用户名: 密码: 验证码:
无机化合物对粉土及水泥土腐蚀作用的试验研究及耐久性评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程材料在污染环境下的耐久性研究是国际上非常关注的、尚未完全解决的科技热点问题,对于水泥土搅拌桩复合地基受环境影响后工程性质的劣化研究尚未看到有关报道,考虑这一因素的设计方法尚未提出。本文在收集、查阅及整理中外文献的基础上,以地基土(粉土)和水泥土为研究对象,总结在不同无机化合物环境条件下,地基土和水泥土的物理、化学和力学性质变化规律,探讨环境对粉土和水泥土工程性质影响的工作机理,为建立考虑环境影响的复合地基耐久性设计理论,确保工程长期安全,降低工程成本以及无机化合物环境下水泥土搅拌桩复合地基的安全性评价标准起到技术支撑作用,为我国的国民经济建设和社会发展具有积极意义。
     主要研究成果归纳如下:
     1)通过室内模拟试验,对浸泡于不同类型、浓度的碱(NaOH和NH_3·H_2O)溶液和盐(NaCl和Na_2SO_4)溶液中的粉土试样进行了物理力学指标的测定,总结了其与介质的类型、浓度之间的变化规律:碱溶液中的土样,随着溶液浓度的提高,土样的密度、液限、塑限、塑性指数、压缩系数a1-2均有所增加,孔隙比有所降低,横向比较NaOH溶液和NH_3·H_2O溶液中土样的各项指标发现,NaOH对于土样的影响要强于NH_3·H_2O;盐溶液中的土样,随着溶液浓度的增加,土样的密度、比重随之增加,孔隙比、液限、塑限、塑性指数和压缩系数均随之降低,横向比较NaCl溶液和Na_2SO_4溶液腐蚀后土样的各项指标发现,Na_2SO_4对于土样的影响要强于NaCl,说明SO_4~(2-)比Cl~-对土样的影响大;并且得到了各种溶液下液限与塑性指数的线性关系,建立了土样的压缩系数与溶液浓度的指数分布数学关系,在实际工程中可供参考。
     2)基于污染介质对地基土侵蚀的迁移规律主要是渗透和扩散,考虑了迁移过程中的化学反应,建立了污染介质在地基土中的迁移模型。
     3)H_2SO_4溶液环境、MgSO_4溶液环境和Na_2SO_4溶液环境下水泥土表观现象变化明显,主要表现为表面起皮、软化,棱角处饨化或开裂;MgCl_2溶液环境和CaSO_4溶液环境中的水泥土表观现象主要表现为表面附着结晶物,试块尺寸基本没有变化。
     4)通过测试不同时间下各种环境的水泥土抗压强度,提出了各种环境下的水泥土强度修正系数,并且得出:CaSO_4环境、MgSO_4(1.5g/L)环境、Na_2SO_4(1.5g/L)环境和MgCl_2(1.5g/L)环境下的水泥土强度修正系数均大于1,说明这几种环境对水泥土强度的增长有利;而其他环境下的强度修正系数均小于1,对水泥土不利,因此在工程应用中,应根据环境的不同而采取相应的措施,在保证工程的安全性前提下,优化设计,降低成本;通过分析各种环境下水泥土的应力应变关系曲线,在已有水泥土本构模型的基础上,考虑环境引起的水泥土强度损失建立了无机化合物环境下水泥土的应力应变关系方程。
     5)由水泥土的表观现象和水泥土强度的修正系数,得出各种无机化合物环境对水泥土作用的大小排序为Na_2SO_4>MgSO_4>H_2SO_4>MgCl_2>CaSO_4。当溶液当中都存在SO_4~(2-)时,阳离子对水泥土作用大小排序为:Na~+>Mg~(2+)>H~+>Ca~(2+);当溶液都存在Mg~(2+)时,阴离子对水泥土作用大小排序为:SO_4~(2-)>Cl~-。
     6)通过测试水泥土不同浸泡时间下各种环境中主要介质的浓度,揭示了各种环境中主要介质的变化规律:H_2SO_4环境中pH值随时间增长有不同程度的升高,SO_4~(2-)浓度随时间增长有不同程度的降低;MgSO_4环境中Mg~(2+)浓度随时间增长有不同程度的降低,SO_4~(2-)浓度随时间增长14天以前升高、14d后有不同程度的降低;Na_2SO_4环境中的Na~+浓度和SO_4~(2-)浓度随时间增长有不同程度的降低;CaSO_4环境中Ca~(2+)和SO_4~(2-)浓度随时间增长有不同程度的降低;MgCl_2环境中Mg~(2+)浓度随时间增长有不同程度的提高,Cl~-浓度随时间增长在7天前升高,7d后有不同程度的降低。
     7)对各个环境的主要介质进行计算、对比分析揭示了环境对水泥土的作用机理,其中H_2SO_4、MgSO_4和MgCl_2环境对水泥土腐蚀是分解型腐蚀与结晶型腐蚀的复合型腐蚀;Na_2SO_4环境对水泥土腐蚀是溶出型腐蚀与结晶型腐蚀的复合型腐蚀;CaSO_4环境对水泥土无腐蚀作用。根据各种环境中的主要介质浓度与水泥土强度的关系建立了相应的水泥土强度模型,并给出了各种水泥土强度模型的适用范围。
     8)提出了水泥土搅拌桩复合地基的耐久性研究内容有复合地基的耐久性机理、在役水泥土搅拌桩复合地基的耐久性评估和剩余寿命的预测、拟建复合地基的耐久性设计和提高耐久性的技术措施。根据水泥土搅拌桩复合地基所处的环境,考虑时间效应,提出环境腐蚀下水泥土搅拌桩复合地基的承载力的设计公式和复合模量计算公式。将水泥土搅拌桩复合地基耐久性分为A~D四个等级,并根据模糊评判理论建立了考虑桩体耐久性和桩间土耐久性的水泥土搅拌桩复合地基耐久性模糊综合评判模型。
