddisease diagnosis[J]. Expert Rev Mol Diagn.2004,4(2):189-199.
    [112] Wikoff W.R., Anfora A.T., Liu J.,etc. Metabolomics analysis reveals large effects of gutmicroflora on mammalian blood metabolites[J]. Proc. Natl. Acad. Sci. U. S. A.2009,106(10):3698-3703.
    [113] Nicholls A.W., Mortishire-Smith R.J.,Nicholson J.K. Nmr spectroscopic-basedmetabonomic studies of urinary metabolite variation in acclimatizing germ-free rats[J]. ChemicalResearch in Toxicology.2003,16(11):1395-1404.
    [114] Claus S.P., Tsang T.M., Wang Y.,etc. Systemic multicompartmental effects of the gutmicrobiome on mouse metabolic phenotypes[J]. Mol Syst Biol.2008,4:219.
    [115] Martin F.P.J., Dumas M.E., Wang Y.L.,etc. A top-down systems biology view ofmicrobiome-mammalian metabolic interactions in a mouse model[J]. Mol Syst Biol.2007,3:112.
    [116] Robosky L.C., Wells D.F., Egnash L.A.,etc. Metabonomic identification of two distinctphenotypes in sprague-dawley (crl:Cd(sd)) rats[J]. Toxicol Sci.2005,87(1):277-284.
    [117] Li M., Wang B.H., Zhang M.H.,etc. Symbiotic gut microbes modulate human metabolicphenotypes[J]. Proc Natl Acad Sci USA.2008,105(6):2117-2122.
    [118] Saric J., Wang Y., Li J.,etc. Species variation in the fecal metabolome gives insight intodifferential gastrointestinal function[J]. Journal of Proteome Research.2008,7(1):352-360.
    [119] Jansson J., Willing B., Lucio M.,etc. Metabolomics reveals metabolic biomarkers of crohn'sdisease[J]. Plos One.2009,4(7):e6386.
    [120] Bjerrum J.T., Nielsen O.H., Hao F.,etc. Metabonomics in ulcerative colitis: Diagnostics,biomarker identification, and insight into the pathophysiology[J]. J Proteome Res.9(2):954-962.
    [121] Martin F.P., Verdu E.F., Wang Y.,etc. Transgenomic metabolic interactions in a mousedisease model: Interactions of trichinella spiralis infection with dietary lactobacillus paracaseisupplementation[J]. J Proteome Res.2006,5(9):2185-2193.
    [122] Marchesi J.R., Holmes E., Khan F.,etc. Rapid and noninvasive metabonomiccharacterization of inflammatory bowel disease[J]. J Proteome Res.2007,6(2):546-551.
    [123] Bertini I., Calabro A., De Carli V.,etc. The metabonomic signature of celiac disease[J]. JProteome Res.2009,8(1):170-177.
    [124] Qiu Y., Cai G., Su M.,etc. Urinary metabonomic study on colorectal cancer[J]. J ProteomeRes.9(3):1627-1634.
    [125] Scanlan P.D., Shanahan F., Clune Y.,etc. Culture-independent analysis of the gut microbiotain colorectal cancer and polyposis[J]. Environ Microbiol.2008,10(3):789-798.
    [126] Calvani R., Miccheli A., Capuani G.,etc. Gut microbiome-derived metabolites characterizea peculiar obese urinary metabotype[J]. Int J Obes (Lond).34(6):1095-1098.
    [127] Waldram A., Holmes E., Wang Y.,etc. Top-down systems biology modeling of hostmetabotype-microbiome associations in obese rodents[J]. J Proteome Res.2009,8(5):2361-2375.
    [128] Holmes E., Loo R.L., Stamler J.,etc. Human metabolic phenotype diversity and itsassociation with diet and blood pressure[J]. Nature.2008,453(7193):396-400.
    [129] Wang Z., Klipfell E., Bennett B.J.,etc. Gut flora metabolism of phosphatidylcholinepromotes cardiovascular disease[J]. Nature.472(7341):57-63.
    [130] Jia W., Li H.K., Zhao L.P.,etc. Gut microbiota: A potential new territory for drugtargeting[J]. Nat Rev Drug Discovery.2008,7(2):123-129.
    [131] Sousa T., Paterson R., Moore V.,etc. The gastrointestinal microbiota as a site for thebiotransformation of drugs[J]. Int J Pharm.2008,363(1-2):1-25.
    [132] Swann J., Wang Y., Abecia L.,etc. Gut microbiome modulates the toxicity of hydrazine: Ametabonomic study[J]. Mol. Biosyst.2009,5(4):351-355.
    [133] Clayton T.A., Lindon J.C., Cloarec O.,etc. Pharmaco-metabonomic phenotyping andpersonalized drug treatment[J]. Nature.2006,440(7087):1073-1077.
    [134] Rezzi S., Ramadan Z., Martin F.P.,etc. Human metabolic phenotypes link directly tospecific dietary preferences in healthy individuals[J]. J Proteome Res.2007,6(11):4469-4477.
    [135] Stella C., Beckwith-Hall B., Cloarec O.,etc. Susceptibility of human metabolic phenotypesto dietary modulation[J]. J Proteome Res.2006,5(10):2780-2788.
    [136] Wang Y., Tang H., Nicholson J.K.,etc. A metabonomic strategy for the detection of themetabolic effects of chamomile (matricaria recutita l.) ingestion[J]. J Agric Food Chem.2005,53(2):191-196.
    [137] Martin F.P., Wang Y., Sprenger N.,etc. Probiotic modulation of symbiotic gut
    microbial-host metabolic interactions in a humanized microbiome mouse model[J]. Mol Syst Biol.
    2008,4:157.
    [1] Lederberg J. Infectious history[J]. Science.2000,288(5464):287-293.
    [2] Nicholson J.K., Holmes E.,Wilson I.D. Gut microorganisms, mammalian metabolism andpersonalized health care[J]. Nat Rev Microbiol.2005,3(5):431-438.
    [3] Nicholson J.K. Global systems biology, personalized medicine and molecular epidemiology[J].Mol Syst Biol.2006,2:52.
    [4] Martin F.P.J., Dumas M.E., Wang Y.L.,etc. A top-down systems biology view ofmicrobiome-mammalian metabolic interactions in a mouse model[J]. Mol Syst Biol.2007,3:112.
    [5] Wang X., Heazlewood S.P., Krause D.O.,etc. Molecular characterization of the microbial speciesthat colonize human ileal and colonic mucosa by using16s rdna sequence analysis[J]. J ApplMicrobiol.2003,95(3):508-520.
