用户名: 密码: 验证码:
复合汞膜溶出伏安法在环境、食品中的分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体的健康与微量元素的含量有着密切的关系。简便、快速、灵敏、干扰少的微量元素定量分析方法在环境科学、药品、食品及临床分析中具有重要的作用。化学修饰电极是70年代发展起来的一门新兴技术,它也是目前最活跃的电化学和电分析化学的前沿领域之一。在制备修饰电极的诸多材料中,以普鲁士蓝为代表的多核金属铁氰化物因其良好的化学和电化学稳定性,在包括催化、电化学传感器、功能材料、离子识别、固态电池和分子磁性物质等方面得到了广泛的应用。我们结合类普鲁士蓝修饰电极和传统汞膜电极的优点,在玻璃碳基质上进行了新型铕离子掺杂类普类鲁士蓝复合汞膜电极的制备并开展了一些分析应用研究。本文创新点是利用电化学沉积法制备的铕离子掺杂类普鲁士蓝复合汞膜电极建立了环境样品中铅、镉、铜、铋及维生素B_2的测定方法。该电极所呈现的显著特点是灵敏度高、稳定性好、抗干扰能力强和使用寿命长等优点,具有潜在的应用价值,测定结果令人满意。
     论文的主要研究内容包括以下四部分:
     第一章综述
     第一节概述了复合汞膜的发展历史和概况,对化学修饰型复合汞膜电极的制备方法及应用进行了简单介绍;第二节概述了溶出分析技术的分类及其应用,并对阳极溶出伏安法和阴极溶出伏安法进行了重点介绍;第三节对使用阳极溶出伏安法检测环境样品中重金属离子的分析应用进行了综述;第四节对食品中的水溶性维生素成份的性质进行了简介,并重点综述了电化学方法测定食品中水溶性维生素的方法。最后介绍了本论文的研究目的和意义。这部分共引用文献100篇。
     第二章复合汞膜阳极溶出法检测城市绿化树叶上的附着铅
     采用示差脉冲阳极溶出伏安法对城市绿化树叶上附着铅的含量进行了检测,并根据测得结果分析了树叶上附着铅的主要污染来源。结果表明:采用新型铕离子掺杂类普鲁士蓝复合汞膜电极(PB-Eu/MFE)为工作电极,在0.01mol/L HNO_3底液中,铅离子于-0.472V(vs.SCE)处产生一个灵敏的阳极溶出峰。在最佳实验条件下,其溶出峰电流与铅的浓度在2.4~300μg/L(r=0.9991,n=11)之间呈良好的线性关系,检测下限为0.2μg/L(S/N=3),RSD为1.35%。用该法检测了兰州市三个不同采集地点的城市绿化白蜡树叶上的附着铅含量,回收率为97.3%~102%。由测定结果可知汽车尾气污染是树叶上附着铅的重要来源,附着铅的含量与邻近交通要道的车流量之间有正相关性。
     第三章复合汞膜阳极溶出法检测废电池中的铋铜铅镉
     本文建立了用示差脉冲阳极溶出伏安法同时测定废旧电池中铋铜铅镉的方法。结果表明:采用新型铕离子掺杂普鲁士蓝复合汞膜电极(PB-Eu/MFE)为工作电极,在1M KCl-10%乳酸底液中,铋铜铅镉离子分别于-0.21V、-0.34V、-0.55V、-0.75V(vs.SCE)处产生灵敏的阳极溶出峰。在最佳实验条件下,其溶出峰电流与浓度(μg/L)分别在4.0~160(r=0.9986,n=8),2.0~160(r=0.9992,n=8),2.0~240(r=0.9990,n=8),8.0~360(r=0.9989,n=8)之间呈良好的线性关系;检测下限分别为0.4μg/L、0.4μg/L、0.2μg/L、0.6μg/L(S/N=3);RSD分别为3.80%、3.61%、2.37%、3.88%。用该法实测了四种不同品牌的废旧电池中这四种金属的含量,回收率为97.4%~104%。本法操作简便、准确、灵敏度高、结果重现性佳。
     第四章复合汞膜吸附阴极溶出法测定药片及软饮料中的核黄素(VB_2)
     本文建立了一种用复合汞膜电极示差脉冲吸附阴极溶出伏安法检测药片及软饮料中的核黄素(VB_2)含量的分析方法。结果表明:采用新型铕离子掺杂类普鲁士蓝复合汞膜电极(PB-Eu/MFE)为工作电极,在0.04mol/L KCl-0.01mol/LHNO_3底液中维生素B_2于-0.25V(vs.SCE)处产生一个灵敏的吸附阴极溶出峰。在最佳实验条件下,维生素B_2的浓度与还原峰电流在16~1600μg/L(r=0.9989,n=9)范围内呈现出良好的线性关系,最低检测下限为1.2μg/L(S/N=3),其相对标准偏差(RSD)为1.58%。用该法实测了药片维生素B_2,复合维生素及美汁源果粒橙饮料中维生素B_2的含量。
The content of trace elements has great relation to human health.The determination of trace elements plays an important role in the essay of environmental science,medicine,food and clinic.The chemically modified electrode(CME) has been one of the most flourish research realms in the electrochemistry and electroanalytical chemistry since it was developed in the 1970th.Among various of modified materials used to fabricate chemically modified electrode,polynuclear metal hexacyanometallate have been extensive studies for the applications in electrocatalysis,electrochemical sensors,functional materials,molecular sieves, solid-state batteries and molecular magnetism due to their good chemical and electrochemical stability,profuse electrochemical activities.Combined analogue of prussian blue modified electrode and the traditional advantages of mercury film electrode,this thesis studies the preparation and electroanalytical application of the modified PB-Eu composite mercury film electrode(PB-Eu/MFE) on glass carbon substrate.The PB-Eu/MFE has successfully apply to determine trace levels of bismuth,copper,lead,cadmium and vitamin B_2 in environmental samples by differential pulse stripping voltammetry.The PB-Eu/MFE remarkably shows higher sensitivity,perfect stability,long-lived and good date repeatability and also more and more potential application in the field of electroanalysis future and satisfactory results are obtained.