Study of engineering material durability in the corrosive environment is one of international highly attention objects. It is hard to find the report relevant to engineering property study of cemented soil column composite foundation working in a corrosive environment and the design method is also rare to the environment pollution effect on the foundation durability. Based on collecting, checking and summarizing domestic and foreign literatures, this thesis studies the physical, chemical and mechanical properties and working mechanism of silty soil and cemented soil under various inorganic compound environmental conditions. This work has positive meaning for establishing composite foundation durability design theory and safety evaluation standard considering environment action, insuring the long-term engineering safety, lowering the engineering cost, promoting our country economy and society development.
     The main achievements are as followed:
     (1) Through the analogous experiment in lab, the physical and mechanical indexes are taken for the silty soil samples soaked in the alkaline solutions (NaOH and NH_3.H_2O) and saline solutions ( NaCl and Na_2SO_4) with various concentrations. The test results show that density, liquid limit, plastic limit, plasticity index, compression coefficient are increased and void ratio is decreased for the samples soaked in alkaline solutions with the increment of the concentration; compared with the test data, the effect of NaOH solution on the sample is stronger than that of NH_3.H_2O solution. The density and specific gravity of soil particle are increased, and void ratio, liquid limit, plastic limit, plasticity index, compression coefficient are decreased for the samples soaked in saline solutions with the increment of the concentration; compared with test data, the effect of Na_2SO_4 solution on the sample is stronger than NaCl, which may be the result of SO_4~(2-) stonger than Cl~-. Based on the test data, the statistical functions are set up, such as the linear function of liquid limit and plasticity index, exponential function of compression coefficient and solution concentration, which could be used in actual engineering.
     (2) According to the migration regulation of contamination in subsoil, primarily migration types are permeating and diffusibility. The migration model of pollutant ingredients in the foundation soil is established, in which the chemical reaction in the migratory process is taken into account.
