用户名: 密码: 验证码:
304不锈钢阀体多向温挤压成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
304不锈钢以其优异的化学稳定性和良好的加工性,广泛应用于军工、核电、石油化工等领域的重要构件,尤其在耐腐蚀性要求高的舰船、核反应堆等设备中的储存、冷却传输系统中应用广泛。该材料为奥氏体组织,铸态强度低且不能通过热处理强化,无法满足高温高压系统构件的使用需求,严重制约了其应用范围。塑性加工能提高强度,但变形的方式和变形程度对304合金金相组织和力学性能影响异常剧烈。本文研究了三通阀体构件多向成形过程金属的变形规律,通过对304合金变形温度、变形方向、变形速度及变形均匀程度的控制,利用多向柔性加载技术控制零件各部位交替变形,得到综合性能优良的变形组织,从形变强化和细晶强化两方面提高了材料的力学性能。
     研究304合金流变应力随变形温度及变形速率的变化规律,建立温变形状态下流变应力计算模型;从相变热力学角度讨论塑性变形能和弹性畸变能对形变诱发马氏体形核功的影响。研究表明304不锈钢在200℃左右挤压变形时真应变量可达到1.2以上而不产生变形缺陷,变形过程中不产生马氏体相变,也没有第二相析出,变形组织为单一奥氏体组织,且变形抗力比室温变形有较大程度的减小。
     针对三通阀体多向主动加载条件下的金属变形过程进行实验研究和数值模拟,分析了不同变形区域的流动特性及应变状态。采用坯料分块挤压试验测定金属流动趋向及缺陷形成条件,分析了缺陷形成的力学原因,揭示了多向变形过程中缺陷形成机制:金属在多向受力条件下由于主动力交叉而引起流线交叉,在流线交叉部位,多向拉应变易形成拉伸缺口,多向压应变易形成流线折叠。
     研究多向挤压多区域流动状态下金属的变形规律,发现了应变强化型合金稳定变形阶段不同变形区域顺序交替变形特征;并根据流变学原理,建立多向加载条件下塑性变形的流函数速度场,推导了基于能量理论的多变形区域的交替塑性变形判别式,确定了流量方程。
     讨论了在变形区域内变形体随主动模拖曳流动对减少局部剧烈不均匀变形的贡献;通过多主动模加载形成多个局部主动变形区,有利于实现变形体整体变形的均匀性。
     根据以上研究成果,对304不锈钢三通阀体进行了多向温挤压成形的试验研究,采用200℃下两工步多向挤压成形技术实现外形和内孔的挤压成形;研究表明,两工步多主动模成形可减轻工件剧烈变形的程度,使工件均匀变形程度提高;变形过程不改变材料的微观组织,而产生形变强化和细晶强化,因此在不降低其耐腐蚀性条件下,使材料的强度指标提高3-4倍,较大程度提高了材料的综合力学性能。
304stainless steel products are widely applied in the field of military, nuclear power, petrochemical and other important fields for its excellent chemical stability and good processability, especially in the high corrosion resistance requirements such as ships and nuclear reactors of storage space, cooling system, transport system. As austenitic steel, the casting intensity of304is low, can't be strengthened with heat treatment at the same time, and can't meet the demand of the use of high temperature and high pressure system components, severely restricting its application scope. The strength can be improved by plastic processing, but the deformation mode and degree produce a great impact on the microstructure and mechanical properties. In this paper, homogeneous austenitic stainless steel triple valve body was obtained by multidirectional extrusion under200℃, through research on the microstructure of304alloy in cold deformation state and the active load to realize flexible control. The deformation process improve the overall performance of the material from two aspects of deformation strengthening and refined crystalline strengthening at the same time.
     The transformation law of was studied304alloy rheological stress changing with the deformation temperature and deformation rate, temperature deformation condition rheological stress calculation model was established. The influence of plastic deformation energy and elastic distortion energy was discussed form phase transition thermodynamics. Research shows that the material can't produce deformation defects while compression strain reach more than1.2at200℃, and do not produce martensite phase transformation and the second phase precipitation in the process of deformation. Deformation texture was single austenite, and the deformation resistance was decrease with room temperature deformation.
