用户名: 密码: 验证码:
带涡旋阻止器的封闭式水泵吸水池流场的PIV试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泵吸水池是泵的进口前的过流部分。水泵吸水池设计的合理与否,会直接影响到泵站的运行效率和安全。但其内部流场非常复杂,特别是在吸入管的周围,分布着十分复杂的涡,这些涡的存在使泵站的性能恶化。随着对水泵效率越来越高的要求,设计恰当的吸水池,减少旋涡的产生成为改善水泵性能和提高效率必不可少的步骤。研究水泵吸水池内部的流场,找出其内部流场的规律,并以此为基础设计出新型水泵吸水池,是水泵吸水池未来发展的重要趋势。
    论文首先对PIV技术进行了研究。研究了PIV的应用范围、原理及使用方法。从理论上分析了采用PIV技术研究水泵吸水池流场的可行性,并得出了利用PIV技术测量分析流场的步骤。其次,论文先后对一种新型封闭式吸水池及其改进设计(增加一个T型涡旋阻止器)的内部流场进行了PIV(粒子成像测速技术)试验测量,通过分析流速图、流线图、湍动能图和涡量图,获得了新型水泵吸水池的性能,同时通过对比两种吸水池内部流场的环量、空化初生水流速度、三维速度以及三维湍动能,表明改进后的吸水池结构能够很好的避免和减少各种涡的发生,优化了吸水池内部的流动状态,从而可以提高泵站的效率和性能。
    论文的另一部分工作是对封闭式水泵吸水池比尺效应的研究。很多工程问题单纯靠理论分析是不能求得解答的,而多要依靠实验研究来解决。相似原理就是实验的理论依据,同时也是对液流现象进行理论分析的一个重要手段,在本论文的研究中,应用模型实验来研究,即在一个和原型水流相似而缩小了几何尺寸的模型中进行实验。为了将实验模型的结果应用到原型中,论文给出了模型与原型在旋涡初生空化数、水力损失等方面的换算公式。
Pump sump is the connection in front of the inlet of the pump. The design of the pump sump has a directly effect on the running efficiency and security performance of the pump system. The flow conditions in the pump sump are very complex. Kinds of vortices occur especially in and around the pump bell. These are common problems, which lead to poor pump performance. With the rapidly increasing awareness of pump efficiency, more and more attention has been paid to the appropriate design of pump sump. A critical developing trend of pump sump is to develop new type pump sump based on the rule of inner flow field.
    In present thesis, PIV technology has been researched first. By the research on the application range and the theory of PIV technology, it was demonstrated that PIV technology can be used to research the flow field of pump sump, and the process of measurement was made. Then, in this paper, PIV techniques are used to measure the flows in a model pump sump and an improving one with a T-type baffle. The performance of the pump sump was obtained by analyzing the pictures of velocity, streamline, turbulent kinetic energy and vorticity. The experiment results are compared with each other with the circulation, three-dimensional velocity and three-dimensional turbulent kinetic energy. Then conclusion can be obtained that the model pump sump with a T-type baffle can improve the performance of the pump system.
    The other work was the research of scale effect. Many problems of engineering can't get answer only by theory analysis, it must be instead of experiment. Theory of similarity is the theoretical basis of experiment, and it is also an important means by which we can analyze the phenomenon of liquid flow. In this paper, we use the model to study the liquid flow, the liquid flow in the model is similar with the
    
    prototype's, but the scale is shrunk. For the result of mode can be applied to the prototype, the result of scale effect was made in the paper.
引文
[1] Khetan R.P., Chiang F.P. Strain analysis by one beam laser speckle interometry: single aparature method. Applied Optics, 1976, 15(9): 2202~2241
    [2] Palero V., Andres N., Arroyo M.P. et al. Fast quantitative processing of particle image velocimetry photographs by a whole-field filtering technique. Experiments in Fluids, 1995, 19(6): 417~425
    [3] Iwata K., Hakoskima T., Nagata R. Measurement of flow velocity distribution by multiple-exposure speckle photography. Opt. Commun., 1978, 25(3): 311~314
    [4] Picking C.J.D., Halliwell N.A. Laser speckle photography and particle image velocimetry: Photographic film noise. Applied Optics, 1984, 23(8): 1128~1129
    [5] Cenedese A., Paglialunga A. Digital direct analysis of a multi-exposed photograph in PIV. Experiments in Fluids, 1990, 8(5): 273~280
    [6] Adrian R.J. Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Applied Optics, 1986, 25(21): 3855~3858
    [7] Landreth, C.C., Adrian R.J. Electrooptical image shifting for particle image velocimetry. Applied Optics, 1988, 27(20): 4216~4220
    [8] 许宏庆,俞昌,袁格. 一种快速PIV诊断系统. 实验力学,1994,9(3): 241~246
    [9] Prasad A.K., Adrian K.J., Landreth C.C. et al. Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Experiments in Fluids, 1990, 13: 105~116
    [10] Cho Y.-C. Digital image velocimetry. Applied Optics, 1989, 28(4): 740~748
    [11] Kimura, I., Takamori, T., Image processing of flow around a circular cylinder by using correlation technique, In: Veret, C. eds, Flow Visualization IV, Berlin: Springer-Verlag, 1987: 221~226
    [12] Willert C.E., Gharibm M. Digital particle image velocimetry. Experiments in Fluids, 1991, 10: 181~193
    [13] 董守平. 拓扑图论在PIV粒子曝光光斑匹配算法中的应用. 第五届全国实验流体力学学术会议论文集. 北京,1995. 320~329
    