     (3) In order to simulate and study the erosion effect process, the photos of the cemented soil samples are taken, when they are soaked in various inorganic compound solutions with different concentrations and times. The out-looks of the samples are obviously changed, mainly represent the surface soften, the size reduced or crack, when they are soaked in H_2SO_4, MgSO_4, Na_2SO_4 solutions. However, the out-looks of the samples soaked in MgCl_2 and CaSO_4 solutions are changed but not seriously, mainly represent crystallization adhering to the surface.
     (4) At the meantime, the unconfined compression tests are conducted on the cemented soil samples which are soaked in the inorganic compound solutions with various concentrations and times. The cemented soil strength modified coefficient under each corrosive environment is obtained, and the cemented soil strength modified coefficient are great than 1 for the CaSO_4, MgSO_4 (1.5 g/L), Na_2SO_4 (1.5g/L) and MgCl_2(1.5g/L) solution environments, from which it may be drawn out that these environments are beneficial to the strength increasing of cemented soil. All of the strength modified coefficient for the other solution environments are less than 1, from which it may be drawn out that these environments propose the corrosion to the cemented soil and reduce the strength. Therefore the working environmental condition of the composite foundation should be taken into account when designing and calculating the foundation bearing capacity and settlement in order to optimize design, reduce the cost, adopt suitable measures, and assure the safety. Additional, full stress-strain curve of cemented soil is obtained too. Based on the existing damage model and test data, a modified stress-strain equation is set up for inorganic compound environment considering the cemented soil strength lost caused by environment affect.
     (5) The test results show that some inorganic compound solutions give cemented soil higher influence than others. In this experiment, inorganic compound solutions can be arranged in a series for the influence as follows: Na_2SO_4 > MgSO_4> H_2SO_4> MgCl_2> CaSO_4, When the solutions exsits SO_4~(2-) ion, the influence degrees of cations Na~+, Mg~(2+), H+, Ca~(2+) are Na~+> Mg~(2+)> H~+> Ca~(2+); When the solutions exsits Mg~(2+) cation, the influence degrees of SO_4~(2-) anion is greater than that of Cl~- anion.
     (6) The concentration of the main chemical ingredients in the solutions are measured when the cemented soil samples are soaked in the solution for different times. For the H_2SO_4 solutions, the pH value is increasing, and the SO_4~(2-) concentration is decreased with the increment of erosion time; for the MgSO_4 solutions, Mg~(2+) cation concentration is decreased with the increment of erosion time, but SO_4~(2-) anion concentration is increasing when the sample soaked time is less than 14 days, then decreasing when the soaked time greater than 14 days; for the Na_2SO_4 solutions, Na~+ concentration and SO_4~(2-) concentration are decreased with the increment of erosion time; for the CaSO_4 solutions, Ca~(2+) concentration and SO_4~(2-) concentration are decreased with the erosion time increasing; for the MgCl_2 solutions, Mg~(2+) concentration is increasing with the erosion time increasing, Cl~- concentration is increasing before first 7 days, then decreased after 7 days.
     (7) By calculating main chemical ingredients and analyzing the mechanism, the corrosive type of H_2SO_4, MgSO_4 and MgCl_2 solutions to cemented soil is a composite type of resolving and crystallizing combination; that of Na_2SO_4 solution to cemented soil is a composite type of dissolving and crystallizing combination; CaSO_4 solution shows no corrosive action to the cemented soil. Based on the relationship of the main ingredient concentration of the solution and cemented soil strength, the cemented soil strength model is established for each corrosive type, the limit for each model is also described.
