用户名: 密码: 验证码:
组合内窝孔玉米精密排种器优化设计新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一种新型玉米精密排种器——组合内窝孔玉米精密排种器和三种玉米种子为研究对象,对非规则形状颗粒——玉米种子的建模方法、复杂结构机械部件——排种器的建模方法和非规则形状颗粒的离散元法计算方法等进行了深入研究,在此基础上采用课题组研发的基于离散元法的三维CAE软件,对组合内窝孔玉米精密排种器进行了设计和工作过程仿真分析,并与排种器的台架试验结果进行了对比,以期建立一种玉米精密排器优化设计的新方法,本文的主要研究工作和结果如下。
     1)按照玉米排种器工作过程仿真分析的需要,选择平安18、吉峰218和长单228三种玉米种子作为实验样本,对三种玉米种子的物理力学性质进行了测试,包括三轴尺寸、千粒重、颗粒密度、刚度系数、碰撞恢复系数、动静摩擦系数等。在此基础上,对于种子品种、种子含水率等相关因素对碰撞恢复、刚度、摩擦系数等产生的影响进行了分析,为排种器工作过程仿真分析提供参数依据。
     2)对颗粒建模方法进行了综述,总结了非规则形状颗粒的五种球充填建模方法。对以玉米种子为代表的非规则形状颗粒的建模方法进行了深入研究。以三种玉米种子——平安18、吉峰218和长单228为研究对象,提出基于形状特征和基于扫描数据的玉米种子颗粒建模方法。建立了基于点云和基于三角形网格面的球颗粒自动填充建模算法;在Pro/ENGINEER软件环境下,建立了球颗粒手动充填建模方法。分别采用两种建模方法,建立了较为精细的玉米种子颗粒模型,并对其性质进行了分析,建立了求解颗粒质心、惯性主轴及其转动惯量的方法。最后通过一些简单实例验证了所建立模型的可行性和有效性,为后续仿真实验奠定基础。
     3)提出由边界的三维Pro/ENGINEER模型,建立其三维离散元法分析模型的方法。在对Pro/ENGINEER软件进行二次开发的基础上,深入研究了边界Pro/ENGINEER实体模型中与颗粒材料接触的规则曲面的识别及读取、运动及材料属性的绑定和数据存储等问题;初步建立了平面、球面、圆柱面、圆锥面、球冠面、圆台面和球台面等十余种规则曲面的离散元法分析模型;在此基础上,实现了由组合内窝孔玉米精密排种器的三维Pro/ENGINEER实体模型建立其三维离散元法分析模型,为该排种器工作过程和性能的仿真分析奠定基础。
     4)研究了采用球颗粒组合方法,建立非规则形状颗粒——玉米种子分析模型时,非规则形状颗粒的离散元法计算方法,包括非规则形状颗粒的邻居搜索方法、接触判断方法、接触叠合量求解方法、接触作用力计算方法和颗粒运动计算方法等,初步建立了非规则形状颗粒的离散元法计算方法。
     5)进行了组合内窝孔玉米精密排种器工作过程的台架试验。采用透明有机玻璃研制出组合内窝孔精密排种器试验样机,选择三种玉米种子(平安18、吉峰218、长单228)和三种排种轮转速(26.82r/min、39.33r/min、51.96r/min),在PSJ排种器性能试验台上,进行了该排种器的台架试验,并采用高速摄像系统和爆破分析软件,对排种器的工作过程及其性能进行了深入分析。得到了三种转速下,三种玉米种子的单粒率、双粒率和空穴率;对三种转速下,三种玉米种子的清种开始角、清种终止角、种子面倾斜角进行了分析;对种子的运动轨迹、合速度等进行了分析。
     6)利用Pro/ENGINEER软件,设计了组合内窝孔玉米精密排种器的三维实体模型;采用课题组自主研发的边界建模模块,通过读取排种器的三维实体模型数据,建立了该排种器的三维离散元法分析模型;采用课题组自主研发的离散元法仿真模块,仿真分析了组合内窝孔玉米精密排种器的工作过程及性能,包括排种性能指标、清种角、投种角、种子面倾斜角、种子的运动轨迹、合速度等,同时将仿真分析结果和排种器的台架试验结果进行了对比,可知:①三种转速下,仿真与试验的单粒率、双粒率和空穴率相对误差最大值为9.89%;②清种开始角和清种终止角的仿真值均比试验值小,其绝对误差最大值分别为8.49°、19.8°,相对误差最大值为12.38%;③投种角的仿真值与试验值相差不大,其绝对误差最大值为2.78°,相对误差最大值为14.11%;④充种轨迹和投种轨迹的仿真与试验结果均比较接近,且相对误差较小;⑤种子运动合速度的仿真值与试验值绝对误差很小(均在0.1单位以内),相对误差除个别位置外均在10%以内,仿真值与试验值的变化趋势基本一致;⑥以长单228种子为例,分析了不同刚度系数(300、3000、30898N/m)、不同摩擦系数及不同颗粒建模方法对仿真结果的影响。
     综上所述,虽然仿真结果与试验结果有误差,但两者比较接近、变化趋势一致;由此验证了采用离散元法和自主研制的CAE软件分析玉米排种器的可行性和有效性,为组合内窝孔玉米精密排种器的优化设计建立了一种新方法。
This paper forces on Combination Inner-Cell Corn Precision Seed Metering Device, anew type of corn precision seed metering device, In-depth research of irregular shapeparticles, corn seeds modeling method, the complex structure of mechanical parts, meteringdevice modeling method, DEM calculation of the irregular shape of the particles, simulationanalysis on the design and working process are conducted on the working platformintegrated by CAE software base on DEM developed independently by the research groupand Pro/ENGINEER software. After that, the results acquired by experiments of seedmetering device are analyzed contrastively in order to establish a new kind of method for theoptimization design of corn precision seed metering device based on the discrete elementmethod. The main research works and results are as follows.
     1) Test analysis is conducted on the physico-mechanical properties of corn seed.Ping’an18, Jifeng218and Changdan228corn seeds are selected as the experiment samplesand then test is made on physico-mechanical parameters of these samples including size ofthree axes, rigidity coefficient, thousand grain weights, collision coefficient of restitution,coefficient of kinetic and static friction and density of pellet. Besides, analysis is also madethe influences of seed varieties, seed moisture content and other relevant factors on collisionrestitution, rigidity, friction and other coefficients, which offers parameter basis for thesimulation analysis of the working process of seed metering device.