     The main researches are summarized as follows:
     Chapter One Review
     The first section has reviewed the history,current situation and future trend of composite mercury film.The preparation and application of chemically modified composite mercury film electrode are introduced simply.In the second section,the type and application of stripping voltammetry are summarized in detail,paying attention to anodic stripping voltammetry and cathodic stripping voltammetry.The present application researches of anodic stripping voltammetry in analysis of environmental samples are introduced in the third section.The fourth section summarizes the vitamins feature in food and pays more attention to the determination of using water-solubility vitamins matters electrochemical methods.At last,the purpose and meaning of this work are discussed.Totally 100 references are cited in the chapter one.
     Chapter Two Determination of adhesive lead(Ⅱ) of leaves in city using anodic stripping voltammetry with composite mercury film electrode
     Adhesive lead(Ⅱ) of leaves in city is determined by differential pulse anodic stripping voltammetry and the main causation that made tree contaminated is deduced by the experimental data.The results reveals that a stripping peak potential of lead is observed at -0.472 V(vs.SCE) in 0.01 mol/L HNO_3 using the PB-Eu composite mercury film electrode as working electrode.Under the optimum conditions,good linearity is obtained in the concentration range of 2.4~300μg/L(r=0.9991,n=11) with a detection limit of 0.2μg/L(S/N=3) and RSD is 1.35%.This method is used for the determination of lead adhered to the surface of leaves,which is sampled in three different locals of Lanzhou city.The recoveries of the method are 97.3%-102%.The results showed that the lead pollution on tree leaves is from automobile tail-gas mainly and its lead content is positively correlative with the traffic presented on city streets near the tree.
     Chapter Three Determination of bismuth,copper,lead and cadmium of waste dry batteries using anodic stripping voltammetry with composite mercury film electrode
     A PB-Eu composite mercury film electrode is developed for simultaneous determination bismuth,copper,lead and cadmium of waste dry batteries by differential pulse anodic stripping voltammetry.The results reveals that stripping peak potentials of bismuth,copper,lead and cadmium are observed at -0.21 V,-0.34 V,-0.55 V,-0.75 V(vs.SCE) in 1 M KCl-10%lactic acid using the PB-Eu composite mercury film electrode as working electrode.Under the optimum conditions,the method has good linearity in the ranges of 4.0~160μg/L for bismuth(r=0.9986,n=8), 2.0~160μg/L for copper(r=0.9992,n=8),2.0~240μg/L for lead(r=0.9990,n=8)and 8.0~360μg/L for cadmium(r=0.9989,n=8);detection limits are 0.4μg/L,0.4μg/L, 0.2μg/L and 0.6μg/L(S/N=3);RSD are 3.80%,3.61%,2.37%and 3.88%for bismuth, copper,lead and cadmium,respectively.This method is used for the simultaneous determinations of bismuth,copper,lead and cadmium of waste dry batteries,the recoveries of the method are 97.4%-103%.The results show that the advantages of this method are simple and fast,its operation is stable and reliable,it is applied to simultaneous determination of these elements in waste dry batteries samples with satisfactory results.
     Chapter Four Determination of VB_2 in tablets and soft beverage using cathodic adsorptive stripping voltammetry with composite mercury film electrode
     VB_2 in tablets and soft beverage is determined by differential pulse adsorptive cathodic stripping voltammetry with composite mercury film electrode.The results reveal that an adsorptive stripping peak potential of VB_2 is observed about -0.25 V (vs.SCE) in 0.04mol/L KCl-0.01mol/L HNO_3 support electrolyte.Under the optimum conditions,good linearity is obtained in the concentration range of 16~1600μg/L(r=0.9989,n=9) with a detection limit of 1.2μg/L(S/N=3) and RSD of 1.58%. This method is used for the determination of VB_2 in tablets and soft beverage.The satisfactory results are obtained.
引文
[1]Royec D.S.,James Q.C,Z.L.Xue,Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes,Analytica Chimica Acta,1993,03:1-34
    [2]Economou A.,Fielden P.R.,Mercury film electrode:development,trend and Potentiallities for electroanalysis,Analyst,2003,28:205-212
    [3]Yan L.S.,Wei C.,Chao L.,Preparation of antifouling ultrafiltration membranes with poly(ethyleneglycol)-graft-polyacrylonitrile,Journal of Membrane Science,2009,329:246-252.
