用户名: 密码: 验证码:
氟铝联合染毒对MC3T3-E1细胞增殖和分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     氟是人体所必需的微量元素,对人体健康具有双重作用,适量的氟是人体必需的,是构成骨骼和牙齿的重要成分,并且能够促进生长发育和生殖功能。长期大量摄入氟可引起氟中毒,主要表现为氟斑牙和氟骨症。铝是地球上含量最丰富的一种金属,低剂量的铝可刺激骨细胞的增殖和分化,而人体长期摄入铝,在体内蓄积后会引起神经退行性疾病、骨软化和贫血等铝中毒性疾病。研究表明,Al+和F-结合能力比其它60多种金属离子都要强,在酸碱度呈中性条件下,氟化物可与铝离子形成氟化铝,主要形成AlF3和AlF4,AlFx是G蛋白激活因子,与多种酶的激活有关。在氟病区,铝厂、铝矿工人在日常生产活动中,除了接触大量的铝以外,同时还暴露于高氟环境。饮水型氟中毒病区采用铝盐除氟,也造成当地饮用水中氟铝共存现象。很多速食食品中也都同时检出氟、铝含量超标。茶树有强烈富集氟、铝元素的性质,树体内的氟、铝主要富集于成熟叶与老叶中,可高达1,175mg/kg和4,381mg/kg,因此往往导致成熟叶和老叶加工的砖茶中氟、铝含量严重超标,造成饮茶性氟中毒。既往流行病学和动物实验研究发现氟能促进铝在骨骼中蓄积,铝能加重氟中毒的危害,因此饮茶性氟中毒病区的人群骨相损害往往比较严重。所以研究氟铝联合的作用具有重要的现实意义与科研价值。
     成骨细胞由骨内膜和骨外膜深层以及骨髓的骨祖细胞分化而成。在膜内成骨和软骨内成骨中,充质细胞(MSCs)分化为成骨细胞同时分泌细胞外基质(ECM),随着ECM的钙化,成骨细胞被包埋在骨质中成为骨细胞。其发育和分化可简括为如下几个阶段:间充质干细胞(mesenchymal stem cell)→祖细胞(progenitor cell)→前成骨细胞(preosteoblast)→成熟成骨细胞(mature osteoblast)→骨细胞(osteocyte)。
     小鼠颅顶前骨细胞亚克隆14 (MC3T3-E1 Subclone 14),是从小鼠的颅顶骨细胞建株的前成骨细胞系,具有ALP活性、Ⅰ型胶原酶合成能力和基质钙化等成骨细胞典型的生物学活性。本研究利用MC3T3-E1细胞系研究不同剂量氟、铝和氟铝联合染毒后对MC3T3-E1细胞的增殖和分化能力的影响,并探讨氟铝联合染毒后对核心结合因子-al(Runx2)、Osterix、骨保护素(Osteoprotegerin, OPG)、细胞核因子κB受体活化因子配体(receptor activator of nuclear factorκB ligand, RANKL)的影响,为进一步阐明地方性氟中毒骨相损害机制的研究提供实验依据。
     方法
     一、实验方法
     1、细胞培养
     小鼠颅顶骨前成骨细胞亚克隆14(MC3T3-E subclone 14)细胞常规培养于a-MEM培养基(含10%胎牛血清,1×105U/L青、链霉素),5%CO2、37℃条件下培养。
     2、配制染毒液
     配制100mM NaF和10mM AlCl3的储备液。在染毒前稀释为工作液,分别为500μM和50μM,为最终染毒剂量的10倍。联合染毒液根据Chabre的方法,以NaF1 mM与AlCl3100 mM 1:1混合,现用现配。
     3、细胞增殖活力能力检测
     采用CCK法。实验分组为:对照组、单纯染氟组、单纯染铝组和氟铝联合染毒组。用酶标仪在450 nm处测定各孔的光密度(OD)值。每个剂量组设5个平行样。
     4、细胞周期检测
     采用细胞周期试剂盒检测细胞周期的变化。实验分组为:对照组、单纯染氟组、单纯染铝组和氟铝联合染毒组。用FAC Scan流式细胞仪,488 nm处检测红色荧光
     5、ALP活性测定
     本实验ALP活性的测定采用ALP test kit。细胞ALP活性的测定根据以下原理:磷酸对硝基苯酚在ALP存在时,能转化为对硝基苯酚和磷酸盐。实验分组为:对照组、单纯染氟组、单纯染铝组和氟铝联合染毒组。
     6、细胞总RNA的提取
     采用常规RNA提取法,以Trizol来提取MC3T3-E1细胞中的RNA。实验分组为:对照组、单纯染氟组、单纯染铝组和氟铝联合染毒组。
     7、引物合成
     从GenBank下载其cDNA序列,根据文献和专用设计软件Primer 5设计并合成相应的mRNA引物;检索小鼠看家基因(β-actin)、OPG、RANKL、Osterix、Runx2 cDNA序列,由上海生工生物公司设计并合成。
     8、RT-PCR
     取细胞总RNA 3μl,检测RNA浓度。用前调整浓度至0.5μg/μl。RT总反应体积为5μl。PCR总反应体积为20μl,具体步骤如下:cDNA 5μl,5×PCR Buffer 5μl,上下游引物(10μM)各0.25μl,Taq酶0.125μl,补水14.375μl,混匀于0.5 mlEP管中。
     二、统计分析
     用SPSS 16.0统计软件进行统计分析,组与组之间用两组独立样本t-test;组间比较采用单因素方差分析(ANOVA)。
     结果
     1、MC3T3-E1细胞形态观察
     未贴壁的MC3T3-E1细胞呈圆形,经培养24 h后,在倒置显微镜下可见细胞贴壁生长,细胞呈三角形、纺锤形和多角形等多种形态。形态相似的细胞成堆出现,胞浆伸展,并伸出2-4个突起,细胞核明显,核仁清晰(见图1)。3~4 d,细胞呈指数增长,细胞体积增大,胞浆丰富。6-7 d,细胞融合呈铺石状排列(见图2)。
     2、氟对MC3T3-E1细胞增殖能力的影响
     由表1可见,10-9~10-4 M F-作用24~72 h后对MC3T3-E1细胞无促进增殖作用,1 mM F-显著抑制MC3T3-E1细胞增殖(p<0.01)。
     3、氟、铝及氟铝联合对MC3T3-E1细胞增殖的影响
     由表2可见,与对照组相比,氟(50μM)或铝(5μM)染毒72 h后对MC3T3-E1细胞无促进增殖作用;氟铝联合染毒(F 50μM+Al5μM)显著促进MC3T3-E1细胞的增殖(p<0.01)。与对照组相比,氟铝联合作用后,增殖率增加了9.2%。
     4、氟、铝及氟铝联合对MC3T3-E1细胞周期的影响