    [6] Mazmanian S.K., Liu C.H., Tzianabos A.O.,etc. An immunomodulatory molecule of symbioticbacteria directs maturation of the host immune system[J]. Cell.2005,122(1):107-118.
    [7] Jonsson P., Johansson A.I., Gullberg J.,etc. High-throughput data analysis for detecting andidentifying differences between samples in gc/ms-based metabolomic analyses[J]. Anal Chem.2005,77(17):5635-5642.
    [8] Zheng X.J., Xie G.X., Zhao A.H.,etc. The footprints of gut microbial-mammalianco-metabolism[J]. Journal of Proteome Research.2011,10(12):5512-5522.
    [9] Holmes E., Bonner F.W., Sweatman B.C.,etc. Nuclear-magnetic-resonance spectroscopy andpattern-recognition analysis of the biochemical processes associated with the progression of andrecovery from nephrotoxic lesions in the rat induced by mercury(ii) chloride and2-bromoethanamine[J]. Molecular Pharmacology.1992,42(5):922-930.
    [10] Li M., Wang B.H., Zhang M.H.,etc. Symbiotic gut microbes modulate human metabolicphenotypes[J]. Proc Natl Acad Sci USA.2008,105(6):2117-2122.
    [11] Nicholls A.W., Mortishire-Smith R.J.,Nicholson J.K. Nmr spectroscopic-based metabonomicstudies of urinary metabolite variation in acclimatizing germ-free rats[J]. Chemical Research inToxicology.2003,16(11):1395-1404.
    [12] Yap I.K.S., Li J.V., Saric J.,etc. Metabonomic and microbiological analysis of the dynamic effectof vancomycin-induced gut microbiota modification in the mouse[J]. Journal of Proteome Research.2008,7(9):3718-3728.
    [13] Shannon P., Markiel A., Ozier O.,etc. Cytoscape: A software environment for integrated modelsof biomolecular interaction networks[J]. Genome Res.2003,13(11):2498-2504.
    [14] Kikugawa K.,Kato T. Formation of a mutagenic diazoquinone by interaction of phenol withnitrite[J]. Food Chem Toxicol.1988,26(3):209-214.
    [15] Lee J., Jayaraman A.,Wood T.K. Indole is an inter-species biofilm signal mediated by sdia[J].BMC Microbiol.2007,7:42.
    [16] Lee J., Zhang X.S., Hegde M.,etc. Indole cell signaling occurs primarily at low temperatures inescherichia coli[J]. ISME J.2008,2(10):1007-1023.
    [17] Bansal T., Englert D., Lee J.,etc. Differential effects of epinephrine, norepinephrine, and indoleon escherichia coli o157:H7chemotaxis, colonization, and gene expression[J]. Infect Immun.2007,75(9):4597-4607.
    [18] Bansal T., Alaniz R.C., Wood T.K.,etc. The bacterial signal indole increases epithelial-celltight-junction resistance and attenuates indicators of inflammation[J]. Proc Natl Acad Sci USA.2010,107(1):228-233.
    [19] Botsford J.L.,Demoss R.D. Escherichia-coli tryptophanase in enteric environment[J]. J Bacteriol.1972,109(1):74.
    [20] Macfarlane G.T., Cummings J.H.,Allison C. Protein degradation by human intestinal bacteria[J].J Gen Microbiol.1986,132(6):1647-1656.
    [21] Arendt J., Bojkowski C., Franey C.,etc. Immunoassay of6-hydroxymelatonin sulfate in human-plasma and urine-abolition of the urinary24-hour rhythm with atenolo[J]. J Clin Endocrinol Metab.1985,60(6):1166-1173.
    [22] Diaz E., Ferrandez A., Prieto M.A.,etc. Biodegradation of aromatic compounds by escherichiacoli[J]. Microbiol. Mol. Biol. Rev.2001,65(4):523.
    [23] Harrison M.P., Jones D.V., Pickford R.J.,etc. Beta-hydroxybutyrate: A urinary marker ofimipenem induced nephrotoxicity in the cynomolgus monkey detected by high field1h nmrspectroscopy[J]. Biochem Pharmacol.1991,41(12):2045-2049.
    [24] Collins S.M.,Bercik P. The relationship between intestinal microbiota and the central nervoussystem in normal gastrointestinal function and disease[J]. Gastroenterol.2009,136(6):2003-2014.
    [25] Whiteley H.R. Fermentation of amino acids by micrococcus-aerogenes[J]. J Bacteriol.1957,74(3):324-330.
    [26] Blaut M.,Clavel T. Metabolic diversity of the intestinal microbiota: Implications for health anddisease[J]. J Nutr.2007,137(3Suppl2):751S-755S.
    [27] Magee E.A., Richardson C.J., Hughes R.,etc. Contribution of dietary protein to sulfideproduction in the large intestine: An in vitro and a controlled feeding study in humans[J]. Am J ClinNutr.2000,72(6):1488-1494.
    [28] Cummings J.H., Pomare E.W., Branch W.J.,etc. Short chain fatty acids in human large intestine,portal, hepatic and venous blood[J]. Gut.1987,28(10):1221-1227.
    [29] Cummings J.H., Beatty E.R., Kingman S.M.,etc. Digestion and physiological properties ofresistant starch in the human large bowel[J]. Br J Nutr.1996,75(5):733-747.
    [30] Gilbert E.R., Wong E.A.,Webb K.E. Board-invited review: Peptide absorption and utilization:Implications for animal nutrition and health[J]. J Anim Sci.2008,86(9):2135-2155.
    [31] Ziegler T.R., Fernandez-Estivariz C., Gu L.H.,etc. Distribution of the h+/peptide transporterpept1in human intestine: Up-regulated expression in the colonic mucosa of patients with short-bowelsyndrome[J]. Am J Clin Nutr.2002,75(5):922-930.
    [32] Adibi S.A., Fogel M.R.,Agrawal R.M. Comparison of free amino acid and dipeptide absorptionin the jejunum of sprue patients[J]. Gastroenterology.1974,67(4):586-591.
    [1] Cummings J.H. Short chain fatty acids in the human colon[J]. Gut.1981,22(9):763-779.
    [2] Macfarlane S.,Macfarlane G.T. Regulation of short-chain fatty acid production[J]. Proceedings ofthe Nutrition Society.2003,62(1):67-72.
    [3] Andoh A., Tsujikawa T.,Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon[J].Curr Pharm Des.2003,9(4):347-358.
