用户名: 密码: 验证码:
大跨径三塔结合梁斜拉桥几何非线性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在建的武汉二七长江大桥采用主跨为616米的三塔结合梁斜拉桥结构形式,是目前世界上跨度最大的三塔结合梁斜拉桥。由于采用三塔斜拉桥的结构体系,结构整体柔性增大,几何非线性问题进一步突出。同时由于采用了结合梁形式,钢和混凝土材料性能差异较大,造成整体结构内力和空间分布变化特性十分复杂,因此开展三塔结合梁斜拉桥结构几何非线性研究是十分必要的。
     本文以二七长江大桥为工程背景,首先开展三塔结合梁斜拉桥非线性有限元模型研究,然后基于双主梁非线性空间模型,考虑索的垂度效应、梁柱效应和大位移效应,进行三塔结合梁斜拉桥几何非线性分析,研究各种几何非线性因素对三塔结合梁斜拉桥内力和位移的影响。最后提出斜拉索无应力索长精确算法,并给出了斜拉桥初始成桥索力的计算方法。本文研究对于全面掌握大跨径结合梁斜拉桥的结构内力特性,进一步提高结合梁斜拉桥的计算分析水平,具有重要的理论和实际意义。主要内容和成果如下:
     (1)运用大型有限元分析软件ANSYS的APDL语言以及参数化技术,采用空间板壳与梁杆单元相结合,建立了三塔结合梁斜拉桥结构双主梁非线性模型,并通过与单主梁有限元模型对比分析,充分验证了该双主梁模型的有效性和正确性。结果表明基于杆、板(壳)及空间梁单元相结合的双主梁模型可以用于大跨径三塔结合梁斜拉桥非线性分析,具有较好的计算精度,能准确反映结构的内力空间分布及变形特征。
     (2)基于双主梁非线性有限元模型,定义了线性、计入斜拉索垂度效应的非线性、计入梁柱效应和大位移效应的非线性以及计入全部非线性因素的综合非线性四种工况,分析三塔结合梁斜拉桥在四种工况下的几何非线性行为,研究各种几何非线性因素对三塔结合梁斜拉桥内力和变形的影响。结果表明各种几何非线性因素都会影响结构的变形和受力状态。斜拉索垂度效应是大跨度斜拉桥结构几何非线性的主要因素,同时计入三种非线性较计入单项非线性因素对于桥梁结构的非线性影响大。各种非线性因素对不同构件受力的影响程度不同,对主梁和塔的位移而言,斜拉索的垂度效应影响大于梁柱效应和大位移效应,对于主梁和塔的内力而言,斜拉索的垂度效应影响小于梁柱效应和大位移效应,而对于斜拉索的索力,几何非线性效应的影响均很小。
     (3)提出了一种斜拉索无应力索长精确求解方法,其特点是用索端力的精确计算式代替索端节点力的平均值,建立已知端张力时斜拉索特征参数约束方程,求解无应力索长,同时避免了无应力索长初值的选取问题。并运用该方法计算了二七长江大桥的斜拉索无应力长度,并与解析法、等效模量法对比,结果表明该方法正确有效。
     (4)基于非线性有限元方法,利用ANSYS二次开发功能,运用APDL语言开发了大跨三塔斜拉桥调索程序,给出了一种三塔斜拉桥成桥初始索力确定方法。并将该程序应用于二七长江大桥索力分析,结果表明该程序实现了自动完成调索过程,调索速度快精度高。
Wuhan Erqi Yangtze River Bridge is the longest span composite girder cable-stayed bridge with three towers under construction. The main span is 616 m. Due to the cable-stayed bridge system with three towers, the flexibility of bridge is increased, and geometrically nonlinear problem is further highlighted. On the other hand, owing to the combined girder form for long-span composite girder cable-stayed bridge with three towers, material properties of steel and concrete is greatly different, which result in complex internal force change and distribution. Therefore, the geometrically nonlinear analysis is very necessary for composite girder cable-stayed bridge with three towers.