     从表3可以看出,与对照组相比,氟(50μM)、铝(5μM)对细胞周期影响不明显;而氟铝联合染毒72 h后,G2/M期细胞显著增多(p<0.05),PI以及DNA相对含量显著增高(p<0.05)
     5、氟、铝及氟铝联合对MC3T3-E1细胞ALP活性的影响
     由表4可以看出,对照组相比,氟(50μM)或铝(5μM)矿化液染毒5 d后,MC3T3-E1细胞ALP表达量无明显变化;氟铝联合染毒(F 50μM+Al5μM)显著促进MC3T3-E1细胞的ALP表达(p<0.05),刺激MC3T3-E1细胞分化。
     6、RT-PCR结果
     6.1染毒72h氟、铝及氟铝联合对Runx2、Osterix mRNA表达的影响
     从图7、8可以看出,染毒72 h后,与对照组相比,单纯染氟组(50μM)或单纯染铝组(5μM) Runx2、Osterix mRNA表达无明显变化;氟铝联合染毒组(F50μM+Al5μM)显著促进Runx2 mRNA的表达(p<0.05);氟铝联合染毒组(F50μM+Al 5μM) Osterix mRNA表达显著增高,有统计学差异(p<0.01)。
     6.2染毒72h氟、铝及氟铝联合对OPG、RANKL mRNA表达的影响
     从图10、11、12可以看出,染毒72 h后,与对照组相比,单纯染氟组(50μM)或单纯染铝组(5μM) OPG mRNA的表达无明显变化;氟铝联合染毒组(F 50μM+Al5μM)显著促进OPG mRNA的表达(p<0.05)。各组的RANKL mRNA表达无显著性差异。与对照组相比,氟铝联合染毒组(F 50μM+Al 5μM) RANKL/OPG比值降低,有统计学差异(p<0.05)。
     结论
     1、氟铝联合能够显著提高对MC3T3-E1细胞的增殖,并且能显著提高M期细胞的含量,促进成骨细胞由S期向M期转化,促进成骨细胞增殖。
     2、氟铝联合能增加MC3T3-E1细胞ALP活性,促进成骨细胞分化。
     3、氟铝联合能够显著提高MC3T3-E1细胞Runx2、Osterix mRNA的表达量,促进成骨细胞形成。氟铝联合能够显著促进OPG mRNA的表达,下调RANKL/OPG比值,使骨重建失衡,从而起到抑制骨吸收、促进骨形成的作用。
Objective
     Fluoride is an essential trace element for human. An appropriate intake of fluoride increase bone density and promote teeth growth, promote the growth and generation functions as well. However, chronic excessive intake of fluoride may cause fluorosis. Aluminum is the most abundant on earth, an appropriate intake of aluminum can stimulate bone cell proliferation and differentiation. However, excessive intake of aluminum could accumulate in the body, might cause senile dementia, osteomalacia, anemia and other disease. Studies have shown that, the capacity of Al+ binding with F-in neutral pH condition is better than other 60 kinds of metal ions. Fluoride in a complex with aluminum (fluoroaluminate, most likely AlF4-) binds to G proteins in vitro and activates G protein-mediated intracellular signaling pathways. In the fluorosis area, aluminum workers not only exposed to large number of aluminum, but also exposed to high fluoride. In water fluorosis areas, people use aluminum to remove fluoride, caused the coexistence of aluminum and fluoride in drinking water. A lot of instant foods are also detected aluminum fluoride content exceeded. Tea has a strong accumulation capacity of fluoride and aluminum, usually fluoride and aluminum are enriched in mature leaves and old leaves, which up to 1175mg/kg and 4381mg/kg, resulted in the tea drinking fluorosis. The epidemiological and animal experimental study found that fluoride can promote the accumulation of aluminum in bones, aluminum can promote the fluoride poisoning. Hence in the tea-drinking fluorosis ward, damage to the patients are often more serious. Therefore, the study of aluminum fluoride has an important practical significance and research value.