    [4]Grigore M.,Eithne D.,Timothy M.C.,Rapid catalytic-adsorptive determination of picomolar concentartions of Cu~(2+) with the mercury monolayer carbon fiber electrode.Journal of Electroanalytical Chemistry,2009,75:1-42
    [5]Turyan Y.I.,Microcells for voltammetry and stripping voltammetry,Talanta,1997,44:1-13
    [6]Kefala G,Economou A.,Voulgaropoulos A.,et al.A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair,Talanta,2003,61:603-610
    [7]Samo B.H.,Bozoeidar O.,etal.A study on operational parameters for advanced use of bismuth film electrode in anodic stripping voltammetry.Electroanalysis,2002,14:1707-1712
    [8]Wang J.,Lu J.,Samo B.H.,etal.Bismth-coated carbon electrodes for anodic stripping voltammetry.Analytical Chemistry,2000,72(14):3218-3222
    [9]AbrunaH.D.,Denisevich P.,Umauna M.,etal,J.Am.Chem.Soc.1981,103:127-134
    [10]Yang H.Y.,Chen W.Y.,Sun I.W.,Anodic stripping voltammetric determination of bismuth(Ⅲ) using a Tosflex-coated mercury film electrode,Talanta,1999,50:977-984
    [11]Zen J.M.,Huang S.Y.,Square-wave voltammetric determination of lead(Ⅱ)with a Nafion/2,2-bipyridyl mercury film electrode,Analytica Chimica Acta, 1994,296:77-86
    [12]Wring S.A.,Hart J.P.,Bracey L.,et al,Development of screen-printed carbon electrodes,chemically modified with cobalt phthalocyanine,for electrochemical sensor applications,Anal.Chim.Acta,1990,231:203-212
    [13]Brett C.M.A.,Fungaro D.A.,Morgado J.M.,et al,Novel polymer-modified electrodes for batch injection sensors and application to environmental analysis,Journal of Electroanalytical Chemistry,1999,468:26-33
    [14]Lu T.H.,Huang J.F.,Sun I.W.,Perfluorinated anion-exchange polymer mercury film electrode for anodic stripping voltammetric determination of zinc(Ⅱ):effect of model organic compounds,Anal.Chim.Acta.,2002,454:93-98
    [15]Hoyer B.,Florence T.M.,Batley G.E.,Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry,Anal.Chem.,1987,59:1608-1614
    [16]Tsai Y.C.,Davis J.,Compton R.G.,et al,Polypyrrole coated mercury film electrodes for Sono-ASV analysis of cadmium and lead,Electroanalysis,2001,13:7-12
    [17]Zen J.M.,Lin H.Y.,Yang H.H.,Elimination of the copper-zinc interference at mercury electrodes by a Nation/clay modified layer,Electroanalysis,2001,13:505-508
    [18]Lu T.H.,Yang H.Y.,Sun I.W.,Square-wave anodic stripping voltammetric determination of thallium(Ⅰ) at a Nation:mercury film modified electrode,Talanta,1999,49:59-68
    [19]Dam M.E.R.,Thornsen K.N.,Pickup P.G.,Comparative study of polymercoated mercury film electrodes for voltammetric analysis of lead and cadmium in the presence of surfactants,Electroanalysis,1995,7:70-79
    [20]Aldstadt J.H.,Dewald H.D.,Effect of model organic compounds on potentiometric stripping analysis using a cellulose acetate membrane-covered electrode,Anal.Chem.,1993,65:922-926
    [21]Christensen M.K.,Hoyer B.,Comparative study of conventional and cellulose acetate-coated mercury film electrodes for speciation of lead in the presence of humic acid,Electroanalysis,2000,12:35-38
    [22]Wang J.,Taha Z.,Poly(ester-sulfonic acid)-coated mercury film electrodes for anodic stripping voltammetry,Electmanalysis,1990,42:383-387
    [23]Wang Z.,Galal A.,Zimmer H.,et al,Stripping voltammetry at mercury "films"deposited on conducting poly(3-Methylthiophene) electrodes,Elec-troanalysis,1992,4:77-85
    [24]Zhao G.H.H,Wallace G.G.,Development of a polymer dispersed-mercury modified electrode,Anal.Chim.Acta,1990,238:345-350
    [25]Turyan I.,Mandler D.,Self-assembled monolayers in electroanalytical chemistry:Application of omega.-mercaptocarboxylic acid monolayers for electrochemical determination of ultra low levels of cadmium(Ⅱ).Anal.Chem.,1994,66:58-63
    [26]Mogensen L.,Kryger L.,Zeolite/polymer-modification of a mercury electrode.effects on the Cu~(2+) interference in the stripping determination of Zn~(2+),Electroanalysis,1998,10:1285-1287
    [27]Murimboh J.,Lam M.T.,Hassan N.M.,et al,A study of Nation-coated and uncoated thin mercury film-rotating disk electrodes for cadmium and lead speciation in model solutions of fulvic acid,Anal.Chim Acta,2000,423:115-126
    [28]Vidal J.C,Vinao R.B.,Castillo J.R.,Binding capacity of casein to lead and voltammetric speciation of lead in milk with a nation coated Electrode.Electroanalysis,1992,4:653-659
    [29]王国顺,吕荣山,施清照译著。电化学分析-溶出伏安法,北京:中国计量出版社,1955
    [30]汪尔康,质子交换膜燃料电池膜电极,分析化学,1998,26:768-771。
    [31]Zen J.M.,etal.Square-wave voltammetric stripping analysis of bismuth(Ⅲ) at a poly(4-vinylpyridinei/mercury film electrode).Analytica Chimica Acta.1996,320:43-51.
    [32]张祖训,王春明.方波极谱研究Ⅶ.阳极溶出电流理论.南京大学学报(自然科学版),1984,01,79-81.
    [33]郭会时,周悦,王少玲,彭翠红。电位溶出分析和计时电位溶出分析及其应用。韶关学院学报 自然科学版,2001,6:59-64。
    [34]严金龙,孙汝东。阳极溶出方波伏安法同时测定食醋中的铜、铅和镉。 食品科学,2001,22(6):51-52。
    [35]周享春,童长青,李惟熔。阳极溶出伏安法测定钴的研究。长江大学学报(自科版),2005,4(2):119-122。
    [36]熊治强,郝恩坤,冯家毅。阳极溶出法同时测定痕量锡和镉。岩矿测试,1996,15(1):77-79.
    [37]周毓珍.阳极溶出伏安法测定自来水中铜、铅、镉、锌.环境工程,1997,15(2):55-58.
    [38]朱鸣鹤,丁永生,郑道昌等.二阶微分阳极溶出伏安法测定纯净水中痕量常见重金属.大连海事大学学报,2005,31(1):66-68.