     Taking Erqi Yangtze River Bridge as an example, First the spatial nonlinear finite element model is established. Secondly, based on double girder nonlinear finite element model, cable sag, beam-column effect and large displacement effect were considered. The various influences of geometrically nonlinearity are studied on internal force and deflection in four cases. An accurate solution method of unstressed cable length and a cable force adjusting programme were proposed, which are applied in Erqi Yangtze River Bridge. These studies have important theoretical and practical significance to grasp internal force characteristics and further improve the calculation analysis level for longest span composite girder cable-stayed bridge. The main contents and conclusions of the research are listed as follows:
     (1) The spatial double girder nonlinear finite element model is established through link elements, shell and spatial beam elements by APDL parameterization technique.compared with single girder model, the spatial double girder nonlinear model was fully verified the effectiveness and correctness. The results show the spatial double girder nonlinear model can be used to the nonlinear analysis of long-span composite girder cable-stayed bridge with three towers, which has good precision.
     (2) Based on double girder nonlinear finite element model, the nonlinear analysis was developed under four cases, which including linear case, cable sag case, beam-column effect and large displacement case, all nonlinear case. The various nonlinear factors effect on internal force and deflection are studied. The results show all kinds of geometry nonlinear factors will affect the deformation and stress state of bridge. Cable sag is the most important factors. The geometric nonlinear effect considering all factors is larger than only considering a nonlinear factor. The nonlinear effect is different on internal force and displacement to different component. As far as the displacement of main girders and towers concerned, Cable sag effect is larger than beam-column effect and large displacement effect. For internal force of main girders and towers, cable sag effect is few than beam-column effect and large displacement effect, but for internal force of cables, three nonlinear factors effect is all few.
     (3) Determination of unstressed cable length is important to realize the initial configuration of long span cable-stayed bridge. Based on centenary theory, an accurate solution method of unstressed cable length is proposed; the end force of cable is used, characteristic parameter constraint equations is established when the cable tension known, its iterative is given when An accurate solution method of unstressed cable length is applied. The unstressed cable length of a long span cable stayed bridge is calculated, through contrasted with analytic solution and Ernst method, the results show the reliability of the method.
     (4) Based on nonlinear finite element methods, A cable force adjusting programme is proposed by means of ANSYS secondary development, the initial cable forces is iteratively calculated and repeatedly adjusted so that calculating cable force match with design cable under dead load. Simultaneously all kinds of geometric nonlinearity are considered. This cable force adjusting programme are applied to analyze the bridge-completing initial cable force of Erqi Yangtze River Bridge, The results show that the cable-force-adjusting programme is convenient and high efficient in analysis of cable-stayed bridges with three towers.
引文
[1]周孟波,刘自明.斜拉桥手册[M].北京:人民交通出版社,2004.
    [2]林元培.斜拉桥[M].北京:人民交通出版社,1994.
    [3]张晓壳,陈宁,王应良.斜拉桥的数学建模[J].国外桥梁,1998,2:52-56.
    [4]张为,赵星,刘明高,等.斜拉桥有限元建模和动力特性分析[J].铁道建筑,2006,3:8-10.
    [5]苏成,韩大建,王乐文.大跨度斜拉桥三维有限元动力模型的建立[J].华南理工大学学报:自然科学版,1999,27(11):51-56.
    [6]刘高,王秀伟,强士中.斜拉板桥的动力分析模型[J].桥梁建设,1999,1:7-9.
    [7]王振阳,叶贵如,徐兴.大跨独塔斜拉桥的自振特性测试与分析[J].公路交通科技,2003,8:41-43.
    [8]任伟新,彭雪林.青州斜拉桥的基准动力有限元模型[J].计算力学学报,2007,24(5):609-614.
    [9]鞠彦忠,刘维春.基于ANSYS的独塔斜拉桥非线性分析[J].东北电力大学学报,2007,27(1):11-14.