     2) The general particle modeling methods are reviewed in this part, and then, five kindsof ball filling modeling method for irregular shape particle are summarized. Research isconducted on the modeling approach of irregular particles represented by corn seed. Basedon Ping’an18, Jifeng218and Changdan228corn seeds, a modeling method of corn seedparticles is proposed according to the shape features by three-dimensional scanner. In Pro/ENGINEER software environment, modeling method of manually filling spheres isestablished; based on the point cloud and triangle mesh surface, automatic ball particlesfilling algorithm is realized. A more refined corn seed particle model is completed.Furthermore, the model character is analyzed so that the method of the particle centroidcalculating and axes of inertia calculating are acquired. At the end of this part, the reliabilityof the model is verified by some simple cases, laying the foundation for follow-upsimulation of this paper.
     3) The boundary3D Pro/ENGINEER models is proposed, its3D discrete elementanalytical model is posed. On the basis of the further development on Pro/ENGINEERsoftware, in-depth research is done on identification and reading, eliminating redundancy,setting virtual boundary, motion, binding of material property, data storage and other problems of regular surface(applying graphic method) that contact with particle material inboundary Pro/ENGINEER physical model, more than ten kinds of regular surfaces model ofdiscrete element method including Plane, spherical, cylindrical surface, conical surface,surface of the spherical cap, round table and ball countertops are established, in the end, thegeneration of3D discrete element analytical model from3D Pro/ENGINEER physicalmodel of combination inner-cell corn precision seed metering device is realized.
     4) Research is made on that ball combination method of irregular particles is utilized tobuild the analytical model of the irregular particle of corn seed, including irregular particleneighbor searching method, contact judgment method, contact overlapping solving method,contact force computing method and particle motion computing method, and also thediscrete element computing method of irregular particles is established basically.
     5) Bench test of working process of combination inner-cell corn precision seedmetering device is conducted. Transparency organic glass is utilized to develop theexperimental prototype of combination inner-cell precision seed metering device and thenthree kinds of corn seeds (Ping’an18, Jifeng218and Changdan228corn seeds)and differentseed metering wheel rotate speeds(26.82r/min、39.33r/min、51.96r/min) are selected toconduct bench test of combination inner-cell corn precision seed metering device on theperformance test bench of PSJ seed metering device. Besides, high speed video system andblasting analysis software are applied to analyze the working process and performance ofseed metering device deeply. Three corn seeds’ single grain rate, double grain rate and holerate are acquired at three kinds of wheel rotate speed; three corn seeds’ clear seeds startingangle, clear seeds ending angle and seed surface tilt angle are analyzed at three kinds ofwheel rotate speed; furthermore, the trajectory of the seed and resultant velocity areanalyzed.