     (8) The research contents of cemented soil column composite foundation contain durability mechanism, durability valuation, estimate of its surplus life, durability design and technique measure to increase durability. Based on the environment condition surrounding the cemented soil column, the design formula of the bearing capacity and composite modulus for this composite foundation are proposed in this thesis, in considering corrosive time action. Finally, the durability of the cemented soil column composite foundation are classified into A~D four grades, and composite foundation durability assessment model is established with considering the column durability and surrounding soil durability based on the fuzzy assessment theory.
引文
[1]方晓阳。21世纪环境岩土工程展望[J],岩土工程学报,2000,22(1),1-11.
    [2] Fang H Y. Introduction to Environmental Geotechnology[J], CRC Press, Boca Raton, 1997, 668
    [3]周健,刘文白,贾敏才。环境岩土工程[M],北京:人民交通出版社,2004
    [4]胡中雄,李向约,方晓阳。环境岩土工程学概论[J],岩土工程学报,1990,12(1),98-107
    [5]林宗元。环境岩土工程的兴起与展望[J],中国工程勘察,1993(4)
    [6]李相然,姚志祥。城市岩土地基工程地质[M],北京:中国建材工业出版社, 2002
    [7]张在明。对于发展环境岩土工程的初步探讨[J],土木工程学报,2001,34(2),1-7
    [8]陈云敏,施建勇。中国环境岩土工程的进展[C],重庆:重庆大学出版社,上册, 2007
    [9]施斌。关于环境岩土工程[J],工程地质学报,2002,10(4),349-355
    [10]戴树桂。环境化学进展[M],北京:化学工业出版社,2005
    [11]叶常明,王春霞,金龙珠。21世纪的环境化学[M],北京:科学出版社,2004
    [12]戴树桂。环境化学[M],北京,高等教育出版社,2006
    [13]罗国煜,陈新民,李晓昭。城市环境岩土工程[M],南京:南京大学出版社,2000
    [14]韩鹏举,白晓红。污染土的腐蚀作用机理[J],太原理工大学学报,2006增刊,253-255
    [15]工业建筑防腐蚀设计规范(GB 50046-2008)[S],北京:中国计划出版社,2008
    [16]饶为国。污染土的机理、检测及整治[J],建筑技术开发,1999,26(1),20-21
    [17]韩立华。电阻率法在评价和预测污染土中的应用研究[D],南京:东南大学,2006
    [18]薛翊国,王清,李伟涛等,污染土的研究现状及其评价与处理方法[J],煤田地质与勘探,2005,33(1),49-51
    [19]傅世法,赵玉林。污染土地基岩土工程勘察实例[J],勘察科学技术,1991,(6),22-28
    [20]陈先华,唐辉明。污染土的研究现状及展望[J],地质与勘探,2003,39(1),77-79
    [21] Cvipulanandan. Effect of clays and cement on the solidification/stabilization of phenol contaminated soil[J], Waste management, 1995,15,399-406
    [22] Qyma, Wllindsay. Estimation of Cd~(2+) and Ni~(2+) activities in soils by chelation[J], Geoderma, 1995,68,123-133
    [23] Ramesh Krishnan, Parker richard. Wtockelectode assisted soil washing[J], Journal of Hazardous materials, 1996, 48,111-119
    [24] Sridharan A, Nagaraj T, Heaving of soil due to acid contamination[J], Geotechnique, 1980, 2,323~326