    [10]Ren W.X, Zhao T, Harik I.E. Experimental and analytical modal analysis of a steel arch bridge[J]. Journal of Structural Engineering, ASCE,2004,130(7).
    [11]Ernst J.H. Der E-modul von seilen unter beruecksichtigung des durchhanges[J]. Der Bauingenieur,1965,40(2):52-55.
    [12]Gimsing NJ. Anchored and Partially Stayed Bridges[C]. Proceeding of the Internations Symposium on Suspension Bridges. Lisbon,1966.
    [13]Thng DH, Kudder IU. Analysis of Cables as Equivalent Two-Fore Members [J]. Engineering Journal. AISC, Jan.1968,12-19.
    [14]LeonhardtF,ZellerW. Cable-Stayed Bridges:RePort on Latest Development [C]. Canadian Structural Engineering Conference,1970, Canadian Steel Industries Construction Council, Onlrio, Canada.
    [15]Podolny WJ, Sealzi JB.Construction and Design of Cable-Stayed Bridges [M]. John Wiley and Sons,1986, New York.
    [16]Ozdemir H.A finite element approach for cable Problems [J]. International Journal of Solids and Structures,1979,15:427-437.
    [17]Gambhir M.L, Batchelor B.A. Finite element for 3-D pre-stressed cable nets[J]. International Journal for Numerical Methods in Engineering,1977,(11):1699-1718.
    [18]Ali HM, Abdel-Ghaffar AM. Modeling the nonlinear seismic behavior of cable-stayed bridges with Passive control bearings [J]. Computers and Structures,1995,54(3):461-492.
    [19]袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-64.
    [20]唐建民,何署廷.悬索结构非线性有限元分析[J].河海大学学报,1998,26(6):45-49.
    [21]唐建民.基于欧拉描述的两节点索单元非线性有限元法[J].上海力学,1999,20(1):89-94.
    [22]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [23]杨勇.拟三结点等参单元计算斜拉索单元.中国公路学会桥梁和结构工程学会1995年桥梁学术讨论会论文集,北京:人民交通出版社,1995:258-260
    [24]夏桂云,李传习,张建仁.斜拉索非线性分析.长沙交通学院学报,2001,17(1):47-50.
    [25]O'Brien T, Francis A.J. Cable movements under two-dimensional loading[J]. Journal of Structural Engineering,1964,90(ST3):89-123.
    [26]O'Brien T. General solution of suspended cable problems [J]. Journal of Structural Engineering,1967,93(ST1):1-26.
    [27]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].博士学位论文,上海:同济大学,2004.
    [28]Goto S.Tangent Stiffness Equation of Flexible Cable and Some Considerations [A]. Proe. Of JSCE[C],1978,270:41-49.
    [29]高征锉,汪嘉锉,陈忆愉.大跨度斜张桥非线性静力分析[M].北京:北京工业大学,1981.
    [30]Abbas S.Nonlinear geometric, material and time dependent analysis of segmentally erected, three dimensional cable stayed bridges[D]. Paper for Doctoral Degree, USA:University of California at Berkeley,1993.
    [31]肖汝诚.确定大跨径桥梁合理设计状态理论与方法研究[D].博士学位论文,上海:同济大学.1996.
    [32]程进.缆索承重桥梁非线性空气静力稳定性研究[D].博士学位论文,上海:同济大学,2000.
    [33]A.Andreu A new deformable catenary element for the analysis of cable net structures[J]. Computers & Stuctures,2006,84:1882-1890.
    [34]Miguel Such. An approach based on the catenary equation to deal with static analysis of three dimensional cable structures [J]. Engineering Structures,2009,03.
    [35]Wendy E.Daniell. Improved finite element modeling of a cable-stayed bridge through systematic manual tuning [J]. Engineering Structures,2007,29:358-371.