     The osteoblast cell was derived from mesenchymal stem cell. The development may experience several stages as follows:mesenchymal stem cell→progenitor cell→preosteoblast→mature osteoblast→osteocyte。
     We use MC3T3-E1 cells to explore the effect of different concentrations of fluoride, aluminum and aluminiunofluoride on proliferation and differentiation, investigate the mechanism of endemic fluorosis and provide experimental data.
     Methods
     1. Cell Culture
     MC3T3-E1 cells were cultured in aMEM conventional medium containing 10% fetal bovine serum,1×105U/L penicillin, streptomycin,5% CO2, cultured under the conditions of 37℃.
     2. Materials
     The stock solutions of NaF and AlCl3 (100mM和10mM, respectively), as well as working solutions at 10 times higher concentration than final, were prepared in water and mixed only before the experiment.
     3. Cell proliferation dynamic detected
     The cell proliferation was measured by CCK method. Experimental groups as follows:control group, fluoride group, aluminum group, aluminiunofluoride group. OD was measured with the microplate reader at 450 nm.
     4. Cell cycle
     The change of cell cycle was measured by flow cytometry. Experimental groups as follows:control group, fluoride group, aluminum group, aluminiunofluoride group.
     5. ALP activity assay
     This experiment was determined by ALP activity test kit. Determination of cellular ALP activity based on the following principle:phosphorylation of p-nitrophenol in the presence of ALP can be transformed into p-nitrophenol and phosphate. Experimental groups as follows:control group, fluoride group, aluminum group, aluminiunofluoride group.
     6. Extraction of total cellular RNA
     We used Trizol to extract the MC3T3-E1 cell RNA. Experimental groups as follows:control group, fluoride group, aluminum group, aluminiunofluoride group.
     7. Primer synthesis
     According to documents the cDNA sequences download from the GeneBank, and designed by software Primer 5. Designed and synthesized. The mouse OPQ RANKL, housekeeping gene (β-actin), Osterix, Runx2 cDNA sequence by the Shanghai Public Health Biology company designed and synthesized.
     8. RT-PCR
     Take total cellular RNA 3μl, detection of RNA concentration. Before using adjust the concentration to 0.5μg/μl. RT total reaction volume of 5μl. The total reaction volume of 20μl, concrete steps are as follows:cDNA5μl,5×PCR Buffer 5μl, upstream and downstream primers (10μM) of 0.25μl, Taq enzyme 0.125μl, replenishment 14.375μl, mixing in 0.5ml EP tubes.
     Statistical analysis
     Using SPSS 16.0 statistical software for statistical analysis, group and between groups using two independent samples t-test; groups compared using single factor analysis of variance (ANOVA),22 compared the use of LSD-t test.