    [4] Blottiere H.M., Buecher B., Galmiche J.P.,etc. Molecular analysis of the effect of short-chain fattyacids on intestinal cell proliferation[J]. Proceedings of the Nutrition Society.2003,62(1):101-106.
    [5] Sanderson I.R. Short chain fatty acid regulation of signaling genes expressed by the intestinalepithelium[J]. Journal of Nutrition.2004,134(9):2450S-2454S.
    [6] Herman M.A., She P.X., Peroni O.D.,etc. Adipose tissue branched chain amino acid (bcaa)metabolism modulates circulating bcaa levels[J]. Journal of Biological Chemistry.2010,285(15):11348-11356.
    [7] Layman D.K. The role of leucine in weight loss diets and glucose homeostasis[J]. J Nutr.2003,133(1):261S-267S.
    [8] Garlick P.J.,Grant I. Amino acid infusion increases the sensitivity of muscle protein synthesis invivo to insulin. Effect of branched-chain amino acids[J]. Biochem J.1988,254(2):579-584.
    [9] Schafer G.,Schauder P. Assessment of effects of amino acids and branched chain keto acids onleucine oxidation in human lymphocytes[J]. Scand J Clin Lab Invest.1988,48(6):531-536.
    [10] Koch B., Schroder M.T., Schafer G.,etc. Comparison between transport and degradation of leucineand glutamine by peripheral human lymphocytes exposed to concanavalin a[J]. J Cell Physiol.1990,143(1):94-99.
    [11] Vonk R.J., Priebe M., Meijer K.,etc. The interaction of short-chain fatty acids (scfa) with adiposetissue; relevance for systemic inflammation[J]. Gastroenterology.2011,140(5):S860-S860.
    [12] Wang T.J., Larson M.G., Vasan R.S.,etc. Metabolite profiles and the risk of developing diabetes[J].Nature Medicine.2011,17(4):448-U483.
    [13] Samuel B.S., Shaito A., Motoike T.,etc. Effects of the gut microbiota on host adiposity aremodulated by the short-chain fatty-acid binding g protein-coupled receptor, gpr41[J]. Proc. Natl. Acad.Sci. U. S. A.2008,105(43):16767-16772.
    [14] Newgard C.B., An J., Bain J.R.,etc. A branched-chain amino acid-related metabolic signature thatdifferentiates obese and lean humans and contributes to insulin resistance[J]. Cell Metabolism.2009,9(4):311-326.
    [15] Kotani A., Miyaguchi Y., Kohama M.,etc. Determination of short-chain fatty acids in rat andhuman feces by high-performance liquid chromatography with electrochemical detection[J]. Anal. Sci.2009,25(8):1007-1011.
    [16] Agrafiotou P., Sotiropoulos S.,Pappa-Louisi A. Direct rp-hplc determination of underivatizedamino acids with online dual uv absorbance, fluorescence, and multiple electrochemical detection[J]. J.Sep. Sci.2009,32(7):949-954.
    [17] Stein J., Kulemeier J., Lembcke B.,etc. Simple and rapid method for determination of short-chainfatty-acids in biological-material is by high-performance liquid-chromatography with ultravioletdetection[J]. Journal of Chromatography-Biomedical Applications.1992,576(1):53-61.
    [18] Bachmann C., Colombo J.P.,Beruter J. Short chian fatty-acids in plasma and brain-quantitative-determination by gas-chromatography[J]. Clin. Chim. Acta.1979,92(2):153-159.
    [19] Zhao G.H., Nyman M.,Jonsson J.A. Rapid determination of short-chain fatty acids in coloniccontents and faeces of humans and rats by acidified water-extraction and direct-injection gaschromatography[J]. Biomedical Chromatography.2006,20(8):674-682.
    [20] Arellano M., Jomard P., El Kaddouri S.,etc. Routine analysis of short-chain fatty acids foranaerobic bacteria identification using capillary electrophoresis and indirect ultraviolet detection[J].Journal of Chromatography B.2000,741(1):89-100.
    [21] Barbas C., Adeva N., Aguilar R.,etc. Quantitative determination of short-chain organic acids inurine by capillary electrophoresis[J]. Clin. Chem.1998,44(6):1340-1342.
    [22] Poinsot V., Carpene M.A., Bouajila J.,etc. Recent advances in amino acid analysis by capillaryelectrophoresis[J]. Electrophoresis.2012,33(1):14-35.
    [23] Heinrikson R.L.,Meredith S.C. Amino-acid-analysis by reverse-phase high-performanceliquid-chromatography-precolumn derivatization with phenylisothiocyanate[J]. AnalyticalBiochemistry.1984,136(1):65-74.
    [24] Miwa H., Hiyama C.,Yamamoto M. High-performance liquid-chromatography of short-chain andlong-chain fatty-acids as2-nitrophenylhydrazides[J]. Journal of Chromatography.1985,321(1):165-174.
    [25] Miwa H.,Yamamoto M. High-performance liquid-chromatographic analysis of serum short-chainfatty-acids by direct derivatization[J]. Journal of Chromatography-Biomedical Applications.1987,421(1):33-41.
    [26] Schiffels J., Baumann M.E.M.,Selmer T. Facile analysis of short-chain fatty acids as4-nitrophenylesters in complex anaerobic fermentation samples by high performance liquid chromatography[J].Journal of Chromatography A.2011,1218(34):5848-5851.
    [27] Horspool L.J.I.,McKellar Q.A. Determination of short-chain fatty acids in equine cecal liquor byion-exchange high-performance liquid-chromatography after solid-phase extraction[J]. BiomedicalChromatography.1991,5(5):202-206.
    [28] Wang L., Xu R., Hu B.,etc. Analysis of free amino acids in chinese teas and flower of tea plant byhigh performance liquid chromatography combined with solid-phase extraction[J]. Food Chemistry.2010,123(4):1259-1266.
    [29] Bianchi F., Dall'Asta M., Del Rio D.,etc. Development of a headspace solid-phase microextractiongas chromatography-mass spectrometric method for the determination of short-chain fatty acids fromintestinal fermentation[J]. Food Chemistry.2011,129(1):200-205.
    [30] Mills G.A., Walker V.,Mughal H. Headspace solid-phase microextraction with1-pyrenyldiazomethane in-fibre derivatisation for analysis of faecal short-chain fatty acids[J]. Journalof Chromatography B.1999,730(1):113-122.