    [39]Zhang X.,Geng P.,Liu H.,Development of an electrochemical immunoassay for rapid detection of E.coli using anodic stripping voltammetry based on Cu、Au nanoparticles as antibody labels.Biosensors and Bioelectronics,2009,24:2155-2159.
    [40]M.angeles G.,Julian A.,Julia M.Lead in edible mushrooms levels and bioaccumulation factors.Journal of Hazardous Materials,2009,12:231-234.
    [41]Yang W.,.Liu Z,Hu X..On-line coupling of sequential injection lab-on-valve to differential pulse anodic stripping voltammetry for determination of Pb in water samples.Talanta,2009,77:1203-1207.
    [42]Jaroon J.,Determination of cadmium,lead,copper and zinc in the acetic acid extract of glazed ceramic surfaces by anodic stripping voltammetric method.Talanta,2008,77:172-175.
    [43]Robert P.,Boguslaw B.,The cyclic renewable mercury film silver based electrode for determination of manganese(Ⅱ) traces using anodic stripping voltammetry.Journal of Electroanalytical Chemistry,2008,621:43-48.
    [44]Neven C.,Petra C.,Marina M.,Spatial distribution of trace metals in the Krka River,Croatia:an example of the self-purification.Chemosphere,2008,72:1559-1566.
    [45]Crew A.,Cowell D.C.,Hart J.P.,Development of an anodic stripping voltammetric assay,using a disposable mercury-free screen-printed carbon electrode,for the determination of zinc in human sweat.Talanta,2008,75:1221-1226.
    [46] Ufuk C. ,Jorg O. ,High contents of cadmium, lead, zinc and copper in popular fishery products sold in Turkish supermarkets. Food Control, 2007, 18: 258-261.
    
    [47] Bhardwaj T.K., Sharma H.S., Aggarwal S.K.. Development of anodic stripping voltammetry for determination of gallium in U-Ga alloy. Journal of Nuclear Materials.2007, 360, 215-221.
    
    [48] Sherigara B.S., Shivaraj Y. ,J Ronald. Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode Assessment of quantification procedures by anodic stripping voltammetry. Electrochimica Acta, 2007, 52: 3137-3142.
    
    [49] Shokooh S. K., Determination of bismuth and copper using adsorptive stripping voltammetry couple with continuous wavelet transform. Talanta, 2007, 71: 324-332.
    
    [50] Ali.AE, Khayamian, T. Benvidi A.,. Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network. Analytica Chimica Acta, 2006, 561: 225-232.
    [51] Veronica A., Alex L., Extraction of arsenic as the diethyl dithiophosphate complex with supercritical fluid and quantitation by cathodic stripping voltammetry. Talanta, 2006, 68: 1567-1573.
    
    [52] Monica C., Vargas M. , Simultaneous determination of cadmium and lead in medicinal plants by anodic stripping voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37: 709-713.
    
    [53] laria P. , Serena L., Marco M.. Miniaturised stripping-based carbon modified sensor for infield analysis of heavy metals. Analytica Chimica Acta. 2005, 530: 61-67.
    
    [54] Clinio L., Giancarlo T., Simultaneous square wave anodic stripping voltammetric determination of Cr, Pb, Sn, Sb,Cu, Zn in presence of reciprocal interference: application to meal matrices. Microchemical Journal, 2004, 78: 175-180.
    
    [55] Shams E. , Abdollahi H., H-point standard addition method in the analysis by differential pulse anodic stripping voltammetry Simultaneous determination of lead and tin. Talanta, 2004, 63, 359-364.
    [56] SandraC.C. Helena M., Joao E.J. Duarte. optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential. Analytica Chimica Acta, 2004, 503, 203-212.
    [57] OthmanA.F. ,Direct and simultaneous voltammetric analysis of heavy metals in tap water samples at Assiut city: an approach to improve the analysis time for nickel and cobalt determination at mercury film electrode. Microchemical Journal, 2003,75, 119-131.
    [58] JairoJ.P., Ivano G.R., Ultra-simple adaptor to convert batch cells with mercury drop electrodes in voltammetric detectors for flow analysis. Talanta, 2003, 60, 695-705.
    [59] Clarissa S. Piresde C., J.,The binding of zinc(II) to mung bean nuclease. A voltammetric study. Journal of Inorganic Biochemistry, 2003, 94, 365-371.
    [60] Siripat S., Jaroon J., Yuthsak V., Exploiting flow injection and sequential injection anodic stripping voltammetric systems for simultaneous determination of some metals. Talanta, 2002, 58,1235-1242.
    [61] Gilberto A., Jaim L., Jorge C. Construction and evaluation of a flow-through cell adapted to a commercial static mercury drop electrode (SMDE) to study the adsorption of Cd(II) and Pb(II) on vermiculite. Talanta, 2002, 58, 433-443.
    [62] Monica P. , Maria P. , Giuseppe D. , Determination of lead and cadmium in titanium dioxide by differential pulse anodic stripping voltammetry. Talanta, 2002, 58,481-488.
    [63] Adelaide M. F. , Aquiles A. Barros. determination of As(III) and arsenic(V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode. Analytica Chimica Acta, 2002,459, 151-159.
    [64] Lu T.H., Huang J.F., Perfluorinated anion-exchange polymer mercury film electrode for anodic stripping voltammetric determination of zinc(II): effect of model organic compounds. Analytica Chimica Acta, 2002,454, 93-100.
    [65] Francois Q. , Montserrat F., Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: stability of the trivalent state. Analytica Chimica Acta, 2002, 452, 237-244.
    [66]Pournaghi M.H.,Djozan D.,Determination of trace bismuth by solid phase extraction and anodic stripping voltammetry in non-aqueous media.Analytica Chimica Acta,2001,437,217-224.