     6) Pro/ENGINEER software is used to design the3D physical model of combinationinner-cell corn precision seed metering device. Boundary modeling module developedindependently by the research group is applied to establish the3D discrete element analyticalmodel through reading the data of3D physical model of seed metering device. Simulationanalysis is conducted on the working process and performance of combination inner-cellcorn precision seed metering device through the discrete element simulation moduledeveloped independently by the research group and then the result of simulation analysisincluding the seeding performance indicators, clear seed angle, cast seed angle, the seedsurface tilt angle, the trajectory of seed, and the resultant velocity, with the data of bench testof seed metering device are contrasted. The results show that:①Under three kinds of speed,the maximum error of single grain rate and double grain rate is9.89%in simulation and test;②The simulation values of clear seed starting angle and clear seed ending angle are smallerthan experimental values, its absolute maximum error is8.49°,19.8°respectively, its relativemaximum error is12.38%;③Little difference between simulation and experimental valuesof casting angle, its absolute maximum error is2.78°, relative maximum error is14.11%;④Little difference between filling seed trajectory and casting seed trajectory in simulationand experiment, its relative error is less;⑤Value of seed resultant velocity in simulation and experiment is similar(in0.1unit),its relative error is almost less than10%, the varietytrend of simulation and experiment value is almost same;⑥Taking corn seed Changdan228for example, the effects of the simulation results of three different corn seed particle modelsare analyzed under three different stiffness coefficients(300、3000、30898N/m), threedifferent coefficients of friction and three different particle module methods.
     In summary, although a little errors exist between simulation and experiment results,but the variety trend is similar and little difference between simulation and experimentvalues. From these, the feasibility and effectiveness of analysis on the corn seed meteringdevice through DEM and self-developed CAE software is verified. A kind of new method foroptimized simulation design is realized.
引文
[1] Moore S H. Uniformity of plant spacing effect on soybean population parameters[J].Crop Science,1991,31(4):1049~1051
    [2]陆林,李耀明.虚拟样机技术及其在农业机械设计中的应用[J].中国农机化,2004(4):59~61
    [3]胡建平,毛罕平.精密播种技术的研究与创新[J].农机化研究,2003(4):52~53
    [4]张波屏.精密播种技术论文集:A集[M].北京:机械工业出版社,1982,第一版.
    [5]霍文国,肖继军,吕钊钦.浅析气力式精密播种机的发展及研究现状[J].山东农机,2003(3):11~12
    [6]马连元,王廷双,刘俊峰等.试论排种器分类族谱[J].河北农业大学学报,1997,20(4):107~111
    [7]崔清亮,秦刚,王明富.几种典型精密排种器的对比分析[J].山西农业大学学报,2003,23(1):69~71
    [8]陈立东,何堤.论精密排种器的现状及发展方向[J].农机化研究,2006(4):16~18
    [9]张德文,李林,王惠民.精密播种机械[M].北京:农业出版社,1982,第一版.
    [10]廖庆喜,高焕文.玉米水平圆盘精密排种器性能试验研究[J].农业工程学报,2003(1):99~103
    [11]李宝筏.农业机械学[M].北京:中国农业出版社,2003,第一版
    [12]马连元,刘俊锋等.内侧充种垂直圆盘排种器的结构、原理和应用[J].农业机械学报,1996,27(5):43~47
    [13]于建群.直插式玉米精密播种机及其关键部件的理论研究与产品开发[D].长春:吉林工业大学,1998.
    [14]李成华,马成林,于海业.倾斜圆盘勺式玉米精密排种器的试验研究[J].农业机械学报,1999,30(2):38~42
    [15]何雄奎,刘亚佳.农业机械化[M].北京:化学工业出版社,2006
    [16]孙裕晶.虚拟样机技术及其在精密排种部件设计中的应用[D].长春:吉林大学,2005
    [17]张泽平,马成林,左春柽.精播排种器及排种理论研究进展[J].吉林工业大学学报,1995,25(4):112~117
    [18]张波屏编译.播种机械设计原理[M].北京:机械工业出版社,1982,第一版
    [19]贺俊林,裘祖荣.新型气压式精密排种器的试验研究[J].农业工程学报,2001,17(2):80~83
    [20]陈怡群.振动排种器及振动式排种器应用于精播的研究[D].北京:北京农业大学,1982
    [21]胡建平,毛罕平.磁吸式精密排种原理分析与实验[J].农业机械学报,2004,35(4):55~58
    [22]胡建平,毛罕平,陆黎.磁吸式穴盘精密播种器排种机构的设计[J].农机化研究,2005(2):133~138
    [23]段宏兵,李长友,王旭东.精密排种器研究现状[C].中国农业工程学会学术年会,广州,2005.