    [31] Perez Olivero S.J.,Perez Trujillo J.P. A new method for the determination of short-chain fatty acidsfrom the aliphatic series in wines by headspace solid-phase microextraction-gas chromatography-iontrap mass spectrometry[J]. Analytica Chimica Acta.2011,696(1-2):59-66.
    [32] Husek P. Chloroformates in gas chromatography as general purpose derivatizing agents[J]. Journalof Chromatography B.1998,717(1-2):57-91.
    [33] Qiu Y., Su M., Liu Y.,etc. Application of ethyl chloroformate derivatization for gaschromatography-mass spectrometry based metabonomic profiling[J]. Analytica Chimica Acta.2007,583(2):277-283.
    [34] Tao X., Liu Y., Wang Y.,etc. Gc-ms with ethyl chloroformate derivatization for comprehensiveanalysis of metabolites in serum and its application to human uremia[J]. Analytical and BioanalyticalChemistry.2008,391(8):2881-2889.
    [35] Pan L., Qiu Y., Chen T.,etc. An optimized procedure for metabonomic analysis of rat liver tissueusing gas chromatography/time-of-flight mass spectrometry[J]. Journal of Pharmaceutical andBiomedical Analysis.2010,52(4):589-596.
    [36] Husek P. Simultaneous profile analysis of plasma amino and organic-acids by capillarygas-chromatography[J]. Journal of Chromatography B-Biomedical Applications.1995,669(2):352-357.
    [37] Zheng X., Su M., Qiu Y.,etc. Response to letter to the editor regarding "gc-ms with ethylchloroformate derivatization for comprehensive analysis of metabolites in serum and its application tohuman uremia"[J]. Analytical and Bioannalytical Chemistry.2012:DOI:10.1007/s00216-00012-06047-y.
    [1] Hofmann A.F. Chemistry and enterohepatic circulation of bile acids[J]. Hepatology.1984,4(5Suppl):4S-14S.
    [2] Zampa A., Silvi S., Fabiani R.,etc. Effects of different digestible carbohydrates on bile acidmetabolism and scfa production by human gut micro-flora grown in an in vitro semi-continuousculture[J]. Anaerobe.2004,10(1):19-26.
    [3] Hofmann A.F.,Hagey L.R. Bile acids: Chemistry, pathochemistry, biology, pathobiology, andtherapeutics[J]. Cellular and Molecular Life Sciences.2008,65(16):2461-2483.
    [4] Grundy S.M., Ahrens E.H., Jr.,Salen G. Interruption of the enterohepatic circulation of bile acids inman: Comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism[J]. J LabClin Med.1971,78(1):94-121.
    [5] Hofmann A.F. The enterohepatic circulation of bile acids in man[J]. Wis Med J.1976,75(5):35-40.
    [6] Hofmann A.F. The enterohepatic circulation of conjugated bile acids in healthy man: Quantitativedescription and functions[J]. Expos Annu Biochim Med.1977,33:69-86.
    [7]聂和青,张亚飞.胆汁酸代谢[J].肝脏.2004,4.
    [8] Gallaher C.M., Munion J., Hesslink R., Jr.,etc. Cholesterol reduction by glucomannan and chitosanis mediated by changes in cholesterol absorption and bile acid and fat excretion in rats[J]. J Nutr.2000,130(11):2753-2759.
    [9] Jungst D., Lang T., Huber P.,etc. Effect of phospholipids and bile acids on cholesterol nucleationtime and vesicular/micellar cholesterol in gallbladder bile of patients with cholesterol stones[J]. J LipidRes.1993,34(9):1457-1464.
    [10] Jazrawi R.P., Pigozzi M.G., Galatola G.,etc. Optimum bile acid treatment for rapid gall stonedissolution[J]. Gut.1992,33(3):381-386.
    [11] Houten S.M., Watanabe M.,Auwerx J. Endocrine functions of bile acids[J]. EMBO J.2006,25(7):1419-1425.
    [12]李灏,姜颖,贺福初.胆汁酸功能及其与肠道细菌相互关系[J].中国生物化学与分子生物学报.2007,23(10):817-822.
    [13] Qiao L., Han S.I., Fang Y.,etc. Bile acid regulation of c/ebpbeta, creb, and c-jun function, via theextracellular signal-regulated kinase and c-jun nh2-terminal kinase pathways, modulates the apoptoticresponse of hepatocytes[J]. Mol Cell Biol.2003,23(9):3052-3066.
    [14] Kawamata Y., Fujii R., Hosoya M.,etc. A g protein-coupled receptor responsive to bile acids[J]. JBiol Chem.2003,278(11):9435-9440.
    [15] Parks D.J., Blanchard S.G., Bledsoe R.K.,etc. Bile acids: Natural ligands for an orphan nuclearreceptor[J]. Science.1999,284(5418):1365-1368.
    [16]白明晨.胆汁酸测定在临床检测中的意义[J].第三届华北三省两市检验医学学术会议.2006.
    [17] Simmonds W.J., Korman M.G., Go V.L.,etc. Radioimmunoassay of conjugated cholyl bile acids inserum[J]. Gastroenterology.1973,65(5):705-711.
    [18] Samuelson K.,Thomassen P.A. Radioimmunoassay of serum bile acids in normal pregnancy and inrecurrent cholestasis of pregnancy[J]. Acta Obstet Gynecol Scand.1980,59(5):417-420.
    [19] Ottoa M., Snejdarkovaa M.,Rehaka M. Hydrogen peroxide/oxygen biosensors based on supportedphospholipid bilayer[J]. Analytical Letters.1992,25(4):653-662.
    [20] Boggs J.M. Lipid intermolecular hydrogen bonding: Influence on structural organization andmembrane function[J]. Biochim Biophys Acta.1987,906(3):353-404.
    [21] Ottova A.-L.,Ti H.T. Bilayer lipid membranes: An experimental system for biomolecularelectronic devices development[J]. Progress in Surface Science.1992,41(4):337-445.
    [22] Roda A., Piazza F.,Baraldini M. Separation techniques for bile salts analysis[J]. J Chromatogr BBiomed Sci Appl.1998,717(1-2):263-278.
    [23] Tagliacozzi D., Mozzi A.F., Casetta B.,etc. Quantitative analysis of bile acids in human plasma byliquid chromatography-electrospray tandem mass spectrometry: A simple and rapid one-step method[J].Clin Chem Lab Med.2003,41(12):1633-1641.
    [24] Alnouti Y., Csanaky I.L.,Klaassen C.D. Quantitative-profiling of bile acids and their conjugates inmouse liver, bile, plasma, and urine using lc-ms/ms[J]. Journal of Chromatography B-AnalyticalTechnologies in the Biomedical and Life Sciences.2008,873(2):209-217.
