用户名: 密码: 验证码:
Ti-Al-Nb三元系中的合金组织对性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文参考了大量Ti-Al-Nb系各个温度下的三元相图,以及合金元素对二元Ti-Al相图的影响等文献,在Ti、Al等原子比的基础上,调整Nb的量设计并制备了一系列Ti-Al-Nb三元合金。合金设计的目的是为了获得不同相组成的合金。采用示差热分析方法、X射线衍射分析、电子探针背散射电子成分像及微区成分分析、透射电镜明场像及选区电子衍射以及光学显微组织分析等多种手段确定了在不同温度下实验材料的显微组织形貌及相组成。所有实验样品在实验前都经过1473K,5小时的均匀化处理。
     首先,我们选择了不同含Nb量的具有不同相组成的四种Ti-Al-Nb三元合金,它们的名誉化学成分分别为:Ti-47.5Al-5Nb、Ti-42.85Al-14.3Nb、Ti-40Al-20Nb和Ti-35Al-30Nb(at%);它们的相组成分别为:γ-TiAl、γ-TiAl+α_2-Ti_3Al和γ-TiAl+α_2-Ti_3Al+Nb_2Al。对这四种合金进行1273K,100小时的断续氧化实验。研究结果表明,我们所研究的四种Ti-Al-Nb三元合金的高温抗氧化性能都比同样实验条件下的二元Ti-Al合金抗氧化性能好很多,这四种Ti-Al-Nb三元合金在1273K,100小时的断续氧化增重量都小于8mg/cm~2,特别是成分为Ti-42.85Al-14.3Nb的双相合金其氧化增重量仅为2.5mg/cm~2,而二元Ti-Al合金的氧化增重量达到69mg/cm~2。二元Ti-Al合金在1073K,100小时的断续氧化增重量与我们所研究的四种Ti-Al-Nb三元合金在1273K,100小时的断续氧化增重量在一个水平上为1-3mg/cm~2;在这四种Ti-Al-Nb三元合金中,相组成为γ-TiAl+α_2-Ti_3Al的双相合金抗氧化性能最好,分析其原因,一方面是由于两相中固溶了大量的Nb(分别达到13.3at%和19.4at%),另一方面是由于α_2-Ti_3Al的存在使得其主要相γ-TiAl的含Al量相对提高,富Al的γ-TiAl相有利于Al_2O_3的生成及稳定生长。成分为Ti-47.5Al-5Nb的单相γ-TiAl合金由于其含Nb量较少,Nb没有充分起到抑制TiO_2的生长及促进Al_2O_3生成的作用,虽然其比二元Ti-Al合金抗氧化性能要好许多,但仍然没有生成具有保护作用的连续的Al_2O_3保护膜。同样当含Nb量超过20at%时(如Ti-40Al-20Nb和Ti-35Al-30Nb合金)由于氧化生成的Nb_2O_5是一个结构疏松且与基体结合力非常差的氧化膜,在氧化过程中极容易从基体上剥落下来,使其抗氧化性能下降。
     在上述抗氧化性能的研究基础上,选择相组成为单相γ-TiAl、双相γ-TiAl+α_2-Ti_3Al和三相γ-TiAl+α_2-Ti_3Al+Nb_2Al,成分分别为Ti-47.5Al-5Nb、Ti-42.85Al-14.3Nb和Ti-40Al-20Nb三种Ti-Al-Nb三元合金,进行从室温至1373K的压缩性能实验及室温和1173K的拉伸性能实验。实验结果表明,Ti-Al-Nb三元单相γ-TiAl合金在低温一侧同二元γ-TiAl合金具有同样的屈服强度450MPa,该强度一致保持到1200K左右,但是在高温一侧的屈服强度要远远高于二元γ-TiAl、Inconel715以及Ti-48Al-2Cr-2Nb等合金,这是因为γ相中固溶了比较多的Nb所造成的。从室温到1373K温度区域内,双相合金和三相合金的屈服强度都比单相合金的高很多,室温屈服强度分别在1150MPa和950MPa,随着温度的上升,屈服强度略呈下降,从1000K开始,屈服强度随着温度的上升下降的幅度加大。在1200K时,双相合金和三相合金的屈服强度仍然保持在600MPa左右,这说明多相组织强化机制对提高Ti-Al合金的高温性能是非常有效的。
     拉伸性能的实验结果表明,室温下双相合金的塑性变形能力好于另外两种合金,这主要是因为α_2相的存在降低了合金平均晶粒尺寸,并且由γ和α_2两相构成的层片组织结构以及大量的γ/α_2相界面有利于塑性变形。温度升高可以显著改善双相合金的塑性变形能
Referencing a lot of Ti-Al-Nb ternary phase diagrams and affection of alloy elements on binary Ti-Al phase diagram, a series of Ti-Al-Nb ternary alloy samples were produced by adjusting the contents of Nb and fixing the ratio of Ti and Al to 1. The main purpose of the composition configuration was to prepare the Ti-Al-Nb ternary alloys with different microstructures. Microstructures and phase configurations at different test temperatures were obtained by many different means such as differential thermal analysis, X-ray diffraction analysis, electron probe microanalysis, microscopy, transmission electron microscopy and selected area electron diffraction. All the samples were treated at 1473K for 5hrs before testing.Four Ti-Al-Nb ternary alloys with different composition and microstructures were selected. The nominal composition of the four alloys were Ti-47.5Al-5Nb, Ti-42.8Al-14.2Nb, Ti-40Al-20Nb and Ti-30Al-40Nb (at%), with microstructure γ-TiAl, γ-TiAl+a2-Ti3Al, γ-TiAl+a2-Ti3Al+Nb2Al and