    [24]王联增.小颗粒种子静电播种机[J].农技推广,1995(6):22
    [25]何东健,党革荣.种子带播种技术及设备[J].农机与食品机械,1998(4):31
    [26]赤冰编译.液体播种及播种机[J].粮油加工与食品机械,1983(8):1~2
    [27]张波屏.现代种植机械工程[M].北京:机械工业出版社,1996
    [28]赵文厚,张云,孙平生等.4BQD-40气力喷播机喷射式排种器设计[J].林业机械与木工设备,1997,25(6):11~13
    [29]梁留锁.组合内窝孔精密排种器工作过程的离散元仿真分析[D].长春:吉林大学,2002
    [30]段宏兵,李长友,王旭东.精密排种器研究现状[C].中国农业工程学会2005年学术年会论文集,2005
    [31]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483~490
    [32] Cundall P A. A computer model for simulating progressive, large scale movement inblock rock system[C]. Symposium of the International Society of Rock Mechanics,Nancy, France,1971:129~136
    [33] Tanaka H, Momozu M, Inooku K, et al. Simulation of soil deformation and resistanceat bar penetration by the distinct element method[J]. Journal of Terramechanics,2000,37:41~56
    [34] Coetzee C J, Els D N J. Calibration of discrete element parameters and the modeling ofsilo discharge and bucket filling[J]. Computers and Electronics in agriculture,2009,65:198~212
    [35] Makanda J T, Salokhe V M, et al. Effect of time rake angle and aspect ratio on soilfailure patterns in dry loam soil[J]. Journal of Terramechanics,1997,33(5):233~252
    [36] Momozu M,O ida A,Yamazaki M,et al.Simulation of a soil loosening process bymeans of the modified distinct element method[J].Journal of Terramechanics,2003,39:207~220
    [37] Zhang X, Vu-Quoc L. A method to extract the mechanical properties of particles incollision based on a new elasto-plastic normal force-displacement model[J].Mechanics of Materials,2002,34:779~794
    [38] Lu Z,Negi S C,Jofriet J C.A numerical model for flow of granular materials insilos.Part1:model development[J].Journal of Agricultural Engineering Research,1997,68:223~229
    [39] Zhang X,Vu-Quoc L.Simulation of chute flow of soybeans using an improvedtangential force displacement model[J].Mechanics of Materials,2000,(32):115~129
    [40] Sakaguchi E, Suzuki M, Favier J F, et al. Numerical simulation of the shakingseparation of paddy and brown rice using the discrete element method[J]. Journal ofAgricultural Engineering Research,2001,79(3):307~315
    [41] Cleary P W, Sawley M L. DEM modeling of industrial granular flows:3D case studiesand the effect of particle shape on hopper discharge[J]. Applied MathematicalModelling,2002(26):89~111
    [42]王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法.第一届全国岩石力学数值计算及模型试验讨论会论文集[C].吉安:西南交通大学出版社,1986:32-37
    [43]剑万禧.离散单元法的基本原理及其在岩体工程中的应用.第一届全国岩石力学数值计算及模型试验讨论会论文集[C].吉安:西南交通大学出版社,1986:43-46
    [44]王泳嘉,刘兴国,刑纪波.离散元法在崩落法放矿中应用的研究[J].有色金属,1987.39(2):20-26
    [45]王泳嘉,刑纪波.放矿研究的一种新方法——离散单元法.第二次全国采矿学术会议论文集(金属分册)[J].中国金属学会采矿学会,1986:88-94
    [46]姚建国.开采影响下岩层移动变形的块体单元数值模拟[C].第一届全国计算岩土力学研讨会论文集(一).峨眉:西安交通大学出版社,1987:110-117
    [47]付宏,董劲男,刘振宇,危夏,于建群.精密排种器的集成分析设计系统开发研究[J].计算机集成制造系统,2005,11(5):744-750
    [48]杨洋,唐寿高.颗粒流的离散元法模拟及其进展[J].中国粉体技术,2006,(5):33~43.