    [25] Ando M., Kaneko T., Watanabe R.,etc. High sensitive analysis of rat serum bile acids by liquidchromatography/electrospray ionization tandem mass spectrometry[J]. Journal of Pharmaceutical andBiomedical Analysis.2006,40(5):1179-1186.
    [26] Bobeldijk I., Hekman M., de Vries-van der Weij J.,etc. Quantitative profiling of bile acids inbiofluids and tissues based on accurate mass high resolution lc-ff-ms: Compound class targeting in ametabolomics workflow[J]. Journal of Chromatography B-Analytical Technologies in the Biomedicaland Life Sciences.2008,871(2):306-313.
    [27] Griffiths W.J.,Sjovall J. Bile acids: Analysis in biological fluids and tissues[J]. Journal of LipidResearch.2010,51(1):23-41.
    [28] Honda A., Yamashita K., Numazawa M.,etc. Highly sensitive quantification of7alpha-hydroxy-4-cholesten-3-one in human serum by lc-esi-ms/ms[J]. Journal of Lipid Research.2007,48(2):458-464.
    [29] Huang J., Bathena S.P.R., Csanaky I.L.,etc. Simultaneous characterization of bile acids and theirsulfate metabolites in mouse liver, plasma, bile, and urine using lc-ms/ms[J]. Journal of Pharmaceuticaland Biomedical Analysis.2011,55(5):1111-1119.
    [30] Trottier J., Bialek A., Caron P.,etc. Profiling circulating and urinary bile acids in patients withbiliary obstruction before and after biliary stenting[J]. Plos One.2011,6(7).
    [31] Trottier J., Bialek A., Caron P.,etc. Metabolomic profiling of17bile acids in serum from patientswith primary biliary cirrhosis and primary sclerosing cholangitis: A pilot study[J]. Digestive and LiverDisease.2012,44(4):303-310.
    [32] Nakashima T., Sakamoto Y., Inaba K.,etc. A paucity of unusual trihydroxy bile acids in the urine ofpatients with severe liver diseases[J]. Hepatology.1999,29(5):1518-1522.
    [33] Trottier J., Bialek A., Caron P.,etc. Metabolomic profiling of17bile acids in serum from patientswith primary biliary cirrhosis and primary sclerosing cholangitis: A pilot study[J]. Dig Liver Dis.2012,44(4):303-310.
    [34] Steiner C., von Eckardstein A.,Rentsch K.M. Quantification of the15major human bile acids andtheir precursor7alpha-hydroxy-4-cholesten-3-one in serum by liquid chromatography-tandem massspectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2010,878(28):2870-2880.
    [35] Scherer M., Gnewuch C., Schmitz G.,etc. Rapid quantification of bile acids and their conjugates inserum by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr B Analyt TechnolBiomed Life Sci.2009,877(30):3920-3925.
    [36] Ye L., Liu S., Wang M.,etc. High-performance liquid chromatography-tandem mass spectrometryfor the analysis of bile acid profiles in serum of women with intrahepatic cholestasis of pregnancy[J]. JChromatogr B Analyt Technol Biomed Life Sci.2007,860(1):10-17.
    [37] Yang L., Xiong A., He Y.,etc. Bile acids metabonomic study on the ccl4-andalpha-naphthylisothiocyanate-induced animal models: Quantitative analysis of22bile acids byultraperformance liquid chromatography-mass spectrometry[J]. Chem Res Toxicol.2008,21(12):2280-2288.
    [38] McRae M., Rezl N.L., Bridges A.S.,etc. Plasma bile acid concentrations in patients with humanimmunodeficiency virus infection receiving protease inhibitor therapy: Possible implications forhepatotoxicity[J]. Pharmacotherapy.2010,30(1):17-24.
    [39] Burkard I., von Eckardstein A.,Rentsch K.M. Differentiated quantification of human bile acids inserum by high-performance liquid chromatography-tandem mass spectrometry[J]. Journal ofChromatography B-Analytical Technologies in the Biomedical and Life Sciences.2005,826(1-2):147-159.
    [40] Aoki M., Konya Y., Takagaki T.,etc. Metabolomic investigation of cholestasis in a rat model usingultra-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications inMass Spectrometry.2011,25(13):1847-1852.
    [41] Xiang X., Han Y., Neuvonen M.,etc. High performance liquid chromatography-tandem massspectrometry for the determination of bile acid concentrations in human plasma[J]. Journal ofChromatography B-Analytical Technologies in the Biomedical and Life Sciences.2010,878(1):51-60.
    [42] Tessier E., Neirinck L.,Zhu Z. High-performance liquid chromatographic mass spectrometricmethod for the determination of ursodeoxycholic acid and its glycine and taurine conjugates in humanplasma[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2003,798(2):295-302.
    [1] Mackie R.I., Sghir A.,Gaskins H.R. Developmental microbial ecology of the neonatalgastrointestinal tract[J]. Am J Clin Nutr.1999,69(5):1035S-1045S.
    [2]申剑.寡果糖对人源菌群仔猪肠道菌群结构和宿主代谢的影响[博士论文].上海:上海交通大学.2008.
    [3] Wang Y., Tang H., Holmes E.,etc. Biochemical characterization of rat intestine development usinghigh-resolution magic-angle-spinning1h nmr spectroscopy and multivariate data analysis[J]. JProteome Res.2005,4(4):1324-1329.
    [4] Wang X.Y., Su M.M., Qiu Y.P.,etc. Metabolic regulatory network alterations in response to acutecold stress and ginsenoside intervention[J]. Journal of Proteome Research.2007,6(9):3449-3455.
    [5] Wang Y., Cloarec O., Tang H.,etc. Magic angle spinning nmr and1h-31p heteronuclear statisticaltotal correlation spectroscopy of intact human gut biopsies[J]. Anal Chem.2008,80(4):1058-1066.
    [6] Bates M.D., Erwin C.R., Sanford L.P.,etc. Novel genes and functional relationships in the adultmouse gastrointestinal tract, identified by microarray analysis[J]. Gastroenterology.2002,122(5):1467-1482.
    [7] Tian Y., Zhang L., Wang Y.,etc. Age-related topographical metabolic signatures for the ratgastrointestinal contents[J]. J Proteome Res.11(2):1397-1411.