     Results
     1. MC3T3-E1 cell morphology
     The suspensioned MC3T3-E1 cells were round. After cultured 24 h, in an inverted microscope could see the cell had been adherent, in the form of triangular, spindle-shaped, and a variety of polygonal forms. Piles of morphologically similar cells appeared cytoplasmic extension, with 2 to 4 and protruding nuclei obvious nucleolus definition (see as Figurel). After 3-4 d, cells in exponential growth, cell volume increased, rich in cytoplasm. After 6-7 d, cell fusion was stone pavement-like arrangement (see as Figure 2).
     2. Fluoride on the MC3T3-E1 cell proliferation
     Table 1 shows that after 24-72 h, compared with the control group, fluoride alone did not promote MC3T3-E1 cells proliferation.
     3. Fluoride, aluminum and aluminiunofluoride on cell proliferation
     Table 2 shows that after 72 h, compared with the control group, fluoride (50μM) or aluminum (5μM), did not promote MC3T3-E1 cells proliferation; Aluminiunofluoride stimulated proliferation in MC3T3-E1 cells (p<0.01). Compared with the control group, aluminiunofluoride group the proliferation rate had increased by 9.2%.
     4. cell cycle
     As seen from Table 3, compared with control group, fluoride (50μM), aluminum (5μM) had no obvious effect on cell cycle. Aluminiunofluoride significantly induced increase of G2/M phase, PI (proliferation index) and DNA relative content.
     5. Fluoride, aluminum and aluminiunofluoride on the ALP activity.
     As can be seen from table 3 after 5 d mineralization fluid exposure, compared with the control group, F (50μM) or aluminum (5μM) group, ALP expression had no significant change; aluminiunofluoride significantly promoted ALP expression (p<0.05), stimulated MC3T3-E1 cell differentiation.
     6. RT-PCR results
     6.1. Fluoride, aluminum and aluminiunofluoride on the OPG, RANKL mRNA expression.
     As can be seen from graph7、8 after 72 h exposure, compared with the control group, aluminiunofluoride group (F 50μM+Al 5μM) significantly promoted the OPG mRNA expression (p<0.05). The RANKL mRNA did not have difference in expression. Compared with the control group, the aluminiunofluoride group (F 50μM+Al 5μmol /L), RANKL/OPG ratio decreased, there is significant difference (p<0.05).
     6.2. Fluoride, aluminum and aluminiunofluoride on the Runx2, Osterix mRNA expression.
     As can be seen from graph 10、11、12, after 72 h exposure, compared with the control group, simple fluoride group or pure aluminum group had no significant change in the expression of Runx2, Osterix mRNA; aluminiunofluoride group significantly enhanced Runx2 mRNA expression (p<0.05); in the aluminiunofluoride group Osterix mRNA expression was significantly increased (p<0.01).
     Conclusions
     1. Fluoride alone did not elicit any proliferation in osteoblast, while the aluminiunofluoride could significantly improve MC3T3-E1 cells proliferation and the content of M-phase cell, modulate MC3T3-E1 cells from S phase to the M phase transformation.
     2. Aluminiunofluoride could increase the activity of ALP. Aluminiunofluoride could significantly increase MC3T3-E1 cells differentiation capacity.
     3. Aluminiunofluoride can significantly improve the expression of Runx2 and osterix mRNA, stimulate MC3T3-E1 cells differentiation and bone formation. Aluminiunofluoride could significantly enhance the expression of OPG mRNA and reduce the RANKL/OPG ratio, balance the RANKL/OPG in reconstruction.
     Innovative self-evaluation
     We study the initiation links of fluorosis in the perspective of aluminiunofluoride, study fluoride, aluminum and aluminiunofluoride on the MC3T3-E1 cells proliferation, differentiation, and mineralization capability. At present, bone reconstruction is a hot issue. According to OPG/RANKL ratio change and Runx2、Osterix mRNA expression we explore how fluoride modulates bone formation and absorption relationship in the process of signal transduction.
引文
1 Liang Li. The biochemistry and physiology of metallic fluoride:action, mechanism, and implications. Crit Rev Oral Biol Med,2003,14:100-114.
    2 Quarles DL, Richard J. Aluminum induced mitogenesis in MC3T3-E1 osteoblasts potential mechanism underlying neoosteogenesis. Endocrinology,1991,128:3144-3151.