    [36]C.V.Girija vallabhan. Two-Dimensional Nonlinear Analysis of Long Cables [J].Journal of engineering mechanics,2008,134(8):694-697.
    [37]S.Kmet. Nonlinear closed-form computational model of cable trusses [J]. International Journal of non-linear mechanics,2009,03.
    [38]Fleming J.F. Nonlinear static analysis of cable-stayed bridge[J]. Computers and Structures, 1979,(10):621-635.
    [39]Brotton DM. A general computer Programme for the solution of suspension bridge Problems [J]. The Structural Engineer,1966,44(5):161-167.
    [40]Bathe. KJ, BolourehiS. Large displacement analysis of three-dimensional beam structures [J]. International Journal for Numerical Methods in Engineering,1979,14:961-986.
    [41]ArgyrisJ H, Balmer H, Doltsinis JS. Finite element method the nature approach [J]. Computer Methods in Applied Mechanics and Engineering,1979,17/18:1-106.
    [42]Nakai H, Kitada T, Ohminami R, etc. Elastic-Plastic and Finite Displacement Analysis of Cable-stayed Bridge [M]. Mem.Fac.Eng.osaka Univ,1985,26:251-271.
    [43]Spillers WR. Geometric stiffness matrix for space frames [J]. Computers and Structures, 1990,36(1):29-37.
    [44]Narayanan G, Kishnamoorthy CS. An investigation of geometric nonlinear formulations for 3D beam element [J]. International Journal of Non-Linear Mechanics,1990,25(6):643-662.
    [45]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-44.
    [46]秦孟佳,薛建荣.大跨度斜拉桥大位移影响的非线性静力分析[J].华北水利水电学院学报,2007,28(1):43-45.
    [47]吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论[J].计算结构力学及其应用,1995,12(4):485-489.
    [48]Pai PF, Anderson TJ, Wheater EA. Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams [J]. International Journal of Solids and Structures, 2000,37:2951-2980.
    [49]陈栋,朱慈勉.TL法和UL法对几何非线性刚架问题的适用性[J].陕西建筑.2000,1:12-19.
    [50]刘磊,许克宾.杆系结构非线性分析中的TL列式和UL列式[J].工程力学增刊,2000,1:361-365.
    [51]Yang TY. Matrix displacement solution to elastic problems of beams and frames [J]. Int. J Solids Struct,1973,9:829-842.
    [52]Gattass M, Abel JE Equilibrium considerations of the Updated Lagrangian, formulation of beam-columns with natural concepts [J]. International Journal for Numerical Methods in Engineering,1987,24(11):2119-2141.
    [53]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析-Ⅰ.平面问题[J].计算结构力学及其应用,1995,12(1):7-15.
    [54]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析-Ⅱ.三维问题[J].计算结构力学及其 应用,1995,12(2):133-141.
    [55]程进,江见鲸,肖汝诚,项海帆.改进的UL列式法及在几何非线性分析中的应用[J].力学与实践,2003,25:33-34.
    [56]Rankin C.C, Brogan F.A. An Element Independent Co-rotational Procedure for the Treatment of Large Rotations [J]. Journal of Pressure Vessel Technology,1986, 108:165-174.
    [57]Crisfield M.A, Moita G.F. A Unified co-rotational framework for solids, shells and beams [J]. International Journal of Solids and Structures,1996,33:2969-2992.
    [58]Pacoste C. Co-rotational flat facet triangular elements for shell instability analyses [J]. Computer Methods in Applied Mechanics and Engineering,1998,156:75-110.
    [59]Eriksson A, Pacoste C. Element formulation and numerical techniques for stability problems in shells [J]. Computer Methods in Applied Mechanics and Engineering,2002,191(35).
    [60]Tang. MC. Analysis of cable-stayed bridge [J].Journal of Structural Engineering,1971, 97:1481-1496.
    [61]Seif SP, Dilger WH. Nonlinear analysis and collapse load of P/C cable-stayed bridges [J]. Journal of Structures Engineering,1990,116(3):829-849.
