用户名: 密码: 验证码:
大转角运动模拟器的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从解决传统运动模拟器转角、刚度有限的角度出发,提出一种冗余并联式运动模拟器解决该难题。其主要目的是充分利用冗余并联机构结构紧凑,刚度高,力矩传递性能好等优点。主要研究内容为:
     首先,提出了能满足运动模拟器姿态角变化的运动机构,即三转动冗余球面并联机构。对该冗余并联机构的结构、自由度、装配条件进行了分析。
     然后,对运动模拟器的运动学进行了分析,主要包括运动学正解、反解、速度以及加速度的分析。根据实例计算出运动学正反解结果,并绘制位置、速度、加速度的输入输出曲线。基于运动学反解对运动模拟器的运动结构进行了图形学仿真。仿真结果将为后续研究提供理论参考。
     接着对运动模拟器的工作性能进行了分析。考察了连杆的结构夹角对模拟器姿态工作空间的影响。建立整机干涉数学模型的,并考察杆件布置对干涉的影响。运用螺旋理论阐述模拟器奇异问题产生的原因,并在该理论基础上构造雅克比矩阵作为模拟器奇异判断的数学条件;利用条件数对模拟器的力矩传递性能进行了分析。基于以上分析结果对比冗余与非冗余的性能进行对比,并得出冗余对力矩传递性能有一定的提升且能减少模拟器的并联奇异。
     利用弹性力学及小变形理论建立运动模拟器整体静力学模型,得出各个关节的受力情况和各条支链的变形情况,并在此基础上构造运动模拟器的柔度矩阵,并得出输出平台中心点在受力时的变形情况。对比冗余与非冗余的刚度与受力性能,并得出冗余时动平台的广义位移较非冗余时的小,且关节处受力更均匀。
     最后建立运动模拟器的三维模型,并对运动模拟器运动学和轨迹规划进行了仿真。仿真结果基本与理论设计相吻合。总的来说本研究将为工程实际提供一定的理论参考价值。
In order to improve the rotation angle and stiffness of traditional motion simulator, this thesis put forward a new kind of redundant parallel motion simulator with three rotational degreed. Redundancy parallel mechanism has many benefits,such as compact structure, high stiffness, good torque transmission ability. The main contents are as follows:
     Firstly, a new three rotational degree redundant spherical parallel mechanism as motion simulator is performed, and then the structure, degree, assembly condition are analyzed.
     Nest, the kinematics of motion simulator is analyzed, including forward kinematic, inverse kinematic, speed and acceleration analysis. And then the graphics simulation of motion simulator was studied which provide reference for the subsequent research.
     Then, the performance of the motion simulator are analyzed. Work space is obtained based on link angle. Mathematical model of interference is obtained through analysis the layout of the stem. By using screw theory the singular reason of motion simulator, and the Jacobian matrix was obtained. The ability of torque transmission is analyzed by using the index of Condition number. At last the different performance of redundancy and non-redundancy motion simulator is compared.
     After that, By using the theory of elasticity and small deformation, the statics model of motion simulator is built. The force and deformation of all joint and chain were derived. On the basis of statics model the generalized displacement and stiffness matrix of spherical center was deduced. The results show that redundant has better rigidity.
     Last,3D model of simulator is bulit and the kinematics and trajectory planning simulation are used to verify the theoretical design. The results of this research will provide theoretical basis for engineering practice.
引文
[1]海之雁.我国飞行模拟器发展简史(一)2012,i. baidu.com/tpnfxmn/item/6a6856fd71 a695 12fe3582f4.
    [2]Gosselin C. M., Vollmer f., Cote G., et al.Synthesis and design of reactionless three-degree-of-freedom parallel mechanisms[J]. IEEE Transactions on Robotics and Automation, 2004, 20(2): 191-199.
    [3]曲云霞.二自由度解耦球面并联机构运动学行为研究.河北工业大学,2008.
    [4]童彭.空军飞行模拟器发展简史[J].飞行模拟,1993,(2):37-40.
    [5]毕德毅.飞行模拟器军用标准化初探[J].飞行模拟,994,(3):89-92.
    [6]魏上立.关于新教练机模拟训练的建议[J].飞行模拟,1995,(2):17-21.
    [7]王精业,张小超.仿真器的现状与发展[J].系统仿真学报,2005.4:879-884.
    [8]姜世发.飞行模拟器的回顾及其发展[J].电光与控制,1990,(3):115-119.
    [9]郭德庆.飞行模拟器及其运动系统的发展现状及前景.应海林黑龙江科技信息,2003/03.