    [49] Fleissner F, Gaugele T, Eberhard P. Applications of the discrete element method inmechanical engineering[J]. Multibody Syst. Dyn,2007,18:81-94.
    [50]武錦涛,陈纪忠,阳永荣.模拟颗粒流动的离散元方法及其应用[J].现代化工,2003,23(4):56-58
    [51]徐泳,李红艳,黄文彬.耕作土壤力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,19(2):34~38
    [52]周德义,马成林等.散粒农业物料孔口出流成拱的离散单元仿真[J].农业工程学报,1996,12(2):186~189
    [53]于建群,付宏,李红等.离散元法及其在农业机械工作部件研究与设计中的应用[J].农业工程学报,2005,21(5):1~6
    [54]于建群,申燕芳,牛序堂等.组合内窝孔精密排种器清种过程的离散元法仿真分析[J].农业工程学报,2008,24(5):105~109
    [55] Cundall P A, strack O L. A discrete numerical model for granular assembles[J].Geotehnique,1979,29(1):47~65
    [56] Bertrand F, Leclaire L A, Levecque G..DEM-based models for the mixing of granularmaterials[J].Chemical Engineering Science,2005,60:2517~2531
    [57] Peters B, D iugys A.Numerical simulation of the motion of granular material usingobject-oriented techniques[J]. Computer Methods in Applied Mechanics andEngineering,2002,191:1983~2007
    [58] Itasca. PFC3D User’s Manual, Version3.0[F]. Itasca Consulting Group Inc,Minneapolis, USA,2003
    [59] Kremmer M, Favier J F.A method for representing boundaries in discrete elementmodelling—part I: Geometry and contact detection[J]. International Journal forNumerical Methods in Engineering,2001,51:1407~1421
    [60] Langston P A, Tüzün U, Heyes D M.Discrete simulations of granular flow in2D and3d hoppers: dependence of discharge rate and wall stress on particle interactions.Chemical Engineering Science,1995,(50):967~987
    [61] Kaneko Y, Shiojima T, Horio M. Numerical analysis of particle mixing characteristicsin a single helical ribbon agitator using DEM simulation. Powder Technology,2000,108(1):55~64
    [62]付宏,董劲男,刘振宇,危夏,于建群.精密排种器的集成分析设计系统开发研究.计算机集成制造系统,2005,11(5)
    [63]付宏,董劲男,于建群.基于CAD模型的离散元法边界建模方法.吉林大学学报(工学版),2005,35(6)
    [64]申燕芳.基于离散元法的精密排种器设计与工作过程仿真分析[D].长春:吉林大学,2005
    [65]孙裕晶,马成林,牛序堂等.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报,2006,37(11):45~48
    [66]许志宝.基于离散元法的大豆碰撞过程仿真分析[D].长春:吉林大学,2006
    [67] Vu-Quoc L, Zhang X, Walton O R.A3-D discrete-element method for dry granularflows of ellipsoidal particles[J].Computer Methods in Applied Mechanics andEngineering,2000,187:483~528
    [68] Lu Z, Negi S C, Jofriet J C.A numerical model for flow of granular materials insilos.Part I: model development[J].Journal of Agricultural Engineering Research,1997,68:223~229
    [69] Wang C Y, Liang V C.Packing generation scheme for the granular assemblies withplanar elliptical particles[J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,1997,21:347~358
    [70] Zhang X, Vu-Quoc L, Walton O et al.Modeling and simulation of dry soybean flow, InSES’95Society of Engineering Science32nd Annual Technical Meeting,1995[C],641~642
    [71] LoCurto G J, Zhang X, Zakirov V et al.Soybean impacts: Experiments and dynamicsimulations[J].Transactions of the ASAE,1997,40(3):789~794
    [72]杨明芳.基于离散元法的玉米排种器的数字化设计方法研究[D].长春:吉林大学,2009
    [73]郭敬山.组合玉米和组合超球颗粒模型的三维离散元法算法研究[D].长春:吉林大学,2010
    [74] Xu Yong, Kafui K D, Thornton C, et al. Effects of material properties on granular flowin silo using DEM simulation[J]. Particulate Science and Technology,2002,20(2):109~124
    [75] Klinker D H, Henderson J M.Flow model development for spherical discreteobjects[J].Transactions of The ASAE,1992,35(1):225~233