    [62]Kanok-ukulehai, Guan hong. Nonlinear Modeling of Cable-stayed Bridges[J].Journal of Structure Steel Researeh.1993,26:249-266.
    [63]KaroumiR. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges [J].Computers and Structures,1999,(71):397-412.
    [64]Wang PH, Lin HT, TangTY. Study on nonlinear analysis of a highly redundant cable-stayed bridge[J].Computers and Structures,2002,80:165-182.
    [65]Pao-hsii Wang. Study on nonlinear analysis of a highly redundant cable-stayed bridge [J]. Computer & Structures,2002,82:329-346.
    [66]A.M.S.Freire. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges [J]. Computers & Structures,2006,84:2128-2140.
    [67]陈德伟.斜拉桥的非线性分析及工程控制[D].同济大学博士学位论文.1990.
    [68]洪显诚,刘英.精确的斜拉索等效弹性模量公式的推导[C].全国桥梁结构学术大会论文集,同济大学出版社,1992:834-838.
    [69]程庆国,潘家英,高路彬,等.关于大跨度斜拉桥几何非线性问题[C].全国桥梁结构学术大会论文集, 同济大学出版社,1992.
    [70]朱晞,王克海.几何非线性对大跨度斜拉桥的影响[C].全国桥梁结构学术大会论文集,同济大学出版社,1992:985-988.
    [71]唐建民,何署廷.悬索结构非线性有限元分析[J].河海大学学报,1998,26(6):45-49.
    [72]中交第二航务工程局,西南交通大学.苏通长江公路大桥主桥施工控制结构计算非线性分析报告[R].中交第二航务工程局苏通长江公路大桥项目总部C3标经理部,2005.
    [73]李兆香,郑振.大跨度斜拉桥非线性静力分析[J].福州大学学报,2001,29(3):73-78.
    [74]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [75]罗喜恒,肖汝诚,项海帆.基于精确解析解的索单元[J].同济大学学报,2005,33(4).
    [76]杨平,王华林,徐凯燕.斜拉桥三维非线性分析及收敛问题[J].武汉理工大学学报(交通科学与工程版),2003,27(1):33-36.
    [77]李学文,张太科,颜东煌,等.基于OOP的斜拉桥几何非线性分析[J].长沙交通学院学报,2003,19(2):14-20.
    [78]黄侨,吴红林,刘绍云.大跨度斜拉桥几何非线性分析及程序实现[J].哈尔滨工业大学学报,2004,36(11):1520-1523.
    [79]陈常松,陈政清,颜东煌.几何非线性的有限位移应力应变增量分析[J].长沙交通学院学报,2004,20(3):32-37.
    [80]陈常松,陈政清,颜东煌.势能增量驻值原理与切线刚度矩阵的解构规则[J].中南大学学报,2005,36(5):892-898.
    [81]梁鹏,肖汝诚,孙斌.超大跨度斜拉桥几何非线性精细化分析[J].中国公路学报,2007,20(2):57-62.
    [82]梁鹏,秦建国,袁卫军.超大跨度斜拉桥活载几何非线性分析[J].公路交通科技,2006,23(4):60-62.
    [83]N.Gattesco. Analytical modeling of nonlinear behavior of composite beams with deformable connection [J]. Journal of Constructional Steel Research,1999,52:195-218.
    [84]R Karouni. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges [J]. Computers and Structures,1999,71:397-412.
    [85]Wilson J.C, Gravelle W. Modeling of a cable-stated bridge for dynamic analysis [J]. Earthquake Energy and Struct, Dynamics,1991,20:707-721.
    [86]A.D. Jefferson, H.D. Wright. Finite-element simulation of dual-skin composite structures [J]. Structures Engineering Review,1996,8 (2):115-131.
    [87]Don Bergman, Andreas Felber. Cable-Stayed Bridges:Design, Construction, and Management [J]. ASCE Continuing Education,2004.