    [8] Topping D.L.,Clifton P.M. Short-chain fatty acids and human colonic function: Roles of resistantstarch and nonstarch polysaccharides[J]. Physiological Reviews.2001,81(3):1031-1064.
    [9] Macfarlane G.T., Gibson G.R.,Cummings J.H. Comparison of fermentation reactions in differentregions of the human colon[J]. J Appl Bacteriol.1992,72(1):57-64.
    [10] Cummings J.H., Pomare E.W., Branch W.J.,etc. Short chain fatty acids in human large intestine,portal, hepatic and venous blood[J]. Gut.1987,28(10):1221-1227.
    [11] Degregorio R.M., Tucker R.E., Mitchell G.E.,etc. Acetate and propionate production in thececum and proximal colon of lambs[J]. Journal of Animal Science.1984,58(1):203-207.
    [12] Bourriaud C., Robins R.J., Martin L.,etc. Lactate is mainly fermented to butyrate by humanintestinal microfloras but inter-individual variation is evident[J]. Journal of Applied Microbiology.2005,99(1):201-212.
    [13] Cummings J.H.,Macfarlane G.T. The control and consequences of bacterial fermentation in thehuman colon[J]. J Appl Bacteriol.1991,70(6):443-459.
    [14] Wong J.M.W., de Souza R., Kendall C.W.C.,etc. Colonic health: Fermentation and short chainfatty acids[J]. Journal of Clinical Gastroenterology.2006,40(3):235-243.
    [15] Gibson G.R.,Wang X. Regulatory effects of bifidobacteria on the growth of other colonicbacteria[J]. J Appl Bacteriol.1994,77(4):412-420.
    [16] Hinton A., Jr.,Hume M.E. Synergism of lactate and succinate as metabolites utilized byveillonella to inhibit the growth of salmonella typhimurium and salmonella enteritidis in vitro[J].Avian Dis.1995,39(2):309-316.
    [17] Nigatu A.,Gashe B.A. Inhibition of spoilage and food-borne pathogens by lactic acid bacteriaisolated from fermenting tef (eragrostis tef) dough[J]. Ethiop Med J.1994,32(4):223-229.
    [18] Presser K.A., Ratkowsky D.A.,Ross T. Modelling the growth rate of escherichia coli as afunction of ph and lactic acid concentration[J]. Appl Environ Microbiol.1997,63(6):2355-2360.
    [19] Gibson G.R., Probert H.M., Loo J.V.,etc. Dietary modulation of the human colonic microbiota:Updating the concept of prebiotics[J]. Nutr Res Rev.2004,17(2):259-275.
    [20] Scholz-Ahrens K.E.,Schrezenmeir J. Inulin and oligofructose and mineral metabolism: Theevidence from animal trials[J]. J Nutr.2007,137(11Suppl):2513S-2523S.
    [21] Abrams S.A., Griffin I.J., Hawthorne K.M.,etc. A combination of prebiotic short-and long-chaininulin-type fructans enhances calcium absorption and bone mineralization in young adolescents[J].Am J Clin Nutr.2005,82(2):471-476.
    [22] Chacko A.,Cummings J.H. Nitrogen losses from the human small bowel: Obligatory losses andthe effect of physical form of food[J]. Gut.1988,29(6):809-815.
    [23] Adibi S.A.,Mercer D.W. Protein digestion in human intestine as reflected in luminal, mucosal,and plasma amino acid concentrations after meals[J]. J Clin Invest.1973,52(7):1586-1594.
    [24] Summerskill W.H.,Wolpert E. Ammonia metabolism in the gut[J]. Am J Clin Nutr.1970,23(5):633-639.
    [25] Martin F.P.J., Wang Y., Yap I.K.S.,etc. Topographical variation in murine intestinal metabolicprofiles in relation to microbiome speciation and functional ecological activity[J]. Journal ofProteome Research.2009,8(7):3464-3474.
    [26] Metges C.C.,Petzke K.J. Utilization of essential amino acids synthesized in the intestinalmicrobiota of monogastric mammals[J]. British Journal of Nutrition.2005,94(5):621-622.
    [27] Macfarlane G.T., Cummings J.H.,Allison C. Protein degradation by human intestinal bacteria[J].J Gen Microbiol.1986,132(6):1647-1656.
    [28] Floch M.H. Bile salts, intestinal microflora and enterohepatic circulation[J]. Digestive and LiverDisease.2002,34:S54-S57.
    [29] Houten S.M., Volle D.H., Cummins C.L.,etc. In vivo imaging of farnesoid x receptor activityreveals the ileum as the primary bile acid signaling tissue[J]. Molecular Endocrinology.2007,21(6):1312-1323.
    [30] Staggers J.E., Frost S.C.,Wells M.A. Studies on fat digestion, absorption, and transport in thesuckling rat. Iii. Composition of bile and evidence for enterohepatic circulation of bile salts[J]. J LipidRes.1982,23(8):1143-1151.
    [31] Ogata Y., Nishi M., Nakayama H.,etc. Role of bile in intestinal barrier function and its inhibitoryeffect on bacterial translocation in obstructive jaundice in rats[J]. J Surg Res.2003,115(1):18-23.
    [32] Chace D.H. Mass spectrometry in the clinical laboratory[J]. Chem Rev.2001,101(2):445-477.
    [33] Ijare O.B., Somashekar B.S., Gowda G.A.,etc. Quantification of glycine and taurine conjugatedbile acids in human bile using1h nmr spectroscopy[J]. Magn Reson Med.2005,53(6):1441-1446.
    [34] Pelech S.L.,Vance D.E. Regulation of phosphatidylcholine biosynthesis[J]. Biochimica EtBiophysica Acta.1984,779(2):217-251.
    [35] Parthasa.S, Subbaiah P.V.,Ganguly J. Mechanism of intestinal-absorption of phosphatidylcholinein rats[J]. Biochemistry.1974,140(3):503-508.
    [36] Zeisel S.H., Dacosta K.A., Youssef M.,etc. Conversion of dietary choline to trimethylamine anddimethylamine in rats-dose-response relationship[J]. J. Nutr.1989,119(5):800-804.
    [37] Wang Z., Klipfell E., Bennett B.J.,etc. Gut flora metabolism of phosphatidylcholine promotescardiovascular disease[J]. Nature.2011,472(7341):57-63.
    [38] Yancey P.H., Clark M.E., Hand S.C.,etc. Living with water-stress-evolution of osmolytesystems[J]. Science.1982,217(4566):1214-1222.
    [39] Huxtable R.J. Physiological actions of taurine[J]. Physiological Reviews.1992,72(1):101-163.