    [67]Recai I.,Guler S..A direct method for the determination of selenium and lead in cow's milk by differential pulse stripping voltammetry.Food Chemistry,2000,69,345-350.
    [68]Pournaghi M.H.,Dastangoo H.,Differential pulse anodic stripping voltammetry of copper in dichloromethane:application to the analysis of human hair.Analytica Chimica Acta,2000,405,135-144.
    [69]Yang H.Y.,Chen W.Y..Anodic stripping voltammetric determination of bismuth(Ⅲ) using a Tosflex-coated mercury film electrode.Talanta,1999,50,977-984.
    [70]Lu T.H.,Yang H.Y.,Square-wave anodic stripping voltammetric determination of thallium(Ⅰ)ata Nation/mercury film modified electrode.Talanta,1999,49,59-68.
    [71]Silva P.R.M.,Development of Hg-electroplated-iridium based microelectrode arrays for heavy metal traces analysis.Analytica Chimica Acta,1999,385,249-255.
    [72]Eric F.,Constant M.G.Anodic stripping voltammetric of lead and cadmium using a mercury film electrode and thiocyanate.Analytica Chimica Acta,1999,385,273-280.
    [73]Llorenc,Monferrer P,Elisa CP,Micellar liquid chromatography determination of B vitamins with direct injection and ultraviolet absorbance detection.Journal of Chromatography A,2003,984:223-231
    [74]Borivoj K,Jitka P,David P,.The detection of vitamins in food.Analytica Chimica Acta,2004,520:57-67
    [75]薛爱芳,李胜清,韦明元,高效液相色谱法测定萘扑维眼液中的维生素B_(12).分析科学学报,2005,21(6):701-702
    [76]常相娜,黄荣清,王正平,B族维生素测定方法研究进展.科学技术与工程,2004,4(4):312-316
    [77]杨培慧,周志军,冯德雄。玻碳电极吸附循环伏安法测定维生素B_2,暨南大 学学报(自然科学版),2001,22(5),93-97。
    [78]向伟,李将渊,马曾燕。多壁碳纳米管修饰电极同时测定维生素B_2、B_6、B_(12)和维生素C。分析科学学报,2007,23(4),437-440。
    [79]刘莺,白燕,程涛,.核黄素(VB_2)在液体石蜡碳糊电极上的伏安特性及脉冲伏安法测定.广州化工,2004,32(1),46-50。
    [80]唐平,王娟,曾百肇。核黄素的微分脉冲溶出伏安分析,分析科学学报,2003,19(4),309-312。
    [81]Katarzyna T.,Sensitive voltammetric determination of rutin at an in situ plated lead film electrode.Journal of Pharmaceutical and Biomedical Analysis.2009,49,558-561.
    [82]G(u|¨)ler S.,Mehmet D.Direct and indirect methods for the determination of vitamin K_3 using differential pulse polarography and application to pharmaceuticals.Bioelectrochemistry,2008,74,96-100.
    [83]Fei X.,Ruan C.,Liu L.,Single-walled carbon nanotube-ionic liq uid paste electrode for the sensitive voltammetric determination of folic acid.Sensors and Actuators B:Chemical,2008,134,895-901.
    [84]Prasad B.B.,Srivastav a S.,Ascorbic acid sensor based on molecularly imprinted polymer-modified hanging mercury drop electrode.Materials Science and Engineering C.2008,46,5670-5674.
    [85]Wu S.H.,Sun J.J.,Nanomolar detection of rutin based on adsorptive stripping analysis at single-sided heated graphite cylindrical electrodes with direct current heating.Electrochimica Acta.2008,53,6596-6601.
    [86]Yang N.,Wang X..Thin self-assembled monolayer for voltammetrically monitoring nicotinic acid in food.Colloids and Surfaces B:Biointerfaces,2008,61,277-281.
    [87]Vishwanath D.V.,AshwiniK.S.Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry.Electrochimica Acta 2007,53,1713-1721.
    [88]Thangamuthu R.,Senthil S.M.Direct amperometric determination of 1-ascorbic acid(Vitamin C)at octacyanomolybdate-doped-poly(4-vinylpyridine)modified electrode in fruit juice and pharmaceuticals.Sensors and Actuators B,2007,120, 745-753.
    
    [89] Guo H.X., Li Y.Q., Li F.F., Voltammetric behavior study of folic acid at phosphomolybdic-polypyrrole film modified electrode. Electrochimica Acta.2006, 51,6230-6237.
    [90] Yang N., Wan Q., Wang X.. Voltammetry of Vitamin B_(12) on a thin self-assembled monolayer modified electrode. Electrochimica Acta, 2005, 50,2175-2180.
    [91] Jeffrey S., Masangu S.. Activation of the electrochemical properties of thiamin and its phosphate esters in acidic solutions.Journal of Electroanalytical Chemistry.2004 , 571, 283-287.
    [92] Marta P., Long-term variations of folic acid concentrations in the Northern Adriatic. Environment International, 2004, 30, 761-767.
    
    [93] Silvia R. Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B_6 andB_(12) vitamins in pharmaceutical preparations . Talanta, 2003, 61, 743-753.
    [94] Antonio R. F., Eder T. G. The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis , 2002,28, 909-915.
    [95] Wan Q., Yang N.. The direct electrochemistry of folic acid at a 2-mercaptobenzothiazole self-assembled gold electrode. Journal of Electroanalytical Chemistry.2002, 527, 131-136.
    
    [96] Imrana S., Pitre K.S.. Voltammetric determination of vitamins in a pharmaceutical formulation. Journal of Pharmaceutical and Biomedical Analysis. 2001,26, 1009-1015.