    [10]知远AMST飞行模拟器迷向和离心训练器.中国网,2008,www.china.com.cn/index.shtml.
    [11]于行仁.彭晓源仿真器及其在我国的发展[J].系统仿真学报,1990,(02):15-20.
    [12]沈兵.飞行模拟器标准简介[J].航空标准化与质量,1993,(3)
    [13]郭德庆,应海林.飞行模拟器及其运动系统的发展现状及前景[J].黑龙江科技信息,2003,(3):43-50.
    [14]刘连松.五自由度驾驶模拟器的开发[D].北京:北京交通大学,2006,3.
    [15]William J.B., Dixie J.M., Rayner R.P.The History and Future of military Flight simulators [A]. AIAA Modeling and simulation Technologies conference and Exhibit, 2004.8.
    [16]刘力,刘兴堂.空中飞行模拟技术及应用[J].计算机仿真,22(10),2005:51-54.
    [17]杨婕.作战飞机飞行模拟器的特点与发展趋势[J].空军装备,2001,(4):58-60.
    [18]章伯定.国外工程地面飞行模拟器的发展趋势[J].飞行力学,1984,(01)
    [19]吴晓君,王昌金.基于Creator/Vega的战场飞行视景系统的实时仿真[J].系统仿真学报,2005,17(9):2297-2300.
    [20]李京伟,张利萍.基于虚拟现实技术的飞行视景仿真[J].计算机工程与设计,2005,26(7):1935-1937.
    [21]龚少华,沈为群,宋子善.基于PC机的实时视景仿真系统的研究与实现[J].计算机工程与应用,2002,38(4):118-121.
    [22]Gwinnett, J.E. Amusement devices, US Patent, No. 1789680, January 20, 1931.
    [23]赵震炎.地面飞行模拟器的现状和发展趋势[J].航空学报,1987,(10):20-25.
    [24]李绍安.某型战机飞行模拟器三自由度运动平台的研制[D].武汉.华中科技大学.2005.5.
    [25]谢广辉,魏少宁.飞行模拟器视景系统发展现状和趋势[J].航天医学与医学工程,2003,03.
    [26]吴家铸.视景仿真技术及应用[M].北京:西安电子科技大学出版社,2001.
    [27]高俊.虚拟现实在地形环境仿真中的应用[M].北京:解放军出版社,1999.
    [28]Pimental K., Teixeira K. Virtual reality[M].2nd Edition Intel Wind crest McGraw-Hill,1994.
    [29]WStrachan I. Virtual reality and simulation technology trends and markets[R]. Jane's Special Report, 2000.
    [30]宋国峰,程忠涛,袁立鹏.运动模拟器及其运动平台系统的发展现状及应用前景[J].机械 设计与制造,2003.
    [31]Pollard, W.L.G. Spray painting machine. US Patent, No.2213108, August 26, 1940.
    [32]Gough, V.E., Whitehall, S.G. Universal type test machine[J]. Proceedings of the FISITA Ninth International Technical Congress, 1962:117-137.
    [33]Stewart, D. A platform with six degrees of freedom[J]. Proceedings of the IMechE, 18(1): 371-385.
    [34]Ellis W. Piezoelectric micromanipulators[J]. Science Instruments and Techniques,1962.138: 84-91.
    [35]Hara K Sugimoto. Synthesis of parallel micro-manipulators[J]. Journal of Mechanisms, Transmissions and Automation in Design, 1989,111:34-39.
    [36]Hemini N., Sato K. Wada S., Shimokohbe A. A six-degree of freedom fine motion mechanism. Mechatronics,1992,12(5):445-457.
    [37]黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社,1997.
    [38]孙立宁,安辉,蔡鹤皋.压电陶瓷驱动并联微动机器人的研究[J].高技术通讯.1993:40-45
    [39]Cox D.J., Tesar D. The Dynamic Model of a 3-DOF Parallel Robotic Shoulder Module[C]. Proc of 4th International Conf. on Adavanced Robotics,1989,475-487.
    [40]Asada H., Cro Granito J. A. Kinematic and Static Characterization of Wrist Joint and Their Optimal Design[J].Proc.of IEEE International Conf. on Robots and AutomatJnn,1985,244-250
    [41]汪劲松,黄田.并联机床—机床行业面临的机遇与挑战[J].中国机械工程,1999,10(10):1103-1107.
    [42]黄真,赵永生,赵铁石.高等空间机构学[M].高等教育出版社,2006.