γ-TiAl+a2-Ti3Al+Nb2Al respectively. The interrupted isothermal oxidation experiment of the four alloys was carried out at 1273K in air for 100 hours. The results showed that the oxidation behavior of the four Ti-Al-Nb alloys was superior to that of the binary Ti-Al alloys. The mass gains of the alloys after interrupted oxidation test at 1273K for 100 hours were all less than 8mg/cm2. In particular, the y-TiAl+a2-Ti3Al two-phase alloy (Ti-42.85Al-14.3Nb(at%)) showed the best oxidation resistance with a mass gain of only about 2.5mg/cm2. The mass gain of a binary TiAl alloy used in this study was found to be 69mg/cm2 after treatment at 1273K for lOOhours. The mass gain of Ti-Al binary alloys oxidized at 1073K for 100hours was about l-3mg/cm2 , the same order as that of Ti-Al-Nb ternary alloys. Among the four Ti-Al-Nb ternary alloys investigated, better oxidation resistance showed by the two-phase y-TiAl+a2-Ti3Al alloy may be attributed to the higher amount of Nb presented in both y and a2 phases (13.3at% and 19.4at% respectively). On the other hand, aluminum content of main phase γ in γ+a2 two-phase alloy was relatively higher due to the presence of the a2 phase. The rich aluminum y phase promoted the formation and growth of Al2O3. In the single-phase γ alloy (Ti-47.5Al-5Nb (at%)), less amount of Nb solution in y phase could not inhibit the growth of TiO2 and at the same time accelerate the formation of A12O3, as a result, non-protective oxide of TiO2 dominated the outer oxide scale. The emergence of Nb2O5 in Ti-40Al-20Nb(at%) and Ti-35Al-30Nb(at%) alloys when the Nb content in the Ti-Al-Nb alloy is over 20at% is discussed, and the exfoliation of oxide scale was observed. The relationship between poor oxidation resistance of Ti-40Al-20Nb(at%) and Ti-35Al-30Nb(at%) alloys and the Nb-enriched phase of Nb2Al was investigated.On the basis of the above investigation on the oxidation behavior of Ti-Al-Nb ternary alloys, the three alloys with γ(Ti-47.5Al-5Nb(at%)), y+a2(Ti-42.85Al-14.3Nb(at%)), y-+a2+Nb2Al(Ti-40Al-20Nb(at%)) respectively were selected for compression testing at room temperature, 973K, 1173K and 1373K and tensile testing at room temperature and 1373K. The results showed that the yield strength of the y single phase Ti-Al-Nb ternary alloy was 450Mpa,
    which was the same as that of binary y-TiAl alloy at about 1200K, but at higher temperatures, the yield strength was higher than that of y-TiAl binary alloy, Inconel715 and Ti-48Al-2Cr-2Nb etc. alloys. This attributes to that Nb solutes in y phase. The yield strengths of the two-phase and three-phase alloys were higher than that of the single-phase alloy from room temperature to 1173K, which were 1150MPa and 950MPa respectively at room temperature. The yield strength decreased slightly when temperature increased.The results of tensile property