    [88]潘家英,吴亮明,高路彬.大跨度斜拉桥活载非线性研究[J].土木工程学报,1993,26(1):31-37.
    [89]Nazmy A.S, Abdel-Ghaffar A.M. Three dimensional Nonlinear Static Analysis of Cable-stayed Bridges [J]:Computers and Structures,1990,34 (2):257-271.
    [90]P.H. Wang, T.C. Tseng, C.G. Yang. Initial Shape of Cable-Stayed Bridges [J]. Computers and Structures,1993,46(6):1095-1106.
    [91]Pao-Hsii Wang, Hung-Ta Lin, Tsu-Yang Tang. Study on nonlinear analysis of a highly redundant cable-stayed bridge [J]. Computers and Structures,2002,80:165-182.
    [92]P.H. Wang, C.G. Yang. Parametric Studies on Cable-Stayed Bridges [J]. Computers and Structures,1996,60 (3):243-260.
    [93]H.Adeli, J.Zhang. Fully Nonlinear Analysis of Composite Girder Cable-stayed Bridges [J]. Computers and Structures,1995,54 (2):267-277.
    [94]辛克贵,刘强,杨国平.大跨度斜拉桥恒载非线性静力分析[J].清华大学学报:自然科学版,2002,42(6):818-821.
    [95]E Reddy, J Ghaboussi, NM Hawkins. Simulation of Construction of Cable-Stayed Bridges [J]. Journal of Bridge Engineering,1999,4(4):249-257.
    [96]夏品奇.斜拉桥有限元建模与模型修正[J].振动工程学报,2003,16(2):219-223.
    [97]Klaus-JUrgen Bathe, Said Bolourchi. Large displacement analysis of three- dimensional beam structures. International Journal for Numerical Methods in Engineering.1979,14.
    [98]Q. Chen, T. J. A. Agar. Geometric nonlinear analysis of flexible spatial beam structures [J]. Computers & Structures.1993,49(6).
    [99]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法.土木工程学报1992,25(5).
    [100]潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程学报.1994,27(1).
    [101]A H Peyrot, et al. Analysis of flexible transmission lines [J]. Journal of Structural Division, ASCE,1978,104:763-779.
    [102]向锦武,罗绍湘,陈鸿天.悬索结构振动分析的悬链线索元法[J].工程力学,1999,16(3):130-134.
    [103]江锋.薄壁箱梁混合单元及其在斜拉桥双重非线性分析中的应用研究[D].中南大学,2004.
    [104]张立新,沈祖炎.预应力索结构中的索单元数值模型[J].空间结构,2000,6(2):18-23.
    [105]杨佑发,白文轩,郜建人.悬链线解答在斜拉索数值分析中的应用[J].重庆建筑大学学报,2007,29(6):31-34.
    [106]聂建国,陈必磊,肖建春.悬链线索单元算法的改进[J].力学与实践,2005,25(1):28-32.
    [107]罗喜恒,肖汝诚,项海帆.基于精确解析解的索单元[J].同济大学,2005,33(4):445-450.
    [108]汤荣伟,沈祖炎,赵宪忠.预应力无应力索长直接求解方法[J].空间结构,2000,6(2):16-18.
    [109]王为圣,赵荣高,李峰辉.斜拉桥成桥索力确定在ANSYS中的实现[J].重庆交通大 学学报(自然科学版),2007,26(5):17-20.
    [110]程进,江见鲸,肖汝诚等.ANSYS二次开发技术及在确定斜拉桥成桥初始恒载索力中的应[J].公路交通科技,2002,19(3):50-52.
    [111]叶梅新,韩衍群,张敏.基于ANSYS平台的斜拉桥调索方法研究[J].铁道学报,2006,28(4):128-131.
    [112]卫星,强士中.利用ANSYS实现斜拉桥非线性分析[J].四川建筑科学研究,2003,29(4):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700