    [43]Zanganeh K E, Angeles J. Mobility and Position Analyses of a Novel Redundant Parallel Manipulator. IEEE International Conference on Robotics and Automation[C],1994, 3049-3054.
    [44]Kim J., Park F. C, Ryu S. J., et al. Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining [J]. IEEE Transactions on Robotics and Automation. 2001.8, 17(4):423-434.
    [45]Kim J., Hwang J. C, Kim J. S. Park.Eclipse-11:A New Parallel Mechanism Enabling Continuous 360-degree Spinning Plus Three-axis Translational Motions[J]. IEEE International Conference on Robotics and Automation,2001.5,18(3):367-373.
    [46]O'Brien J. F., Wen J. T, Redundant actuation for improving kinematic manipulability[C]. IEEE International Conference on Robotics and Automation,1999, vol.2,1520-1525.
    [47]白志富,韩先国,陈五一.基于冗余驱动的大姿态角并联机构优化设计[J].北京航空航天大学学报,2006,32(7):856-859.
    [48]白志富,韩先国,陈五一.冗余驱动消除并联机构奇异研究[J].航空学报,2006,27(4):733-736.
    [49]白志富,梁辉,陈五一.冗余并联机构的内力及应用[J].机械设计与研究,2006,22(4):13-16.
    [50]Liao H. B., Li T, Tang X.Q. Singularity analysis of redundant parallel manipulators[C]. IEEE International Conference on Systems, Man and Cybernetics, Dynamics and Control of Redundantly Actuated Parallel Manipulator, Vol.5,2004, 4214-4220.
    [51]Cheng H., Yiu YK., Li Z. Dynamics and Control of Redundantly Actuated Parallel Manipulators[J], IEEE/ASME TRANSACTIONS ON MECHATRONICS.2003,12. 8(4): 483-491.
    [52]张立杰,黄真.一种球面冗余并联机构设计的基础研究[J].中国机械工程,2006,17(7):681-684.
    [53]WANG J., GOSSELIN C. M. Kinematic analysis and design of kinematically redundant parallel mechanisms [J]. Journal of Mechanical Design, 2004, 126(1):109-118.
    [54]Conkur E. S., Buckingham R. Clarifying the Definition of Redundancy as Used in Robotics 1997,2,5(15):583-586.
    [55]Baron L., Member, Angeles J. The Direct Kinematics of Parallel Manipulators under Joint-Sensor Redundancy. IEEE Transactions on robotics and automation,2000,16(1):12-19.
    [56]杨建新,余跃庆.新型平面三自由度冗余并联机构的动力学分析[J].机械设计与研究,2005,21(5):26-28.
    [57]陈嘉震.航用球面三角学[M].人民交通出版社,1958.
    [58]董彦.六自由度飞行模拟器运动平台仿真[D].南京理工大学,2005.
    [59]李艳文.几类空间并联机器人的奇异研究[博士学位论文].秦皇岛.燕山大学.2005.2.
    [60]从爽.并联机器人-建模、控制优化与应用.电子工业出版社,2010.
    [61]张立杰,刘辛军.球面三自由度并联机器人可达工作空间的研究[J].中国机械工程,2001,12(10):1122-1125.
    [62]罗友高,郑相周,宾鸿赞.移动性3-UPU并联机构的刚度分析[J].中国机械工程,2006:78-80.
    [63]Kordjazi H., Akbarzadeh A., Enferadi J. Stiffness Analysis of a 3-PRR Planar Parallel Manipulator[J]. Journal of Systems and Control Engineering,2010:101-105.
    [64]Enferadi J., Tootoonchi A. A. Accuracy and stiffness analysis of a 3-PRP spherical parallel manipulator. Cambridge University Press 2010.2010,(29):193-209.
    [65]Bo H., Yi L., Tan Q. Analysis of stiffness and elastic deformation of a 2(SP+SPR+SPU) serial-parallel manipulator. Robotics and Computer-Integrated Manufacturing.2011:418-425.
    [66]范成建,熊光明,周明飞.虚拟样机软件MSC. ADAMS应用于提高[M].机械工业出版社,2006,9.
    [67]贾长治,殷军辉,薛文星MD ADAMS虚拟样机从入门到精通[M].机械工业出版社,2011,8.
    [68]二代龙震工作室.Pro/Mechanism/MECHANICA Wildfire 2.0机构/运动/结构/热力分析[M].电子工业出版社,2006.
    [69]葛正浩,杨芙莲Pro/ENGINEER Wildfire 3.0机械结构有限元分析[M].化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700