    [76] Duffy S P, Puri V M. Measurement and comparison of flowability parameters coatedcottonseed, shelled corn and soybeans[J]. Transactions of the ASAE,1999,42(5):1423~1427
    [77] Tsang-Mui-Chung M L, Verma R, Wright M E. A device for friction measurement ofgrains[J]. Transactions of the ASAE,1984,27(6):1938~1941,1944
    [78] Bucklin R A, Thompson S A, Ross I J, et al. Apparent dynamic coefficient of frictionof corn on galvanized steel bin wall material[J]. Transactions of the ASAE,1993,36(6):1915~1918
    [79] Srivastava A K, Herum F L, Stevens K K. Impact parameters related to physicaldamage to corn kernel[J]. Transactions of the ASAE,1976,19(8):1147~1151
    [80] Bilanski W K. Damage resistance of seed grains[J]. Transactions of the ASAE,1966,11(2):360~363
    [81] DeFrancisco R, Thompson S A, Seigler W E. Lateral pressures in cottonseed storagebuilding[J]. Transactions of the ASAE,88—4520
    [82] Kustermam M F. Young’s modulus dependent on deformation velocity[J].Transactions of the ASAE,82—3055
    [83] Shmulevich I, Asaf Z, Rubinstein D. Interaction between soil and a wide cutting bladeusing the discrete element method[J]. Soil&Tillage Research,2007,97:37~50
    [84] Coetzee C J, Basson A H, Vermeer P A. Discrete and continuum modelling ofexcavator bucket filling[J]. Journal of Terramechanics,2007,44:177~186
    [85] Hakashima H, Fujii H, Oida A, et al. Parametric analysis of lugged wheel performancefor a lunar microrover by means of DEM[J]. Journal of Terramechanics,2007,44:153~162
    [86] Coskun M, Yalcin Ibrahim, Ozarslan Cengiz. Physical properties of sweet corn seed(Zea mays saccharata Sturt.)[J]. Journal of Food Engineer,2006,74:523~528
    [87]黄会明.栝楼籽粒的物理机械特性研究[D].杭州:浙江大学,2006
    [88]刘玉欣,王万双,刘会灵.国际种子检验规程与国家种子检验规程在高温烘干法中测定玉米种子水分的差异[J].种子,2000,1:67~68
    [89]全国农作物种子标准技术委员会.GB/T3543.6《农作物种子检验规程》水分测定
    [S].北京:中国标准出版社,1995
    [90]张小璐.数据融合在种子含水率测量中的研究[D].上海:上海交通大学,2007
    [91] ASAE S352.2APR1998(R2008). Moisture Measurement-Unground Grain and Seeds.St Joseph: American Society of Agricultural and Biological Engineers,2008
    [92] Brubaker J E, Pos J. Determining static coefficient of friction of grains on structuralsurfaces[J]. Transactions of the ASAE,1965,8:53~55
    [93] Snyder L N, Roller W L, Hall G. E. Coefficients of kinetic friction of wheat on variousmetal surfaces[J]. Transactions of the ASAE,1967,10(3):411~419
    [94] Bucklin R A, Thompson S A, Ross I J, et al. Apparent coefficient of friction of corn ongalvanized steel bin wall material[J]. Transactions of the ASAE,91—4066
    [95] Bickert W G, Buelow F H. Kinetic friction of grains on surfaces[J]. Transactions of theASAE,1966,9(1):129~131,134
    [96]袁月明,栾玉振.玉米籽粒力学性质的试验研究[J].吉林农业大学学报,1996,18(4):75~78
    [97] Shelef L, Mohsenin N N. Effect of moisture content on mechanical properties ofshelled corn[J]. Cereal Chemistry,1969,46(3):242~253
    [98] Negi S C, Lu Z, Jofriet J C. A numerical model for flow of granular materials in silos.Part2: model validation[J]. Journal of Agricultural Engineering Research,1997,68:231~236
    [99]杨玉芬,张永丽,张本华等.典型玉米种子的静压破损试验研究[J].农机化研究,2008,7:149~151
    [100] ASAE S368.4DEC2000(R2006), Compression Test of Food Materials of ConvexShape[J]. St Joseph: American Society of Agricultural and Biological Engineers,2006.