    
    [97] RodrigoA.A. RenatoC.M., Gold electrodes from compact discs modified with platinum for amperometric determination of ascorbic acid in pharmaceutical formulations. Talanta, 2001, 855-860.
    
    [98] Wang L.H. , Tseng S.W., Direct determination of D-panthenol and salt of pantothenic acid in cosmetic and pharmaceutical preparations by differential pulse voltammetry. Analytica Chimica Acta, 2001, 432, 39-48.
    
    [99] Ensaf A.K.,Anodic adsorptive voltammetric determination of the vitamin B_1, (thiamine).Journal of Pharmaceutical and Biomedical Analysis. 2000, 22, 1047- 1054.
    [100]Bravo C.,Gonzalez E.R.,A novel method for the determination of vitamin C in natural orange juices by electrochemical monitoring of dediazoniation of 3-methybenzenediazonium tetrafluoroborate.Analytica Chimica Acta,1999,385,373-384.
    [1]Amit K S,Munendra S.Lead decline in the Indian environment resulting from the petrol-lead phase-out programme,Science of the Total Environment,2006,368:686-694.
    [2]王洪兴,周娟.环境中铅的污染、中毒及预防.安全与环境工程,1996,4:43-44.
    [3]付大干,李华强.铅对未成熟脑育的影响及其作用机制进展.国外医学儿科学分册,2000,27(5):257-260.
    [4]雷凯,卢新卫,王利军.宝鸡市街尘中铅的污染与评价.环境科学与技术,2007,11(30):43-45.
    [5]庄炳游.Pb(Ⅱ)-XO-CTMAB光度法测定树叶上附着的铅量.理化检验-化学分册,2001,9:419-420.
    [6]张永航,赵中一,金继红等.固相反射散射分光光度法测定化妆品中的铅.环境科学与技术,2001,2:44-45.
    [7]Valfredo A.L.,Sergio L.C..On-line preconcentration system for lead determination in seafood samples by flame atomic absorption spectrometry using polyurethane foam loaded with 2-(2-benzothiazolylazo)-2-p-cresol.Analytica Chimica Acta.2001,441:281-289.
    [8]麦洁梅,成晓玲,张琪.氢化物发生-原子荧光光谱法测定铅的最佳酸度条件选择.中国卫生检验杂志,2007,7(17):1225-1226.
    [9]陈建国,朱丽辉,陈少鸿.ICP-AES同时测定涂料中镉、铬、钴和铅.光谱实验室,2004,6(21):1142-1145.
    [10]Economoua A.Fielden P R.Mercury film electrode:development,trend and Potentiallities for electro-analysis.Analyst,2003,128,205-212.
    [11]Brett C M A,Altes V A,Fungro D A.Nation-coated mercury thin film electrodes for batch-injection analysis with anodic stripping voltammetry Talanta 1996,43:2015-2022.
    [12]Liu J,Zhou W,You T,Li F.Detection of hydrazine methylhydrazine and isoniazid by capillary electrophoresis with a palladium-modified microdisk array electrode.Anal Chem,1996,68(6):3350.
    [13]NeffV D.Electrochemical oxidation and reduction of thin films of prussian blue,J.Electrochem.Soc,1978,125(5):886.
    [14]Abruna H.D.,Denisevich P.,J.Am.Chem.Soc.1981:103:243-247
    [15]Zen J.M.,Huang S.Y.,Square-wave voltammetric determination of lead(Ⅱ)with a Nafion/2,2-bipyridyl mercury film electrode,Anal.Chim.Acta,1994,296:77-86
    [16]Yang H.Y.,Sun I.W.,Determination of selenium(Ⅳ) by a photooxidized 3,3~′-Dia min obenzid ine/perfluorinated polymer mercury film electrode.Anal.Chem.,2000,72(15):3476-3479
    [17]Sandra C.C.M.,Helena M.C.,Armando C.D.,Ion-exchange and permselec tivity properties of poly(sodium4-styrenesulfonate) coatings on glassy carbon:application in themodification of mercury film electrodes for the direct voltammetricanalysis of trace metals in estuarine waters,Talanta,2005,65:644-653
    [18]Sandra C.C.M,Helena M.C.,Armando C.D.,Mixed polyelectrolyte coatings on glassy carbon electrodes:Ion-exchange,permselectivity properties and analytical application of poly-l-lysine-poly(sodium 4-styrenesulfonate)-coated mercury film electrodes for the detection of trace metals,Talanta,2006,68:1655-1662
    [19]Lu T.H.,Huang J.,Sun I.W.,Perfluorinated anion-exchange polymer mercury film electrode for anodic stripping voltammetric determination of zinc(Ⅱ):effect of model organic compounds,Analytica Chimica Acta,2002,454:93-100
    [20]Zen J.M.,Hsu F.S.,Chi N.Y.,et al,Effect of model organic compounds on square-wave stripping analysis at the Nation/chelating agent mercury film electrodes,Analytica Chimica Acta,1995,310:407-417
    [21]Yang H.Y.,Chen W.Y.,Sun I.W.,Anodic stripping voltammetric determination of bismuth(Ⅲ)using a Tosflex-coated mercury film electrode,Talanta,1999,50:977-984
    [22]Murimboh J.,Lam T.,Hassan N.M.,et al,A study of Nation-coated and uncoated thin mercury film-rotating disk electrodes for cadmium and lead speciation in model solutions of fulvic acid,Analytica Chimica Acta,2000,423:115-126
    [23]Brett C.M.,Alves V.A.,Fungaro D.A.,Nation- coated mercury thin film and glassy carbon electrodes for electroanalysis characterization by electro chemical impedance,Electroanalysis,2001.13:212-218
    [24]宋青云,马永钧,任小娜.铕离子掺杂普鲁士蓝复合汞膜电极上替硝唑色方波伏安法测定。西北师范大学学报:自然科学版,2007,43(5):54-58.