    [25] Ho Y, Pufahl D, Barbour S, Effects of brine contamination on volume change behavior of fine-grained soils, In, Materials from Theory to Practice[C], 1989 Proceedings of the 42nd CanadianGeotechnical Conference, Winnipeg, Manit, Can,1989, 272~279
    [26] Rajput V, Higgins A, Single M E Cleaning of excavated soil contaminated with hazardous organiccompounds by washing[J], In Water Environ ResSept-Oct 1994 Water Environment Federation, Alexandria, VA, USA, 1994,819~827
    [27]刘汉龙,朱春鹏,张晓璐。酸碱污染土基本物理性质的室内测试研究[J],岩土工程学报,2008,30(8),1213-1217
    [28]朱春鹏,刘汉龙。污染土的工程性质研究进展[J],岩土力学,2007,28(3),625-630
    [29]刘汉龙,朱春鹏,沈扬。酸碱污染土特性研究述评[J],湖南大学学报,2008,35(11),39-44
    [30]邓承宗。硫酸对地基的腐蚀[J],勘察科学技术,1985,(6),38-41
    [31]赵以忠。某厂强酸性废水对红粘土地基侵蚀性的模拟试验[J],勘察科学技术,1988,(2),35~38
    [32]范青娟,马光锁。浸碱膨胀对地基土的影响与处理[J],轻金属,1999,(9),58~62
    [33]刘全义。软土地区化学侵蚀地基沉降机理初步研究[J],工程勘察,1998, (5), 8~10
    [34]李琦,施斌,王有诚。造纸厂废碱液污染土的环境岩土工程研究[J],环境污染与防治,1997,19(5),16~18
    [35]顾季威。酸碱废液侵蚀地基土对工程质量的影响[J],岩土工程学报,1988,10(4),72~78
    [36]白晓红,赵永强,韩鹏举等。污染环境对水泥土力学特性影响的试验研究[J],岩土工程学报,2007,29(8),1260-1263
    [37]赵永强,白晓红,韩鹏举等。土体污染对水泥土力学性质的影响[J],天津大学学报,2008,41(1),72-77
    [38]李相然,姚志祥。济南典型地区地基土污染腐蚀性质变异研究[J],岩土力学,2004,25(8), 1229~1233
    [39]路世豹,张建新。某硫酸库地基污染机理的探讨[J],岩土工程界,2003,6(5),37~39
    [40]汤连生。水—土化学作用的力学效应及机理分析[J],中山大学学报(自然科学版), 2000,39(4),104~109
    [41]汤连生。水—岩土化学作用的环境效应[J],中山大学学报(自然科学版),2001, 40(5),103~107
    [42]《建筑桩基技术规范》(JGJ94-2008)[S],中国建筑工业出版社,2008
    [43]栾晶晶。高含水量水泥土的力学特性的试验研究[D],天津大学硕士论文,2006
    [44]郭培玺。红粘土地区水泥土强度的试验研究[D],桂林工学院硕士论文,2004
    [45]曹名葆,徐至钧。水泥土搅拌法处理地基[M],北京:机械工业出版社,2004,2,4~46
    [46]李生林。中国膨胀土工程地质研究[M],南京:江苏科技出版社,1992
    [47]刘传正。环境工程地质学导论[M,北京:地质出版社,1994
    [48]《建筑地基处理技术规范》(JGJ79-2002)[S],中国建筑工业出版社,2002
    [49]刘松玉,钱国超,章定文。粉喷桩复合地基理论与工程应用[M],北京:中国建筑工业出版社,2006
    [50]徐瑛,陈友治,吴力立。建筑化学材料[M],北京:化学工业出版社,2005
    [51]赵永强。污染对水泥土影响的力学试验及其损伤本构模型研究[D],太原理工大学博士学位论文,2008
    [52] Terashi M, Kitazume M. An investigation of long term strength of lime and cement treated marine caly[R], Technical Note of Port and Harbour Research Institute, 1992,1-15
    [53] Kitazume M, Nakamura T, Terashi M, Ohishi K. Laboratory tests on long term strength of cement treated soil[C], Proceeding of Grouting and Ground Treatment, 2003
    [54] Niina A, Sato S, Baba R, MIyata K, Study on soil improved by DCM[R], Technical Report of Takenaka Research Institute,1981,(26),45-55
    [55]陈四利,冯夏庭,周辉。化学腐蚀下砂岩三轴压缩力学效应的试验[J],东北大学学报(自然科学版),2003,23(3),292~295
    [56]陈四利,冯夏庭,李邵军。化学腐蚀对黄河小浪底砂岩力学特性的影响[J],岩土力学,2002, 23(3),284~287.