    3 Martin RB. Ternary hydroxide complexes in neutral solutions of Al+ and F-. Biochem Biophy Res,1988,155:1194-1200.
    4 Bodor A, Toth I, Banyai I, et al.19 FNMR study of the equilibria and dynamics of the Al3+/F- sysyem. Inorg Chem,2000,39:2530-2537.
    5 孙殿军,刘立志.我国饮茶型氟中毒研究的回顾及展望.中国地方病学杂志,2005,24(1):122.
    6 Caplan AI, Dennis J E. Mesenchymal stem cells:progenitors, progeny, and pathways. J bone Miner Metab,1996,14:193-201.
    7 Toshihisa Komori. Regμlation of osteoblast differentiation by transcription factors. Journal of cellar biochemistry,2006,99:1233-1239.
    8 Ducy P, Schinke T, Karscnty G.. The osteoblast:a sop histicated fibroblast under cent ral surveillance. Science,2000,289:1501-1504.
    9 Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell,2002, 108:17-29.
    10 Gao Y, Jheona A, Nourkeyhania H, et al. Molecular cloning, structure, expression, and chromosomal localization of the human Osterix (SP7) gene. Gene,2004,341:101-110.
    11 Komori T, Yagi H, Nomura S, et al. Targeted disruption of cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell,1997, 89:755-764.
    12 Morinaga T, Nakagawa N, Yasuda H, et al. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis inhibitory factor. Eur J Biochem, 1998,254:685-691.
    13 Yamaguchi M, Fukagawa M. Role of zinc in regulation of protein tyrosine phosphatase activity in osteoblastic MC3T3-E1 cells:Zinc modulation of insulin-like growth factor-1 effect. Calcif Tissue Int,2005,76:32-38.
    14 Chabre, M. Trends Biochem. SCI,1990,15,6-10.
    15 Prigione A, Cortopassi G. Mitochondrial DNA deletions induce the adenosine monophosphate activated protein kinase energy stress pathway and result in decreased secretion of some proteins. Aging Cell,2007,6(5):619-630.
    16黄国伟,张静.氟铝联合对体外人胚大脑神经细胞毒作用的研究.环境与健康杂志,
    1997,16:196-198.
    17 Chavassieux P, Chenu C, Valentinopran A, et al. In vitro exposure to sodium fluoride does not modify activity or proliferation of human osteoblastic cells in primary cultures[J]. Bone Miner Res,1993,8:37-44.
    18 Toshio LM, Dominique B, Xuec CH, et al. Aluminum potentiates Pi transport stimμlation induced by fluoride in osteoblast-like cells. The Americian physiological society,1996, 271:E694-E701.
    19 Caverzasio J, Toshio L, Patrick A, et al. Aluminum potentiates the effect of fluoride on tyrosine phosphorylation and osteoblast replication in vitro and bone mass in vivo. Journal of bone and mineral research,1996(11):46-55.
    20 Lau KH, Aera Yoo, Wang SP. Aluminum stimulates the proliferation and differentiation of oseteoblasts in vitro by a mechanism that is different from fluoride.1991,105:93-105.
    21 Kyung WK, Suk JS, Tae KL. Effect of safflower seeds supplementation on stimulation of the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. Journal of Ethnopharmacology,2008,115:42-49.
    22 Chavassieux P, Chenu C, Valentin-opran A, et al. In vitro exposure to sodium fluoride does not modify activity or proliferation of human osteoblastic cells in primary cultures. Bone Miner Res,1993,8:37-44.
    23 Stein GS, Lian JB. Molecular mechanism mediatings proliferation, differentiation interrelationships during progress development of the osteoblast phenotype. EndocrRev,1993,14(4):424—442.
    24 Hall B K. Sodium fluoride as an initiator of osteogenesis from embryonic mesenchyme in vitro. Bone,1987,8:111-116.
    25 Kyung WK, Suk JS, Tae KL. Effect of safflower seeds supplementation on stimulation of the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. Journal of Ethnopharmacology,2008,115:42-49.
    26 Komori T, Yagi H, Nomura S, et al. Targeted disruption of cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell,1997, 89:755-764.
    27 Bortell R, Barone LM, Tassinari MS, et al. Gene expression during endochondral bone development:evidence for coordinate expression of transforming growth factor to and collagen type I. J Cell Biochem,1990,44:81-91.
    28董世武.MAPK信号转导在成骨细胞分化中的作用.国外医学分子生物学分册,2003,25(1):37-41.