     The experimental study and numerical simulation was done for the triple valve body deformation process by multidirectional active load, and flow characteristics and strain state of different deformation zone was analyzed. Metal flow trend and defect forming conditions was studied through divided the workpiece into several parts, the mechanics reasons for defect formation was analysesed, defect formation mechanisms was revealsed in the process of multidirectional deformation.The workpiece produce streamline crossover caused by active load cross under the condition of multidirectional stress, the partes with multidirectional tensile strain produced tends to stretch gap, and multidirectional compressive strain to streamline folding.
     The deformation law of multidirectional active loades and multidirectional extrusion area was studied, alternating deformation characteristics of strain-hardening alloy with different deformation area was founded in stable deformation stage; the velocity field of flow function was obtained with multidirectional loades, alternating deformation discriminant in multiple deformation area was deduced based on energy theory, the flow equation was determined.
     The contribution to reduce the local the non-uniform deformation degree was discussed for materials couette flow with moving die. More active moving dies can get multiple couette flow deformation zone, the deformation parts of workpiece evenly deformed.
     The research shows that the multidirectional warm extrusion experiment of304stainless steel triple valve body was studied, the profile and inner hole was formed will two step multidirectional extrusion forming in200℃. Studies have shown that two step more moving dies active load can reduce deformation extent, increase deformation uniform. Deformation process does not change the material microstructure, and the deformation strengthening and fine-grain strengthening was obtained, therefore, the intensity of material increase3-4times under the condition of not reducing its corrosion resistance,, largely improve the comprehensive mechanical properties of the material.
引文
[1]宋玉泉.连续局部塑性成形的发展前景,中国机械工程.2000,11(122):65-67
    [2]曲萍、李军荣、胡丽萍、苏殿顺.锻制不锈钢阀体加工工艺的分析和研究.阀门.2011,1:15-16
    [3]杨英丽,赵恒章,苏航标,殷京瓯,吴金平,郭荻子.柴油机用304L不锈钢高压油管内挤压研究.稀有金属快报.2007,12(26):38-41
    [4]李勇,郑国世,高峻,周念东.8.9L柴油机用高压油管的设计与研究.内燃机工程.2007,4(28):43-51
    [5]闵建成,刘强,吴殿军.铜阀门温、热挤工艺研究.锻造.2006,5:9-12
    [6]杨红亮,康达昌,张质良.DN100mm截止阀阀体成形工艺研究.阀门.2001,1:34:37
    [7]孙红镱,康达昌,陈宇.大型阀体成形新工艺的模拟研究.锻压技术.2001,3:43-47
    [8]O. Rezvanian, M.A. Zikry, A.M. Rajendran.Microstructural modeling of grain subdivision and largestrain inhomogeneous deformation modesin f.c.c. crystalline materials. Mechanics of Materials.2006(38):1159-1169
    [9]中国科学院先进材料领域战略研究组.中国至2050年先进材料科技发展路线图.科学工业出版社.2009
    [10]王志奎.汽车轮毂轴管复合挤压成形数值模拟与试验研究.塑性工程学报.第15卷第6期.2008年12月:67-71
    [11]徐刚,鲁洁,黄才元.金属成形(锻压)机床的发展趋势.锻压装备与制造技术.2005,3:8-11
    [12]DESRAYAUD C, RINGEVAL S, GIRARD S, DRIVER J H. A novelhigh straining process for bulk materials-The development of amultipass forging system by compression along three axes. JMater Proc Technol.2006,172(1):152-158.
    [13]GONTARZ A. Forming Process of Value Drop Forging with Three Cavities. Journal of Materials Processing Technology.2006,177:228-232.
    [14]GAO Lei, CHEN Rong-shi, HAN En-hou. Enhancement of ductility in high strength Mg-Gd-Y-Zr alloy. Transactions of Nonferrous Metals Society of China.21(2011)863-868
    [15]PADAP A K, CHAUDHARI G P, NATH S K, PANCHOLI V.,Ultrafine-grained steel fabricated using warm multiaxial forging. Microstructure and mechanical properties.Mater Sci. Eng A.,2009,527(1-2):110-117.