experiments showed that plastic property of the two-phase alloy was better than that of single-phase alloy and three-phase alloy. The main reason was that the appearance of a% phase effectively decreased average grain size. Another reason was that the lamellar microstructure consisted of y and a.2 phases and y/a2 interface were clearly favorable for plastic deformation. The ductility of the two-phase alloy improved when temperature increased, tensile elongation was 40.4% at 1173K. However, the ductility of single-phase and three-phase alloys could not increase at 1173K. Characteristics of fracture of the two-phase alloy transformed from cleavage fracture at room temperature to i ductile fracture at 1173K, but that of single-phase and three-phase alloys were all cleavage fracture at room temperature and 1173K. Nt^Al-phase in ternary alloys decreased the continuity of lamellar microstructure consisted of y-phase and a2-phase. The Tab of Nb2Al was 1443K, hence brittle Nb2Al at 1173K made the RT ductility and high temperature ductility of the three-phase alloy lower.In a word, the results of oxidation resistance and mechanical properties showed that the two-phase alloy of Ti-42.85Al-14.3Nb(at%) had better oxidation resistance and room temperature and elevated temperature general mechanical property. It is potential to assume the application for elevated temperature components below 1173K.On the basis of research results of oxidation and mechanical property test of Ti-42.85Al-41.3Nb(at%), referring to benefit effect of W, Cr on Ti-Al alloy, four alloys were designed and prepared by adding W, Cr to Ti-Al-Nb ternary alloys. Their normal chemistry composition were Ti-41.85AM4.3Nb-2W, Ti-42.85Al-12.3Nb-2W, Ti-42.85Al-12.3Nb-2Cr and Ti-42.85Al-10.3Nb-4Cr(at%). The interrupted oxidation behaviors of the four alloys at 1273K in static air were studied.The microstructure of the four alloys was y+p, due to Nb, W, Cr stabilized (J phase. Addition of W or Cr to Ti-Al-Nb ternary alloys accelerated accumulation of Nb in p phase, this made Nb content of matrix y phase less. This explained why Nb could not improve the oxidation resistance. The addition of Cr made the adhesiveness between oxide and matrix weaker, the formed oxide is liable to breaking off due to thermal stress while cooling. Not only the oxidation resistance of the four alloys with W, Cr to Ti-Al-Nb ternary alloys could not be improved but also get lower than that of Ti-42.85Al-14.3Nb (at%) two-phase alloy.In order to further study the effect of P phase on oxidation resistance, the alloy such as Ti-42.85Al-12.3Nb-2Cr(at%) was heat-treated at 1553K for 2hours and cooled down to 1473K for 6hours and to room temperature in furnace(process2) or in water(process3). The microstructure of the two kinds of the treated alloys were y-TiAl+a2-Ti3Al,
引文