    1 Dovio A, Data V, et al. Circμlating osteoprotegerin and soluble RANK ligand in systemic sclerosis. J Rheumatol,2008,35(11):2206-13.
    2 Roato I, Patrizia DA, Eva G, et al. Osteoclasts Are Active in Bone Forming Metastases of Prostate Cancer Patients. Plos ONE,2008,3(11):3627.
    3 Suda T, Takahashi N, Udagawa N, et al. Modμlation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Rev,1999,20(3):345-357.
    4 Krieger I, Odrowaz G. Osteoprotegerin O. Traumatol Rehabi,2004,6(1):123-129.
    5 John R, Farley JE, Wergedal, et al. Fluoride Directly Stimulates Prolifera-tion and Alkaline Phosphatase Activity of Bone-Forming cells. Science,1983, (222):330-332.
    6 Blair JM, Zheng Y, Dunstan CR, et al. RANK ligand. Int J Biochem CellBiol,2007,39(6): 1077-1081.
    7 Kiechl S, Werner P, Knoflach M, et al. The osteoprotegerin/RANK/RANKL system:a bone key to vascμlar disease. Expert Rev Cardiovasc Ther,2006,4(6):801-811.
    8 Blair JM, ZhengY, Dunstan CR. RANK ligand. Int J Biochem CellBio,2007,39(6): 1077-1081.
    9 Seidel C, Hjertner O, Abildgaard N, et al. Serum osteoprotegerin levels are reduced in patients with mμltiple myeloma with lytic bone disease. Blood,2001,98(13):2269-2271.
    10 Morinaga T, Nakagawa N, Yasuda H, et al. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis inhibitory factor. Eur J Biochem, 1998,254:685-691.
    11 Mlrike Heider, Corinna L, Christian J, et al. Expression of RANK on bone marrow plasmacells correlates with osteolytic bone disease inpatients with-mμltiple myeloma. Clin Cancer Res,2003,9(16):1426-40.
    12 Standal T, Seidel C, Hjertner O, et al. Osteoprotegerin is bound,internalized anddegraded by mμltiple myeloma cells. Blood,2002,100(15):3002-3007.
    13 Jakob F, Seefried L, Ebert R. Pathophysiology of bone metabolism. Internist,2008, 49(10):1159-64.
    14 Nybo M, Rasmussen LM. The capability of plasma osteoprotegerin as a predictor of cardiovascμlar disease:a systematic literature review. Eur J Endocrinol.2008,159(5): 603-8.
    15 Prigione A, Cortopassi G. Mitochondrial DNA deletions induce the adenosine monophosphate-activated protein kinase energy stress pathway and result in decreased secretion of some proteins. Aging Cell,2007,6(5):619-30.
    16 Findlay D, et al. Circμlating RANKL is inversely related to RANKL mRNA levels in
    bone in osteoarthritic males. Arthritis Res Ther,2008,10(1):R2.
    17 McCormick RK. Osteoporosis:integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev,2007,12(2):113-45.
    18 Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev, 2008,29(2):155-192.
    19 Santiago RA. Bone mineral apparent density in juvenile dermatomyositis:the role of lean body mass and glucocorticoid use. Scand J Rheumatol,2008,37(1):40-47.
    20 Cao J, Venton L, Sakata T, et al. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6mice. J Bone Miner Res,2003,18(2):270-272.
    21 Qu WJ, Zhong DB, Wu PF, et al. Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J Bone Miner Metab,2008,26:328-334.
    22 Enomoto H, Shiojiri S, Hoshi K, et al. Induction of osteoclast differentiation by runx2 through receptor activator of nuclear factor-KB Ligand (RANKL) and Osteo-protegerin regμlation and partialrescue of osteoclastogenesis in Runx2 Mice by RANKL Transgene. J Biol Chem,2003,278(26):23971-23977.
    23 McHμgh NA, Vercesi HM, Egan RW, et al. Receptor activator of NF-B ligandarrests bone growth and promotes cortical bone resorption in growing rats. J Appl Physiol,2003,95(2): 672-676.
    24 Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilicals cord. Stem Cells,2003,21:105-110
    25 Palmer C, Wolfe SH. Position of the American Dietetic Association:the impact of fluoride on health. J Am Diet Assoc,2005,105(10):1620-1628
    26 Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotyte in the adμlt murine heart. Circμlation,2002,105:93-98.
    27 Kyung WK, Suk JS, Tae KL, et al. Effect of safflower seeds supplementation on stimμlation of the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. Journal of Ethnopharmacology,2008,115:42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700