    [16]郭强,刘郁丽,杨合.带阻尼台叶片多向模锻过程场量分布规律研究.材料科学与工艺.第18卷第2期,2010年4月:159-163
    [17]薛克敏,袁美玲,曾坐玲,胡治.接套体多向挤压成形工艺数值模拟研究.兵器材料科学与工程,第32卷第3期,2009年5月:15-18
    [18]邓磊,夏巨谌,王新云.基于主应力法的筋板构件成形载荷求解模型.华中科技大学学报.第39卷,第8期.2011年口8月:19-22
    [19]ZHANG Da-wei, YANG He, SUN Zhi-chao. Finite element simulation of aluminum alloy cross valve forming by multi-way loading. Tran. Nonferrous Met. Soc. China,2010(20): 1059-1066.
    [20]周照耀,潘健怡,王尧,谭炽东,陈合霭.导流模和分流模金属挤压流动成形的数值模拟.华南理工大学学报,第37卷,第11期,2009年11月:145-149
    [21]李静媛,黄东男.三孔双芯模挤压方管型材的金属流动行为分析,材料科学与工艺,第18卷,第2期,2010年4月:151-161
    [22]杨钢,高永亮,王立民,刘正东.塑性变形方法对奥氏体不锈钢力学性能的影响,钢铁.2007,2(42):47-50
    [23]崔忠圻,覃耀春.金属学与热处理,机械工业出版社,2007
    [24]余宗森,田中卓.金属物理,冶金工业出版社,1982
    [25]哈宽富.金属力学性质的微观理论,科学出版社1983,
    [26]杨德庄.位错与金属的强化机制,哈尔滨工业大学出版社1991,
    [27]韩庆,周石光.304不锈钢变形抗力试验.钢铁研究学报,2009,11(21):60-63
    [27]M.Kleiner,M.Geiger,Aklaus. Manufacturing of Light-weight Components by Metal Forming, Annals ofthe CIRP,2003.52 (2):521-542
    [29]C.C.Wong, T.A Dean, J.Lin. A review of spinning shear forming and flow forming processes, International Journal of Machine Tools & manufacture,2003,43:1419-1435
    [30]徐明舟,王建军,刘春明.新型无Ni高N奥氏体不锈钢低温变形行为,金属学报, 2011,10(47):1355-1341
    [31]冯端等.金属物理学,科学出版社,1999
    [32]孙茂才.金属力学性能,哈尔滨工业大学出版社,2003
    [33]3韩庆.04不锈钢变形抗力试验,周石光钢铁研究学报,2009,11(21):60-63
    [34]许淳淳,张新生.AISI304不锈钢在冷加工过程中的微观组织变化,北京化工大学学报,2002,6(29):27-30
    [35]Idell, Y Facco, G, Kulovits, A, Shankar M. R., Wiezorek, J. M. K.,Strengthening of austenitic stainless steel by formation of nanocrystalline gamma-phase through severe plastic deformation during two-dimensional linear plane-strain machining, SCRIPTA MATERIALIA,2013,5(68):667-670
    [36]胡钢,许淳淳,张新生,雒娅楠,王东.冷加工对304不锈钢孔蚀敏感性的影响,中国腐蚀与防护学报,2002,8(22):198-201
    [37]史美堂,曹嗣琪,周振文.温变形对奥氏体不锈钢组织和力学性能的影响,钢铁1988,4(23):41-46
    [38]KIM W J, JEONG H G, JEONG H T. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging, Scripta Mater,2009,61(11):1040-1043.
    [39]WANG T S, LI Z, ZHANG B, ZHANG X J, DENG J M, ZHANG FC. High tensile ductility and high strength in ultrafine-grainedlow-carbon steel, Mater Sci Eng A,2010, 527(10-11):2798-2801.