    [101] Kharaz A H, Gorham D A, Salman A D. An experimental study of the elastic reboundof spheres[J]. Powder Technology,2001,120:281~291
    [102] Williams J R, Pentland A P. Superquadratics and modal dynamics for discrete elementsin interactive design. Engineering Computations,1992,9:115~127
    [103]王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):193~200
    [104] Nolan G T, Kavanagh P E. Random packing of nonspherical particles[J]. PowderTechnology,1995,84:199~205
    [105] Gallas J A C, Sokolowski S. Grain non-sphericity effects on the angle of repose ofgranular material. International Journal of Modern Physics B,1993,7(9,10):2037~2046
    [106] Nolan G T, Kavanagh P E. Random packing of nonspherical particles. PowderTechnology,1995,84:199~205
    [107]赵历.组合椭球颗粒模型的三维离散单元方法的研究[D].长春:吉林大学计算机科学与技术学院,2010
    [108]党丽娜.非球颗粒的离散元法基本理论和算法研究[D].长春:吉林大学计算机科学与技术学院,2011
    [109] Ferellec J.F, McDowell G.R. A method to model realistic particle shape and inertia inDEM[J]. Granular Matter.2010,12:459~467
    [110] Wang L., Park J., Fu Y. Representation of real particles for DEM simulation usingX-ray tomography[J]. Construct. Build.Mater.2007,21:338~346
    [111] Matsushima T, Saomoto H, Matsumoto M, et al. Discrete element simulation of anassembly of irregularly shaped grains: quantitative comparison with experiments[C].In:16th ASCE EngineeringMechanics Conference, Universityof Washington, Seattle.2003,6(16~18),2003
    [112] Price M., Murariu V, Morrison G. Sphere clump generation and trajectory comparisonfor real particles[C]. In:Discrete Element Methods2007Conference.2007,27~29
    [113] M. Lu, G. R. McDowell. The importance of modelling ballast particle shape in thediscrete element method[J]. Granular Matter (2007)9:69~80
    [114] He Tao, Baosheng Jin, Wenqi Zhong,etc. Discrete element method modeling ofnon-spherical granular flow in rectangular hopper[J]. Chemical Engineering andProcessing49(2010):151~158
    [115]徐要刚.热态大锻件尺度的在线测量技术研究[D].上海交通大学,2009
    [116]黄益华.透平膨胀机叶轮正逆向建模与五轴数控加工技术研究[D].上海交通大学,2008
    [117]付宏,吕游,徐静,黄山,于建群.非规则曲面的离散元法分析模型建模软件[J].吉林大学学报(信息科学版),2012,1:23~29
    [118]付宏,乌兰,黄万风,等.基于图元的三维离散元法边界建模方法[J].计算机集成制造系统,2008,14(12):2328~2333
    [119]于建群,付宏,刘振宇,等.基于CAD模型的离散元法边界建模方法.中国:200510016835.7[P].2006,07,28
    [120]颜辉,于建群,付宏,寇幸幸.离散元法软件与CAD软件集成开发研究[J].现代情报,2007,9:209~211
    [121]李政权.基于离散元法的小麦排种器的数字化设计方法研究[D].长春:吉林大学生物与农业工程学院,2009
    [122]张列南.基于离散元法的大豆精密排种器的数字化设计方法研究[D].长春:吉林大学生物与农业工程学院,2009
    [123]滕安翔.基于AutoCAD软件的三维离散元法边界建模方法研究[D].吉林大学,2006
    [124]寇幸幸.基于Pro/ENGINEER软件的三维离散元法边界建模研究[D].吉林大学,2007
    [125]李志勇.基于椭球颗粒模型的离散元法基本理论及算法研究[D].吉林大学,2008
    [126]刘睿.基于AutoCAD2007软件的三维离散元边界建模方法研究[D].吉林大学,2008
    [127]李百青.基于非完整图元的三维离散元法边界的计算方法研究[D].吉林大学,2008
    [128]黄山.基于CAD模型的三维离散元法边界建模方法研究[D].长春:吉林大学计算机科学与技术学院,2011
    [129] Yan Hui,Yu Jianqun,Kou Xingxing.A Study on Boundary Modeling ofThree-dimensional Discrete Element Method Based on Pro/ENGINEER[C]. RecentTrends in Materials and Mechanical Engineering Materials, Mechatronics andAutomation (EI:20112214023974),2011.1:2069-2074
    [130]沈小玲.三维冲裁模具的建库技术研究与实现:[硕士学位论文].湖南:中南林学院,2003
    [131] Luis Soiano Pere Brunet. Constructive Constraint-based Model for Parametric CADSystems. Computer Aided Design,2000,8:34~36