    [57]陈四利,宁宝宽。化学侵蚀下水泥土的无侧限抗压强度试验[J],新型建筑材料, 2006(6), 40~42
    [58]黄汉盛,鄢泰宁。软土深层搅拌桩的水泥土抗腐蚀性室内试验[J],地质科技情报2005,第26卷,增刊,85~88
    [59]宁宝宽,陈四利。环境侵蚀下水泥土的力学效应试验研究[J],岩土力学,2005,26(4),600~603
    [60]宁宝宽,陈四利。环境侵蚀下水泥土力学特性的时间效应分析[J],水文地质工程地质, 2005,32(2),82~86
    [61]宁宝宽,陈四利。水泥土的环境侵蚀效应与破裂过程分析[J],岩石力学与工程学报, 2005, 24(10),1778~1782
    [62]宁宝宽。环境侵蚀下水泥土的损伤破裂试验及其本构模型[D],东北大学博士学位论文, 2005
    [63]宁宝宽,陈四利。冻融和酸碱腐蚀对水泥土的效应研究[J],低温建筑技术,2005 (4), 17~19
    [64]宁宝宽,刘斌。环境侵蚀对水泥土桩承载力影响的试验及分析[J],东北大学学报(自然科学版),2005,26(1),95~98
    [65]黄新,杨晓刚,胡同安。硫酸盐介质对水泥加固土强度的影响[J],工业建筑,1999, 19(4),19~23
    [66]焦志斌,刘汉龙。淤泥质酸性土水泥土强度试验研究[J],岩土力学,2005,第26卷,增刊,57~60
    [67]储诚富,邵俐。有机质含量对水泥土强度影响的室内定量研究[J],岩土力学, 2006,27(9), 1613~1616
    [68]储诚富,邵俐。含盐量对水泥土强度影响的室内试验研究[J],工程地质学报,2007, 15(1), 139~143
    [69]《土工试验方法标准》(GB/T50123一1999)[S],北京:中国计划出版社,1999
    [70]赵以忠。某厂强酸性废水对红粘土地基侵蚀性的模拟试验[J],勘察科学技术,1988(02)
    [71]邓承宗。硫酸对地基的腐蚀[J],勘察科学技术,1985(12)
    [72]李琦,施斌。王有诚造纸厂废碱液污染土的环境岩土工程研究[J],环境污染与防治,1999,19(5):16-18
    [73]范青娟,马光锁。浸碱膨胀对地基土的影响与处理[J],轻金属,1999,(9):58-62
    [74]张晓璐。酸、碱污染土的试验研究[D],河海大学硕士学位论文,2007
    [75]杨宏孝,凌芝,颜秀茹。无机化学[M],北京:高等教育出版社,2000
    [76]沈照理,朱宛华,钟佐燊牡厍蚧ЩM],北京:地震出版社,1993
    [77]《工程地质手册》编写委员会工程地质手册(第四版)[M],北京:中国建筑工业出版社,2007
    [78]周宇泉,胡听,洪宝宁。从微细结构方面解释某勃性土压缩特性的差异[J],水利水电科技进展,2006,26(l):31-36
    [79]韩鹏举,白晓红,赵永强。硫酸对水泥土早期腐蚀的试验研究[C],重庆:重庆大学出版社,下册,2007,786-789
    [80] Rolling R S. Sulfate attach on cement stabilized sand[J], Journal of Geotechnical and Geoenvirtmnlental Engineering, 1999, 121(5): 364–372
    [81] PEI Xiang-jun, YANG Guo-chun, Research on preventing cement erosion in marine soil[J], Journal of Changchun Institute of Technology, 2000(1): 12–14
    [82]董晓强,白晓红,赵永强等。硫酸污染下水泥土的电阻率变化研究[J],岩土力学,2007,1453–1458
    [83] BAI Xiao-hong, ZHAO Yong-qiang, HAN Peng-ju. Experimental study on mechanical proterty of cemented soil under environmental contaminations[J], Chinese Journal of Geotechnical Engineering,2007,29(8): 1260–1263
    [84]董晓强。污染对水泥土电阻率特性影响的试验与理论研究[D],太原理工大学博士学位论文,2008
    [85]董晓强,白晓红,赵永强等。基于电阻率的硫酸污染水泥土检测方法的探讨[J],环境工程学报,2007,1(11),124-127