    [40]李岳,王淑兰.塑性变形对奥氏体不锈钢强度影响实验研究,化学工业与工程技术,2003,8(24):46-49
    [41]Tsutomu Mori, Norio Takatsuji, kenji Matsuki, Tetsuo Aida, Kouichi Uetoko. measurement of pressure distribution on die surface and deformation of extrusion die in hot extrusion of 1050 aluminum rod, Journal of Materials Processing Technology 2002 (130-131): 421-425
    [42]N. Pardis, R. Ebrahimi, Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique, Materials Science and Engineering.2009 (527): 355-360
    [43]冯端.金属物理学,科学出版社,1999
    [44]F. Parvizian*, T. Kayser, C. Hortig, B. Svendsen. Thermomechanical modeling and simulation of aluminum alloy behavior during extrusion and cooling journal of materials processing technology 209 (2009) 876-883
    [45]俞敏,叶晓宁.变形条件对304不锈钢动态再结晶的影响黄俊霞,上海金属,2008,5(30):17-20
    [46]冯文杰,陈莹莹,杨涛.弧齿锥齿开式模锻的分流挤压研究,锻压技术FORGING & STAMPING TECHNOLOGY,2010第35卷第6期:89-91
    [47]张守茁,郭向杨,史志铭,郝新.大口径厚壁管挤压力理论公式推导、计算机模拟与验证,锻压技术,2011,4(36):143-147
    [48]F. Parvizian*, T. Kayser, C. Hortig, B. Svendsen, Thermomechanical modeling and simulation of aluminum alloy behavior during extrusion and
    [49]徐祖耀.马氏体相变与马氏体,科学出版社,1999
    [50]唐纳德(美)等编.不锈钢手册.北京:机械工业出版社,1987
    [51]王健,杨卓越,陈嘉砚,苏杰.304不锈钢应变诱发Ac马氏体相变及对力学性能的影响,物理测试,2006,9(24):8-12
    [52]杨钢,黄崇湘等.ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变,金属学报,2009,8(45):906-911
    [53]杨卓越,苏杰,陈嘉砚,熊建新.C, Cr, Ni和Mn含量对304不锈钢变形诱发马氏体相变的影响,钢铁,2007,5(42):62-64
    [54]M.Kleiner,M.Geiger,Aklaus. Manufacturing of Light-weight Components by Metal Forming, Annals ofthe CIRP,2003.52 (2):521-542
    [55]C.C.Wong, T A Dean, J Lin. A review of spinning shear forming and flow forming processes, International Journal of Machine Tools & manufacture,2003,43:1419-1435
    [56]张耀丰,丁毅,陆晓峰,顾伯勤.304不锈钢在H2S介质条件下的应力腐蚀,中国腐蚀与防护学报,2007,4(27):102-104
    [57]LI B, JOSHI S, AZEVEDO K, MA E, RAMESH K T, FIGUEIREDOR B, LANGDON T G. Dynamic testing at high strain rates of anultrafine-grained magnesium alloy processed by ECAP, Mater SciEng A,2009,517(1-2):24-29.[7] [58]KAI M, HORITA Z, LANGDON T G. Developing grain refinementand superplasticity in a magnesium alloy processed by high-pressuretorsion, Mater Sci Eng A,2008,488:117-124.
    [59]程晓娟,王弘,康国政,董亚伟,刘宇杰.304不锈钢棘轮变形过程中应变诱发马氏体相变行为研究,金属学报,2009,7(45):830-834
    [60]陈良生,徐有容等.高钼不锈钢热加工特性与综合流变应力模型.钢铁,2000,35(5):55-59
    [61]梁高飞,王成全,方园.AISI304不锈钢加热过程中高温δ相形核与生长的原位观察.金属学报,2006,42(8):805-809
    [62]H. Takuda, S. Kikuchi, N. Hatta, J. Kokado. Mechanical properties of type 304 stainless steel sheet produced by twin roll strip casting process. Steel Res,1993,64:132-135.
    [63]S.H. Kim, H.K. Moon, T. Kang, C.S. Lee. Dissolution kinetics of delta ferrite in AISI 304 stainless steel produced by strip casting process. Materials Science and Engineering A, 2003(356):390-398
    [64]R. Kopp, F. Hagemann, L. Hentschel, J. Schmitz, D. Senk, Thin-strip casting-modelling of the combined casting/metal-forming process, J. Mater. Proc. Technol.1998,80-81: 458-462.
    [65]R. Tavares, M. Isac, R.I.L. Guthrie, Roll-strip interfacial heat fluxes in twin-roll casting of low-carbon steels and their effects on strip microstructure, Iron Steel Inst. Int.1998,38 (12):1353-1361.