    
    [14] Huang H.T., Fiedler H.E., Wang J.J. Limitation and improvement of PIV(Part I). Experiments in Fluids, 1993, 15: 168~174
    [15] Huang H.T., Fiedler H.E., Wang J.J. Limitation and improvement of PIV(Part II). Experiments in Fluids, 1993, 15: 263~273
    [16] Tokumaru P.T., Dimotakis P.E. Image correlation velocimetry. Experiments in Fluids, 1995, 19: 1~15
    [17] Lecordier B., Mouqallid M., Vottier S. et al. CCD recording method for cross-correlation PIV development in unstationary high speed flow. Experiments in Fluids, 1994, 17: 205~208
    [18] Stanislas M., Rodriguez O., Dodi M. et al. 3-D velocity measurement in fluid flows using multiple exposure holography. In: Veret C. eds. Flow Visualization IV. Berlin: Springer-Verlag, 1987. 49~60
    [19] Skarman B., Becher J., Wozniak K. Simultaneous 3D-PIV and temperature measurements using a new CCD-based holographic interferometer. Flow Measurement and Instrumentation, 1996, 7(1): 1~6
    [20] Prasad A.K., Adrian R.J. Stereoscopic particle image velocimetry applied to liquid flows. Experiments in Fluids, 1993, 15: 49~60
    [21] Adamczyk A.A., Rimai L. Reconstruction of a 3-dimensional flow field from orthogonal views of seed track video images. Experiments in Fluids, 1988, 6: 380~386
    [22] Maas H.G., Gruen A., Papantoniou D. Particle tracking velocimetry in three-dimensional flows(Part I). Experiments in Fluids, 1993, 15: 133~146
    [23] Maas H.G., Gruen A., Papantoniou D. Particle tracking velocimetry in three-dimensional flows(Part II). Experiments in Fluids, 1993, 15: 279~294
    [24] Grant I., Fu S., Pan X. et al. The application of an in-line, stereoscopic, PIV system to 3-component measurements. Experiments in Fluids, 1995, 19: 214~221
    [25] Guezenned Y.G., Brodkey R.S., Trigui N. et al. Algorithms for fully automated three-dimensional particle tracking velocimetry. Experiments in Fluids, 1994, 17: 209~219
    [26] 孙寿. 水泵汽蚀及防治. 北京:水利电力出版社,1989
    [27] 黄继汤. 空化与空蚀的原理及应用. 北京:清华大学出版社,1991
    [28] 吴达人,景思睿. 离心泵流体力学. 北京:中国电力出版社,1998
    [29] 刘培森. 应用傅里叶变换. 北京:理工大学出版社,1991
    
    
    [30] 吴嘉,许宏庆. 扫描光屏法在PIV技术测量自由剪切层中的应用. 水动力学研究与进展,1997, 12(2): 157~163
    [31] Merzkirch W. Flow visualization. New York: Academic Press, 1974.
    [32] 田晓东,陈嘉范,李云生,等. DPIV 技术及其应用于潮汐流动表面流速的测量. 清华大学学报, 1998, 38(1): 103~106
    [33] 陈克诚. 流体力学实验技术. 北京:机械工业出版社,1983. 29~97
    [34] 潘宗福,甄国良,胡和平. 摄像机、录像机的使用和维护. 北京:新时代出版社,1990.
    [35] 陈朝泉. 数字图象和PLIF技术研究潮流底部多孔射流浓度场及其分形:[博士学位论文]. 北京:清华大学水利系,1997
    [36] 黄真理. 平面激光诱导荧光(PLIF)技术及其测量射流浓度场的研究:[博士学位论文]. 北京:清华大学水利系,1993
    [37] 田村秀行,等. 计算机图象处理技术. 北京:北京师范大学出版社,1986.
    [38] 徐建华. 图象处理与分析. 北京:科学出版社,1992. 1~98
    [39] Lancaster P., Salkauskas K. Surfaces generated by moving least squares methods. Mathematics of Computation, 1981, 37(155):
    [40] Sasaki Y. An objective analysis based on the variational method. J. of Meteorological Society of Japan, 1958, 36(3): 1~12
    [41] Sherman C.A. A mass-consistent model for wind fields over complex terrain. J. of Applied Meteorology, 1977, 17: 312~319
    [42] 童秉纲,等. 涡运动理论. 合肥:中国科学技术大学出版社,1994
    [43] 吴介之,马晖杨,周明德. 涡动力学引论 北京:高等教育出版社,1993
    [44] 赵永凯,高殿荣,韩屋谷,等. 固液二相流泵基本方程和相似准则. 东北重型机械学院学报,1995,2(19):95~99
    [45] 倪汉根. 初生空化数比尺效应的修正. 水利学报,1999,9:28~32
    [46] 倪汉根 陈霞. 凹槽中的旋涡及初生空化数的估算. 水利学报 2000,2:16~21
    [47] 徐柏叶,王江平. 叶片式泵与风机能量方程式的统一. 东北电力技术 1996,8:14~15
    [48] 宋蔷,罗锐,杨献勇,等. 用于测量泡状流相分布的三维照相法. 清华大学学报. 2001,41(10):65~68
    [49] 舒玮,姜楠. 湍流中涡的尺度分析. 空气动力学学报. 2000,18:89~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700