    [86]韩鹏举,白晓红,王梅等。腐蚀对水泥土强度的影响机理及试验研究[J]。湖南大学学报(自然科学版),2008:11 22-28
    [87] HAN Peng-ju, BAI Xiao-hong. Strength Model and Experimental Study of Cemented soil under H_2SO4 Corrosive in Earlier Period[C]。9th International Symposium on Environmental Geotechnology and Global Sustainable Development 1-4 June 2008, p377-384
    [88]《岩土工程勘察规范》(GB50021-2001)[S],北京,中国建筑工业出版社,2002
    [89]李军,王淑莹。水科学与工程实验技术[M],北京:化学工业出版社,2002
    [90]时红。水质分析方法与技术[M],北京:地质出版社,2001
    [91]蔡炳新,陈怡文。基础化学实验[M],北京:科学技术出版社,2001
    [92]郝瑞霞,吕鉴。水质工程学实验与技术[M],北京:北京工业大学出版社,2006
    [93]黄君礼。水分析化学[M],北京:中国建筑工业出版社,1997
    [94]李燕城,吴俊奇。水处理实验技术[M],北京:中国建筑工业出版社,2004
    [95]山西省勘察设计研究院,水分析测试方法操作手册,2003
    [96]张誉。混凝土结构耐久性概论[M],上海:上海科学技术出版社,2003
    [97]张青莲。无机化学[M],北京:科学出版社,1998
    [98]龚晓南。复合地基地基理论及工程应用[M],北京:中国建筑工业出版社,2004
    [99]龚晓南。复合地基[M],杭州:浙江大学出版社,1992
    [100] Brown P W. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO_4, Na_2SO_4 attack[J], Cement and concrete research, 2000, 30(10)
    [101] Brown P W, April Doerr, Chemical changes in concrete due to the ingress of aggressive species[J], Cement and concrete research, 2000, 30(3)
    [102] Rasheeduzzafar, Dakhil FH. Corrosion of reinforcement in concrete structures in the middle east[J] Concrete international design and construction, 1985, 7(9)
    [103] Maslehuddin M, Saricimen H. Performance of concrete in a high chloride-surfate environment[J], ACI Special Publication, 1990, SP-122,
    [104] Maher ABader. Performance of concrete in a coastal envirnment[M], Cement and concrete research,2003,25
    [105] Huseyin Saricimen, Mohammed Masalehuddin, Asfaha lob and Omar AEdit. Evaluation of a surface coating in retarding reinforcement corrosion[J], Construction and Building Materials,1996,10(7)
    [106]马孝轩等。混凝土及钢筋混凝土材料酸性土壤腐蚀规律的试验研究[J],混凝土及水泥制品,2002(2)
    [107]马孝轩等。钢筋混凝土桩在沿海地区腐蚀规律试验研究[J],混凝土与水泥制品,2002
    [108]张春文预应力混凝土管桩在腐蚀性地质中应用的探讨,建筑结构[J],2002,36(6)
    [109]牛全林,冯乃谦,张明辉。盐碱环境中混凝土路桥材料的耐久性问题[J],中国水泥,2004(1)
    [110]马保国,贺行洋,苏英等。内盐湖环境中混凝土硫酸盐侵蚀破坏研究[J],混凝土,2001(4)