    [40] Hagen T.M., Wierzbicka G.T., Bowman B.B.,etc. Fate of dietary glutathione-disposition in thegastrointestinal-tract[J]. American Journal of Physiology.1990,259(4):G530-G535.
    [41] Loguercio C.,Di Pierro M. The role of glutathione in the gastrointestinal tract: A review[J]. Ital. J.Gastroenterol. Hepatol.1999,31(5):401-407.
    [42] Martin F.-P.J., Wang Y., Sprenger N.,etc. Effects of probiotic lactobacillus paracasei treatment onthe host gut tissue metabolic profiles probed via magic-angle-spinning nmr spectroscopy[J]. Journalof Proteome Research.2007,6(4):1471-1481.
    [1] Brown C.A., Jeong K.S., Poppenga R.H.,etc. Outbreaks of renal failure associated with melamineand cyanuric acid in dogs and cats in2004and2007[J]. J. Vet. Diagn. Invest.2007,19(5):525-531.
    [2]黄琼.三聚氰胺的毒理学研究进展[J].毒理学杂志.2008,22(6):481-483.
    [3] Cianciolo R.E., Bischoff K., Ebel J.G.,etc. Clinicopathologic, histologic, and toxicologic findings in70cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid[J]. J Am VetMed Assoc.2008,233(5):729-737.
    [4] Thompson M.E., Lewin-Smith M.R., Kalasinsky V.F.,etc. Characterization of melamine-containingand calcium oxalate crystals in three dogs with suspected pet food-induced nephrotoxicosis[J]. VetPathol.2008,45(3):417-426.
    [5] Xin H.,Stone R. Tainted milk scandal chinese probe unmasks high-tech adulteration withmelamine[J]. Science.2008,322(5906):1310-1311.
    [6] Liu J.M., Ren A.G., Yang L.,etc. Urinary tract abnormalities in chinese rural children whoconsumed melamine-contaminated dairy products: A population-based screening and follow-upstudy[J]. Can. Med. Asso. J.2010,182(5):439-443.
    [7] Mcdonald S. Nearly53,000chinese children sick from milk[J]. Associated Press.2008.
    [8] Macartney J. China baby milk scandal spreads as sick toll rises to13,000[J]. The Times.2008.
    [9] Lenz E.M., Williams R.E., Sidaway J.,etc. The application of microbore uplc/oa-tof-ms and1h nmrspectroscopy to the metabonomic analysis of rat urine following the intravenous administration ofpravastatin[J]. J Pharm Biomed Anal.2007,44(4):845-852.
    [10] WHO. Melamine and cyanuric acid: Toxicity, preliminary risk assessment and guidance on levelsin food[J].25September2008.
    [11] Zhe Z.H., L. Melamine found in moremilk, http://www.Chinadaily.Com.Cn/china/2008-09/17/content_7032353.Htm[J]. Sept17,2008.
    [12] Lawrence D.S., Jiang T.,Levett M. Self-assembling supramolecular complexes[J]. Chem. Rev.1995,95(6):2229-2260.
    [13] Seto C.T.,Whitesides G.M. Molecular self-assembly through hydrogen-bonding-supramolecularaggregates based on the cyanuric acid. Melamine lattice[J]. J. Am. Chem. Soc.1993,115(3):905-916.
    [14] Anonymous. Poison pet food woes seem to hit cats harder[J]. USA Today.2007.
    [15] Reimschuessel R., Gieseker C.M., Miller R.A.,etc. Evaluation of the renal effects of experimentalfeeding of melamine and cyanuric acid to fish and pigs[J]. Am. J. Vet. Res.2008,69(9):1217-1228.
    [16] Puschner B.,Reimschuessel R. Toxicosis caused by melamine and cyanuric acid in dogs and cats:Uncovering the mystery and subsequent global implications[J]. Clin Lab Med.2011,31(1):181-199.
    [17] Osborne C.A., Lulich J.P., Ulrich L.K.,etc. Melamine and cyanuric acid-induced crystalluria,uroliths, and nephrotoxicity in dogs and cats[J]. Vet Clin North Am Small Anim Pract.2009,39(1):1-14.
    [18] Puschner B., Poppenga R.H., Lowenstine L.J.,etc. Assessment of melamine and cyanuric acidtoxicity in cats[J]. J. Vet. Diag. Invest.2007,19(6):616-624.
    [19] Dobson R.L., Motlagh S., Quijano M.,etc. Identification and characterization of toxicity ofcontaminants in pet food leading to an outbreak of renal toxicity in cats and dogs[J]. Toxicol Sci.2008,106(1):251-262.
    [20] Kobayashi T., Okada A., Fujii Y.,etc. The mechanism of renal stone formation and renal failureinduced by administration of melamine and cyanuric acid[J]. Urol. Res.2010,38(2):117-125.
    [21] Xie G.X., Zheng X.J., Qi X.,etc. Metabonomic evaluation of melamine-induced acute renaltoxicity in rats[J]. Journal of Proteome Research.2010,9(1):125-133.
    [22] Chen K.C., Liao C.W., Cheng F.P.,etc. Evaluation of subchronic toxicity of pet food contaminatedwith melamine and cyanuric acid in rats[J]. Toxicol Pathol.2009,37(7):959-968.
    [23] Kim C.W., Yun J.W., Bae I.H.,etc. Determination of spatial distribution of melamine-cyanuric acidcrystals in rat kidney tissue by histology and imaging matrix-assisted laser desorption/ionizationquadrupole time-of-flight mass spectrometry[J]. Chem Res Toxicol.2010,23(1):220-227.
    [24] Peng J., Li D., Chan Y.K.,etc. Effects of water uptake on melamine renal stone formation inmice[J]. Nephrol Dial Transplant.2012,27(6):2225-2231.
    [25] Reimschuessel R., Gieseker C.M., Miller R.A.,etc. Evaluation of the renal effects of experimentalfeeding of melamine and cyanuric acid to fish and pigs[J]. Am J Vet Res.2008,69(9):1217-1228.
    [26] Brown C.A., Jeong K.S., Poppenga R.H.,etc. Outbreaks of renal failure associated with melamineand cyanuric acid in dogs and cats in2004and2007[J]. Journal of Veterinary Diagnostic Investigation.2007,19(5):525-531.
    [27] Puschner B.,Reimschuessel R. Toxicosis caused by melamine and cyanuric acid in dogs and cats:Uncovering the mystery and subsequent global implications[J]. Clin. Lab. Med.2011,31(1):181-199.