    [25]张镭,陈长和,李淑霞等.兰州城市大气污染和可能的技术控制措施.环境科学研究,2000,4(13):18-21.
    [26]褚润,张国珍,谢红刚。兰州市大气污染成因分析.兰州交通大学学报,2006,4(25):60-62
    [1]奚旦立,刘秀英,郭安然.环境监测.北京高等教育出版社,1987:1662
    [2]张格丽,王凯荣.国内外镉污染研究现状及其发展趋势分析.农业环境保护,1997,16,(8):114-117
    [3]曹会兰.重要的微量元素.微量元素健康研究,2001,18(3):73-74
    [4]孟紫强.环境毒理学.北京:中国环境科学出版社,2001
    [5]魏复盛主编,水和废水监测分析方法(第四版),中国环境科学出版社,2002,323
    [6]金属中毒,北京医学院第三附属医院职业病科,1977,353
    [7]成肇安,蔡艳秀,张晓东.废干电池的环境污染及回收利用.中国资源综合利用,2002,07:18-22.
    [8]席国喜,李运清,刘玉民.用废旧锌锰电池制备锰锌铁氧体的研究.环境科学研究,2004,17(3):48-50.
    [9]席国喜,李运清.废旧干电池再资源化研究新进展.化工进展,2001,7:14-17.
    [10]戴秀丽,王沁,李绍南,悬浮液直接进样塞曼石墨炉平台原子吸收法测定土壤中痕量铅.中国环境监测,2002,18(1):24-25
    [11]艾军,李德龙,汤志勇.流动注射在线液-液萃取火焰原子吸收法测定水中痕量铅.分析科学学报,2001,17(5):414-417
    [12]李华禄,刘东汉,刘延湘.流动注射线萃取FAAS法测定天然水中痕量铅.武汉教育学院学报,2001,19(3):15-18
    [13]王爱霞,张宏,刘琳琳.流动注射在线分离伏击焰火原子吸收法中测定环境样品的铅和镉.分析化学,2001,29(11):1284-1287
    [14]张秀绕.在线流动注射螯合树脂预富集石英管增敏火焰原子吸收法测定水中痕量铅.分析化学,2000,28(12):1493-1496
    [15]范晓燕,董杰.Pb(Ⅱ)双硫腙PAR水相光度法测定样品中铅.物化检测-化学分册,2001,37(6):258-260
    [16]杨超.束胶分光光度法测定双硫腙金属络合物.中国卫生检验杂志,2002,12(1):41-43
    [17]杨宝玺.氢化物发生原子荧光广谱法测定水中铅.中国公共卫生,2001,17(10):926-928
    [18]Zougagh H M.,Torres G.A.,Alonso V.E.,etal.Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn.Talanta,2004,62:503-510
    [19]Stankovic S.,Cickaricand D.,Markovic J.Detemination of Pb and Cd in water by potentiometric stripping analysis(PSA).Desalination,2007,213:282-287
    [20]于铁力.微分阳极溶出伏安法连续测定天然水中的铜、镉、铅、锌.世界地质,2002,21(4):415-416
    [21]杨天鸣,邓敏,钟利,PVC膜修饰粉末微电极溶出伏安法测定水中铅(Ⅱ).分析实验室,1999,18(5):27-31
    [22]邹如意,杨秀培,许秀琴,蔡泽厂.方波溶出伏安法同时水中微量的锌、镉、铅和铜.沈阳师范大学学报(自然科学版),2004,22(2):122-124
    [23]吕志进,李建虎,黄欣,等.阳极溶出伏安法测定食品中铅镉的含量.天津医科大学学报,2002,8(2):187-190
    [24]方宾,金家英,张玉忠,等.微分电位溶出法测定人发中的铜铅镉锌的研究.分析实验室,1995,11(14):37-39
    [25]方宾,王伦,吴婷,等微分电位溶出法连册血清中铜铅镉锌.理化检验—化学分册,1995,31(5):271-273
    [26]黄文胜,杨春海,张升辉.双硫腙修饰电极玻碳电极阳极溶出法测定痕量镉和铅.分析化学,2002,30(11):1367-1370
    [27]Edith C.,Brynn H.,etal.Voltammetric detection of cadmium ions at glutathione-modified goldelectrodes.Analyst,2005,130:831-837
    [28]林文如,王耀光,唐健玲,等.锌和锌盐中痕量铋铜铅镉的测定.福州大学学报,1983,3,124-128.
    [29]Brett M.A.,Funngaro D.A.,Morgado J.M.,etal.Novel polymer-modified electrodes for batch injection sensors and application to environmental analysis.Journal of Electroanalytical Chemistry,1999,468:26-33
    [30]Wieslaw W,Wanda C,Aleksander C.Hair analysis.Part 1:Differential pulse anodic strippingvoltammetric determination of lead,cadmium,zinc and copper inhuman hair samples of persons in permanent contact with a polluted workplace environment.Analytica Chimica Acta,1996,335:201-207.
    [31]Janice L,Tebello N.Substituted catechols as complexing agents for the determination of bismuth,lead,copper and cadmium by adsorptive stripping voltammetry.Analytica Chimica Acta,1997,344:87-95.
    [32]Economou A.Fielden P R.Mercury film electrode:development,trend and potentialities for electroanalysis.Analyst,2003,128:205-212.
    [33]Boguslaw B,Malgorzata J.The renovated silver ring electrode in determination of lead traces by differential pulse anodic stripping voltammetry Analytica Chimica Acta.2008,615:39-46.