    [132] Marshall Brain, Lance Lovette. MFC开发人员指南.北京:机械工业出版社,1999,6:42~91
    [133]钟元,刘胜青,罗阳,查雪梅.Pro/E调用MFC对话框技术.机械,2003,1(30):50~52
    [134]夏继梅.Pro/ENGINEER行为建模技术在钣金件设计中的应用.数字化设计,2002,7:66~68
    [135] Parametric Technology Corporation. Pro/Toolkit User's Guide. USA: PTC,2004:1~45
    [136]飞思科技产品研发中心.Pro/ENGINEER wildfire中文版钣金设计.北京:电子工业出版社,2004
    [137]李世国.Pro/TOOLKIT程序设计.北京:机械工业出版社,2003
    [138]张继春.Pro/ENGINEER二次开发实用教程.北京:北京大学出版社,2003
    [139]蒋家东,张福润,杨楚民.使用Pro/ENGINEER二次开发技术自动建模研究.计算机应用研究,2003,4:75~77
    [140]赖朝安,李振南,孙延明等.Pro/E二次开发的关键技术.计算机应用,2001,30(1):43~45
    [141]肖颖,童水光,陈敏,杨美原.基于Visual C++的Pro/E三维标准件库开发研究.机械工程师,2001,11:22~24
    [142]周巧玲.基于STEP-NC的CAD特征建模[D].北京化工大学,2007
    [143]夏长春.基于Pro/E的装配尺寸链自动生成[D].兰州理工大学,2008
    [144]吴海华,曾孟雄.基于Pro/ENGINEER的三维标准件库研究与实现.机械设计,2003,9(20):31~32
    [145]徐长青,徐志闻,郭晓心等编.计算机图形学.机械工业出版社,2004
    [146] Kolaitis D, Founti M A. Modeling of the gas-particle flow in industrial classificationchambers for design optimization[J]. Powder Technology,2002,125:298~305
    [147] Vemuri B C, Chen l, Vu-Quou L, et al. Efficient and accurate collision detection forgranular flow simulation. Graphical Models and Image Processing,1998,60:403~422
    [148] Asmar B N, Langston P A, Matchett A J, et al. Validation tests on a distinct elementmodel of vibrating cohesive particle systems. Computers and Chemical Engineering.2002,26:785~802
    [149] Schinner A. Fast algorithms for the simulation of polygonal particles. Granular Matter,1999,2:35~43
    [150] Bandi S, Thalmann D. An adaptive spatial subdivision of the object space for fastcollision detection of animated rigid bodies. Proceedings of the Eurographics,Eurographics Assoc., Maastricht, Netherland, Aug.28–Sept.1,1995,259~270
    [151]苏凤环,姚令侃,陈春光.三维离散单元法数值模拟中查找邻居元的一种新算法.计算机应用,2004,24(1):149~151
    [152]杨霄鹏.基于动态八叉树的三维离散元法邻居搜索方法研究[D].吉林大学,2007
    [153]商慧.三维离散元法计算仿真软件开发研究[D].吉林大学,2006
    [154]乌兰.三维离散元法计算仿真软件的研究[D].吉林大学,2007
    [155]袁月明.气吸式水稻芽种直播排种器的理论及试验研究[D].长春:吉林大学,2005
    [156]金汉学.基于高速摄像技术的水稻芽播精密排种器研究[D].长春:吉林大学,2004
    [157]张辉,张永震.颗粒力学仿真软件EDEM简要介绍[J].CAD/CAM与制造业信息化,2008(12):48-49
    [158]王东,杨溢.大型离散元软件EDEM的功能特点[J].成果纵横,2009,(03):75~76
    [159] Cundall P A, Strack O L. Particle flow code in dimensions[R]. Itasca Consulting Group,Inc.,1999
    [160] Wang C, Tannant D D, Lilly P A.Numerical analysis of the stability of heavily jointedrock slopes using PFC2D[J].International Journal of Rock Mechanics and MiningSciences,2003,40:415~424
    [161] Cundall P A, Hart R D. Development of generalized2-D and3-D discrete elementprograms for modeling jointed rock[R]. ITASCA Consulting Group, Misc. Paper SL28521, U. S. Army Corps of Engineers,1985
    [162] ITASCA Consulting Group.UDEC news and world report[J]. Official Publication ofthe UDEC Users Group, Inc.1985
    [163] Mishra B K. A review of computer simulation of tumbling mill by the discrete elementmethod: part I—contact mechanics[J]. International Journal of mineral Processing,2003,71:73~93
    [164]焦红光,李靖如,赵继芬等.关于离散元法计算参数的探讨[J].河南理工大学学报,2007,26(1):88~93
    [165]于建群,马成林,王立鼎.组合内窝孔精密排种器充种过程分析[J].农业机械学报,2001,32(5):30~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700