    [28] Stine C.B., Reimschuessel R., Gieseker C.M.,etc. A no observable adverse effects level (noael) forpigs fed melamine and cyanuric acid[J]. Regul. Toxicol. Pharmacol.2011,60(3):363-372.
    [29] Jutzi K., Cook A.M.,Hutter R. The degradative pathway of the s-triazine melamine-the steps ofring cleavage[J]. Biochem. J.1982,208(3):679-684.
    [30] Shelton D.R., Karns J.S., McCarty G.W.,etc. Metabolism of melamine by klebsiella terragena[J].Appl. Environ. Microbiol.1997,63(7):2832-2835.
    [31] Wackett L.P., Sadowsky M.J., Martinez B.,etc. Biodegradation of atrazine and related s-triazinecompounds: From enzymes to field studies[J]. Appl. Microbiol. Biotechnol.2002,58(1):39-45.
    [32] Panesar N.S., Chan K.W., Lo W.S.,etc. Co-contamination, but not mammalian cell conversion ofmelamine to cyanuric acid the likely cause of melamine-cyanurate nephrolithiasis[J]. Clin. Chim. Acta.2010,411(21-22):1830-1831.
    [33] Crockford D.J., Holmes E., Lindon J.C.,etc. Statistical heterospectroscopy, an approach to theintegrated analysis of nmr and uplc-ms data sets: Application in metabonomic toxicology studies[J].Anal Chem.2006,78(2):363-371.
    [34] Xie G.X., Ye M., Wang Y.G.,etc. Characterization of pu-erh tea using chemical and metabolicprofiling approaches[J]. J. Agric. Food Chem.2009,57(8):3046-3054.
    [35] Ni Y., Su M.M., Qiu Y.P.,etc. Metabolic profiling using combined gc-ms and lc-ms provides asystems understanding of aristolochic acid-induced nephrotoxicity in rat[J]. Febs Letters.2007,581(4):707-711.
    [36] Sou Ohkawara H.F., Kousuke Nagashima, Narito Asanuma, and Tsuneo Hino. Oral administrationof butyrivibrio fbrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant cryptfoci in the colon and rectum of mice[J]. J. Nutr.2005,135:2878-2883.
    [37] Reimschuessel R., Evans E.R., Stine C.B.,etc. Renal crystal formation after combined orsequential oral administration of melamine and cyanuric acid[J]. Food Chem. Toxicol.2010,48(10):2898-2906.
    [38] Jacob C.C., Reimschuessel R., Von Tungeln L.S.,etc. Dose-response assessment of nephrotoxicityfrom a7-day combined exposure to melamine and cyanuric acid in f344rats[J]. Toxicol. Sci.2011,119(2):391-397.
    [39] Filigenzi M.S., Puschner B., Aston L.S.,etc. Diagnostic determination of melamine and relatedcompounds in kidney tissue by liquid chromatography/tandem mass spectrometry[J]. J. Agric. Food.Chem.2008,56(17):7593-7599.
    [40] Wikoff W.R., Anfora A.T., Liu J.,etc. Metabolomics analysis reveals large effects of gut microfloraon mammalian blood metabolites[J]. Proc. Natl. Acad. Sci. U. S. A.2009,106(10):3698-3703.
    [41] Nicholson J.K., Holmes E.,Wilson I.D. Gut microorganisms, mammalian metabolism andpersonalized health care[J]. Nat. Rev. Microbiol.2005,3(5):431-438.
    [42] Swann J., Wang Y., Abecia L.,etc. Gut microbiome modulates the toxicity of hydrazine: Ametabonomic study[J]. Mol. Biosyst.2009,5(4):351-355.
    [43] Coen M., Goldfain-Blanc F., Rolland-Valognes G.,etc. Pharmacometabonomic investigation ofdynamic metabolic phenotypes associated with variability in response to galactosaminehepatotoxicity[J]. Journal of Proteome Research.2012,11(4):2427-2440.
    [44] Cook A.M.,Hutter R. S-triazines as nitrogen-surces for bacteria[J]. J. Agric. Food Chem.1981,29(6):1135-1143.
    [45] Zimbro M.J., Power D.A., Miller S.M.,etc. Difco&bbl manual-manual of microbiologicalculture media[J]. Second Edition.
    [46] Cook A.M.,Hutter R. Deethylsimanie-bacterial dechlorination, deamination, and completedegradation[J]. J. Agric. Food Chem.1984,32(3):581-585.
    [47] Sanchez M., Garbi C., Martinez-Alvarez R.,etc. Klebsiella planticola strain dsz mineralizessimazine: Physiological adaptations involved in the process[J]. Appl. Microbiol. Biotechnol.2005,66(5):589-596.
    [48] Illing H.P. Techniques for microfloral and associated metabolic studies in relation to the absorptionand enterohepatic circulation of drugs[J]. Xenobiotica.1981,11(12):815-830.
    [49] Boxenbaum H.G., Bekersky I., Jack M.L.,etc. Influence of gut microflora on bioavailability[J].Drug Metab Rev.1979,9(2):259-279.
    [50] Rowland I.R. Factors affecting metabolic activity of the intestinal microflora[J]. Drug Metab Rev.1988,19(3-4):243-261.
    [51] Caldwell J.,Hawksworth G.M. The demethylation of methamphetamine by intestinal microflora[J].J Pharm Pharmacol.1973,25(5):422-424.
    [52] Woolley J.L., Jr.,Sigel C.W. The role of dietary nitrate and nitrite in the reductive deamination ofsulfadiazine by the rat, guinea pig, and neonatal calf[J]. Life Sci.1982,30(25):2229-2234.
    [53] Gardana C., Simonetti P., Canzi E.,etc. Metabolism of stevioside and rebaudioside a from steviarebaudiana extracts by human microflora[J]. J Agric Food Chem.2003,51(22):6618-6622.
    [54] Chourasia M.K.,Jain S.K. Pharmaceutical approaches to colon targeted drug delivery systems[J]. JPharm Pharm Sci.2003,6(1):33-66.
    [55] Bakke J.E.,Gustafsson J.A. Role of intestinal flora in metabolism of agrochemicals conjugatedwith glutathione[J]. Xenobiotica.1986,16(10-11):1047-1056.
    [56] WHO. Toxicological and health aspects of melamine and cyanuric acid[J].2009.
    [57] Tolleson W. Renal toxicity of pet foods contaminated with melamine and related compounds[J].Proceedings of the235th National Meeting of the American Chemical Society.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700