    [66]C.A. Santos, J.A. Spim, A. Garcia, Modeling of solidification in twin-roll strip casting, J. Mater. Proc. Technol.2000,102:33-39. J. D. Hwang, H. L. Lin, W. S. Hwang. Numerical simulation of metal flow and heat t ransfer during twin roll strip casting. ISIJ International,1995,35(2):170-177.
    [67]H. Takuda, S. Kikuchi, N. Hatta, J. Kokado. Mechanical properties of type 304 stainless steel sheet produced by twin roll strip casting process. Steel Res,1993,64:132-135.
    [68]李晓春,韦习成,李健.SUS 304奥氏体不锈钢的摩擦变形层研究,摩擦学学 报,2007,7(127):341-344
    [69]郭坤龙,辛选荣,刘汀,刘新成.一种三叉轴闭塞挤压力的计算方法,热加工工艺,2010,5(39):90-94
    [70]O.Harrer, S.Waller,陈文伟,径向锻造718镍铬合金的数值模拟,压力加工,2007,12:69-71
    [71]顾佳卿,黄俊霞,叶晓宁.不同冷轧压下量对亚稳态奥氏体不锈钢00Cr17Ni7织构的影响,钢铁研究学报,2012,8(24):53-57
    [72]杨红亮,康达昌,张质良.枝叉管形锻件的剪--挤变形规律模拟实验研究,模具技术,2001 No.3:65-69
    [73]闵建成,刘强,吴殿军.铜阀门温、热挤工艺研究,锻造,2006,5
    [74]王效光,岳晓岱,张麦仓.1Cr18Ni9不锈弹簧钢丝冷拔组织分析,金属制品2011年8月(37):42-47
    [75]苑世剑,李峰,刘钢.不同摩擦挤压过程中金属流动行为的变形分区研究,金属学报2007,43(2):199-204
    [76]T. Saitoh, H. Hojio, H. Yaguchi. Two-dimensional model of twin-roll continuous casting. Metallurgical transaction,1989,20 (3):381-390.
    [77]A. Girgensohn, A. R. Buchner, K. H. Tacke. Twin roll strip casting of low carbon steels. Ironmak Steelmak 2000,27:317-323.
    [78]毛莉萍,杨柯,苏国跃.铸态奥氏体不锈钢的热变形行为.金属学报,2001,37(1):39-41
    [79]徐吉生.等径三通多向模锻金属流动研究,锻压技术2002,4:11-14
    [80]M.S.J.Hashmi, Aspect s of tube and pipe manufacturing processes,Meter to nanometer diameter, J.Mater, Proc.Tech.,2006,179(123):5-10
    [81]Yang He, Zhan Mei, Liu Yu li, Some advanced plastic processing technologies and their numerical simulation, Journal of Materials Processing Technolo2gy,2004,151:63-69
    [82]M.Zhan,H. Yang, Research on variation of stress and strain field and wall-thickness during cone spinning, Materials science Forum,2006, (532-533):149-152
    [83]Wang Min and Yang He, Research on modelling of hot ring rolling processes,Trans.Nonferrous Met,Soc,China,2006,16(6):1274-1280
    [84]Lianggang Guo,He Yang,Mei Zhan, Research on plastic deformation behaviour in cold ring rolling by FEM numerical simulation, Modelling and Simulation in Materials Science and Engineering,2005,13,1029-1046
    [85]王振敏,方圆,张跃,黄运华,齐俊杰.304不锈钢2mm铸轧薄带中的裂纹分布和形成分析,特殊钢,2006,27(3):14-16
    [86]康向东,邸洪双,张晓明.双辊铸轧薄带钢裂纹形成原因分析,材料与冶金学报,2002,(6):106-110
    [87]郭永强,徐春国,任广升,周林,任伟伟.挤压缩口工艺中缺陷的研究,2011,4(36):144-147
    [88]陈旭,运新兵,赵颖,樊志新,宋宝韫.分流模结构对连续挤压扩展成形的影响, 塑性工程学报,第17卷第2期2010年4月:68-72
    [89]贾明久,贾微,轴对称正挤压变形力的主应力法新解锻压技术,1996,3(21):12-15
    [90]TONG L B, ZHENG M Y, CHANG H, HUA X S, WU K, XU S W,KAMADO S, KOJIMA Y, Microstructure and mechanical propertiesof Mg-Zn-Ca alloy processed by equal channel angular pressing, Mater Sci Eng A,2009,523(1-2):289-294