    [111]牛荻涛。混凝土结构耐久性评定标准编制,土建结构工程的安全性与耐久性[J],北京,2001
    [112]张誉。结构耐久性研究的展望,现代土木工程的新发展[M],东面大学出版社,1998,88-96
    [113]建筑结构可靠度设计统一标准(GB50068-2001)[S],北京:中国建筑工业出版社,2001
    [114]混凝土结构设计规范(GB50010-2002)[S],北京:中国建筑工业出版社,2002
    [115]贡金鑫,赵国藩。钢筋混凝土结构耐久性研究的进展[J],工业建筑,2000(5)1-5
    [116] Rowe R K, Booker J R.. 1-D Pollutant migrationin soils of finite depth[J], ASCE, 1985, 111(4) :479-499
    [117]Rowe R K, Booker J R.. A finite layer technique for calculating three-dimensional pollutant in soil[J], Geotechnique, 1986, 36(2):205-214
    [118]张振营,吴世明,陈云敏。天子岭填埋场有机物降解规律的研究[J],岩土力学,2002,23(1):60-62
    [119] Mazars J. Continuous Damage Theory - Application to Concrete[J], Eng Mech, 1980, 115(2),345~365
    [120] Supartono F, Sidoroff F. An isotropic Damage modeling for Brittle elastic materials[C], Symposium of Franc-Poland, 1984
    [121]曹双寅。受腐蚀混凝土力学性能[J],东南大学学报,1991,21(4):89-95
    [122]郭新海,朱伯龙,吴虎南。盐酸对混凝土腐蚀机理[J],混凝土,1991(4):8-10
    [123]范颖芳,黄振国。硫酸盐腐蚀后混凝土力学性能研究[J],郑州工业大学学报,1999(1):25-27
    [124]童小东,龚晓南,蒋永生。水泥土的弹塑性损伤试验研究[J],土木工程学报, 2002, 35(4),82~85
    [125]王立峰,朱向荣。水泥土的损伤模型的试验研究[J],科技通报,2003,19(2),136~ 139
    [126]张土乔。水泥土的应力应变关系及搅拌桩破坏特性研究,[D],浙江:浙江大学,1992
    [127]王立峰。纳米硅水泥土工程特性及本构模型研究[D],杭州,浙江大学建筑工程学院, 2003
    [128]童小东。水泥土添加剂及其损伤模型试验研究,[D],浙江,浙江大学, 1998
    [129]王立峰,朱向荣,王文军。单轴受压下纳米水泥土本构模型的试验研究[C],中国土木工程学会第九届土力学及岩土工程学术会议论文集,2003,275~278
    [130]王立峰,朱向荣。纳米硅水泥土本构模型研究[J],浙江科技学院学报,2004, 16(4),259~265
    [131]赵和平。环境综合评价模糊数学方法中4个算子的比较[J],贵州环保科技,2001(3):28-33
    [132]潘峰。模糊综合评价在水环境质量综合评价中的应用研究[J],环境工程2002 (4 )58一60
    [133]谢季坚。模糊数学方法[M],华中科技大学出版社,2000
    [134]邱东。多指标综合评价的系统分析[M],中国统计出版社,1991
    [135]王平义。模糊数学在水科学与工程中的应用[M],成都科技大学出版社,1996
    [136]赵鹏飞,王娴明。模糊数学在混凝土构件耐久性评定中的应用初探[J],工业建筑,1997(5):7-10
    [137]张伟平,张誉。现有房屋耐久性等级评估[C],土木学会第九届年会论文集,杭州:中国水利水电出版社,2000
    [138]卢木,王娴明。结构耐久性多层次综合评定[J],工业建筑,1998(1)1-8
    [139]朱炳喜。涵闸水上混凝土构件耐久性等级的模糊评估[J],水利水电技术,2000(7)29-32
    [140]韩鹏举,白晓红,王梅。桩身完整性分类的模糊综合评判模型[J],路基工程(12)22-24
    [141]民用建筑可靠度鉴定标准(GB50292-1999)[S],北京:中国建筑工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700