    [34]Emily A H,Samo B H,Bozidar O.Ex situ preparation of bismuth film microelectrode for use in electrochemical stripping microanalysis.Analytica Chimica Acta,2005,537:285-292.
    [35]张海丽,叶永康,徐斌.辛可宁修饰碳糊电极的应用研究——铋的阳极溶出伏安法测定.分析测试学报,2000,2(19):80-82.
    [36]Yun W,Nian B L,Hong Q L.Simultaneous measurement of Pb,Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly(paminobenzene sulfonic acid) film electrode.Sensors and Actuators B,2008,41(1):31-34
    [37]马悦红,松永英之.LB复合膜选择性检测水中痕量镉离子的方法研究.环境科学研究,2006,19(5):118-121.
    [39]宋青云,马永钧,周秀英,等.铕离子掺杂普鲁士蓝复合汞膜电极上替硝唑色方波伏安法测定.西北师范大学学报:自然科学版,2007,43(5):54-58.
    [40]卫碧文,缪俊文,龚治湘,等.在线标准加入火焰原子吸收光谱法测定钮扣电池中铅和镉。理化检验-化学分册,2006,42(10):815-816.
    [1]Kammna J.F..Kinetics of thiamin and riboflavin loss in paste during processing and storage under steady state and unsteady state conditions of temperature and water activity.Dissertation Abstracts International 1981,B(4):2543-2544
    [2]陆长元,韩镇辉,潘景喜,等.核黄素(维生素B_2)的光化学活性离子:潜在的光生物学效应.辐射研究与辐射工艺学报,2000,(2):12-18
    [3]Chen J,Illarionov B,Bacher A,A high-throughput screen utilizing the fluorescence of riboflavin for identification of lumazine synthase inhibitors.Anal.Biochem.2005,338,124-130.
    [4]University of Maryland Medical Center.website:http://www.umm.edu/altmed/ConsSupplements/VitaminB_2Riboflavincs.html.
    [5]张洪渊.生物化学.成都:四川大学出版社.2002:199.
    [6]C.Wojciechowski,N.Dupuy,C.D..Auantitative analysis of water-soluble vitamins by ATR-FTIR spectroscopy.Food Cheminstry,1998,63(1):133-140
    [7]刘红河,黎源倩.CCD-二极管阵列分光光度法同时测定食品中的维生素B_1和维生素B_2.中国食品卫生杂志,2003 15(6):508-512
    [8]Su A.K.,Lin C.H..Determination of riboflavin in urine by capillary electrophoresis-blue light emitting diode-induced fluorescence detection combined with a stacking technique.Journal of Chromatography B,2003,785:39-46
    [9]P.Drossier,W.Holzer,A.Penzkofer,P.Hegemann.Flouresence quenching of riboflavin in aqueous solution by methionin and cystein.Chemical Physics,2003,286:409-420
    [10]聂洪勇,黄伟坤,唐英章,付举正等.维生素及其分析方法.上海:上海科学技术文献出版社,1987:126
    [11]Wang M,Zhao L X,Liu M L,Lin J M.Determination of riboflavin by enhancing the chemiluminescence intensity of peroxomonosulfate-cobalt(Ⅱ) system.Spectrochimica Acta.Part A.2007,66,1222-1227
    [12]申烨华,张萍,孔祥虹,郭春会,王继武.高效液相色谱法同时测定扁桃仁中的水溶性维生素C,B_1,B_2和B_6.色谱,2005,23(5):538-541
    [13]Mattivi F.,Monetti A.,High-performance liquid chromatographic determination of the riboflavin concentration in white wines for predicting their resistance to light.Jounnal of Chromatography A,2000,888:121-127
    [14]叶飞云,张君倩,严健,水溶性维生素的毛细管电泳测定.中国医药工业杂志,2000,31(9):405-407
    [15]包晓玉,党元林,曹书杰.DNA与Rt、VB_2相互作用的电化学性质[J].化学研究与应用,2004,16(4):522-524
    [16]Semiha C.,Iclal A.,Osman C..Simultaneous Square-wave Voltammetric Determination of Riboflavin and Folic Acid in Pharmaceutical Preparations.Mikrochimica Acta,1997,126:237-240
    [17]Economou A.Fielden P R.Mercury film electrode:development,trend and potentialities for electroanalysis.Analyst,2003,128:205-212.
    [18]朱明霞,马永钧,康敬万.稀土掺杂普鲁士蓝化学修饰电极上过氧化氢的伏安性质研究.西北师范大学学报(自然科学版),1998,34(3):38-40
    [19]周秀英,周敏,付周周,等.铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶钌(Ⅱ)的电催化氧化研究.西北师范大学学报(自然科学版),2007,43(1):54-58
    [20]Ma Y.J.,Zhou Min.Determination of tropane alkaloid components in Przewalskia tangutica Maxim.by capillary electrophoresis with electrochemiluminescence detection.Ren xiaona,.Chinese Journal of Chromatography.2008,26(2):223-227
    [21]马永钧,付周周,任小娜,2,4-二硝基苯酚在类普鲁士蓝修饰电极上的电化学行为及其应用.分析化学,2008,36(2):241-244
    [22]宋青云,马永钧,周秀英,等.铕离子掺杂普鲁士蓝复合汞膜电极上替硝唑色方波伏安法测定.西北师范大学学报:自然科学版,2007,43(5):54-58.
    [23]Y.J.Ma,Zhu S.M.,.In-situ thin layer spectroelectrochemical study of the redox mechanism and intermediate for vitamin B_2 in aqueous solution.Chinese chemical letters.1996,7(9):825-828.
    [24]杨培慧,周志军,冯德雄.玻碳电极吸附循环伏安法测定维生素B_2.暨南大学学报(自然科学版),2001,22(5):93-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700