    [91]林治平,林农.联合上限法和主应力法具表面压力分布的研究,金属成形工艺,1996,14(1):28-32
    [92]林治平,林农.联合上限法和主应力法(UBM/SM法)确定模具表面压力分布的研究,金属成形工艺,1997,15(4):11-17
    [93]郭胜利,李德富,马志新等.主应力法和功平衡法求解管,材挤压变形力的再探讨[塑性工程学报,2008,15(1):31-35
    [94]GAO Leil, CHEN Rong-shi, HAN En-hou. Enhancement of ductility in high strength Mg-Gd-Y-Zr alloy, Tran.Nonferrous Met.Soc,China 21(2011):863-868
    [95]冯文杰,陈莹莹 杨涛.弧齿锥齿开式模锻的分流挤压研究,锻压技术,2010年12月第35卷第6期:89-91
    [96]PADAP A K, CHAUDHARI G P, NATH S K, PANCHOLI V.Ultrafine-grained steel fabricated using warm multiaxial forging:Microstructure and mechanical properties, Mater Sci Eng A,2009,527(1-2):110-117
    [97]宋志真,杨永顺,党利.基于数值模拟的摩托车型活塞成形缺陷分析2009,37(6):80-83
    [98]冯文杰,陈莹莹,杨涛.弧齿锥齿开式模锻的分流挤压研究,锻压技术FORGING & STAMPING TECHNOLOGY,2010,第35卷第6期:89-91
    [99]李峰,林俊峰,刘晓晶.导流角对挤压变形流动的影响机理分析,材料科学与工艺,第18卷第1期,2010年2月:116-119
    [100]刘德学,任淮辉,秦小琼,李旭东.A锥形凸台成形的一种叠加滑移线场力学模型,中国机械工程第19卷第23期2008年12月上半月:2872-2876
    [101]康永林译.金属塑性成形导论,Reiner kopp,Herbert Wiegels,高等教育出版社,2009
    [102]王振范.能量理论及其在金属塑性成形中的应用,科学出版社,2009
    [103]ZHANG Da-wei, YANG He, SUN Zhi-chao. Finite element simulation of aluminum alloy cross valve forming by multi-way loading, Tran. Nonferrous Met. Soc. China, 2010(20):1059-1066
    [104]Tsutomu Mori, Norio Takatsuji, kenji Matsuki. Tetsuo Aida, Kouichi Uetoko, measurement of pressure distribution on die surface and deformation of extrusion die in hot extrusion of 1050 aluminum rod, Journal of Materials Processing Technology 2002 (130-131): 421-425
    [105]N. Pardis, R. Ebrahimi. Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique, Materials Science and Engineering A2009 (527): 355-360
    [106]杨红亮,康达昌,张质良.DN100mm截止阀阀体成形工艺研究阀门,2001,1
    [107]孙红镱,康达昌,陈宇.大型阀体成形新工艺的模拟研究,锻压技术2001,3
    [108]PASEBANI S, TOROGHINEJAD M R, Nano-grained 70/30 brassstrip produced by accumulative roll-bonding (ARB) process, Mater Sci. Eng A,2010,527(3):491-497
    [109]VALIEV R Z, ISLAMGALIEV R K, ALEXANDROV I V, Bulk nanostructured materials from severe plastic deformation, Progress in Material Science,2000,45(2):103-109
    [110]TELLKAMP V L, MELMED A, LAVERNIA E J, Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metal Mater Trans A,2001, 32(9):2335-2343
    [111]E. Doege, B. A. Behrens. Reduce process chains due to the precision forging of gears-effect on the conventional forging technology, Journal of Materials Processing Technology,1997 (71):14-17
    [112]李峰,李莉,王香,塑性体积成形中金属流动及应变分布的测试,哈尔滨工程大学学报,第30卷第8期2009年8月:970-974
    [113]李峰,刘晓晶,苑世剑,摩擦条件对铝合金挤压变形流动行为的影响,中国有色金属学报,第18卷第11期:2014-2019

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700