[1] 张永刚,韩雅芳,陈国良等.金属间化合物结构材料.国防工业出版社,北京 2001
    [2] 陈国良,林均品.有序金属间化合物结构材料物理金属学基础.冶金工业出版社,北京 1999
    [3] 山口正治,马越佑吉.金属间化合物.科学出版社,北京 1991
    [4] 林栋梁.高温有序金属间化合物研究的新进展.上海交通大学学报,1998,32(2):P95-108
    [5] Heng Qiang Ye. Recent developments in Ti_3Al and TiAl Intermetallics research in China. Materials Science and Engineering, 1999, A263: P289-295
    [6] Dimiduk D M. Gamma Titanium Aluminide alloys-an assessment within the competition of aerospace structural materials. Material Science and Engineering, 1999, A263: 281-288
    [7] 仲增墉,叶匿强.金属间化合物—全国首届高温结构金属间化合物学术讨论会论文集.机械工业出版社,北京 1992
    [8] 郭建亭.高温合金和金属间化合物文集.机械工业出版社,北京 1998
    [9] 彭超群,黄伯云,贺跃辉.TiAl基合金的工艺—显微组织—力学性能关系.中国有色金属学报.2001,11(4):P527-540
    [10] C. T. Yang, Y.C.Lu,C.H.Koo. The high temperature tensile properties and microstructural analysis of Ti-40Al-15Nb alloy. Intermetallics, 2002, 10: P161-169
    [11] Toshimitsu Tetsui. Effects of high niobium addition on the mechanical properties and high-temperature deformability of gamma TiAl alloy. Intermetallics, 2002, 10: P239-245
    [12] 闫蕴琪,王文生,张振祺等 Nb-TiAl 金属间化合物研究现状。材料导报,2000,14(7):P15-17
    [13] C.Mccullough, J.J.Valencia, C.G.Levi and Mehrabian. Phase equilibria and solidification in Ti-Al alloys. Acta metal, 1989,37(5): P1321-1336
    [14] Akito Takasaki, Kozo Ojima, Youji Taneda. High-temperature oxidation process of intermetallic compound Ti-42at%Al. Journal of Material Science, 1993, 28: P1067-1073
    [15] Yoshiaki Shida, Hiroyuki Anada. Oxidation behavior of binary Ti-Al alloys in high temperature air environment. Materials Transactions, JIM, 1993, 34: P236-242
    [16] Shigeji Taniguchi, Toshio Shibata, Satoshi Itoh. Oxidation behavior of TiAl at high temperature in purified oxygen. Materials Transactions, JIM, 1991, 32 (2): P151-156
    [17] T.Shimizu, T.Iikubo, S.Isobe. Cyclic oxidation resistance of an intermetallic compound TiAl. Materials Science and Engineering, 1992,A153: P602-607
    [18] 李向阳,张永康.二元Ti-Al合金高温氧化机理.金属学报,1997,33(9):P964-971
    [19] 王薇,张永刚,史晶宇.γ-TiAl的循环氧化行为.中国有色金属学报,2000,10(3):P318-322
    [20] 曲恒磊,周廉,魏海荣.TiAl循环氧化行为研究.东北大学学报(自然科学版),2000,21(4):P404-407
    [21] 曲恒磊,周廉,魏海荣。静止空气中TiAl断续氧化动力学。稀有金属材料与工程,2000,29(1):P8-11
    [22] 曲恒磊,周廉,魏海荣等.TiAl基合金的氧化分层.中国有色金属学报,2001,11(3):P398-403
    [23] 曲恒磊,周廉,魏海荣.元素Al的波动对TiAl高温氧化行为的影响,材料科学与工程,2000,18 (3):P1-6
    [24] 李向阳,张永刚,陈昌麒.Al含量对二元Ti-Al合金高温氧化行为的影响.稀有金属材料与工程,1997,26(5):P35-39
    [25] 朱日彰,何业东,齐慧滨.高温腐蚀及高温腐蚀材料.上海科学技术出版社,上海 1995
    [26] 翟金坤.金属高温腐蚀.北京航空航天大学出版社,北京 1994
    [27] Y.Shida, H. Anada. The influence of ternary element addition on the oxidation behavior of TiAl intermetallics compound in high temperature air. Corrosion Science, 1993, 35: P945-953
    [28] Y.Shida, H. Anada. The effect of various ternary additives on the oxidation behavior of TiAl in high temperature air. Oxidation of Metals, 1996, 45: P197-219
    [29] 李向阳.北京航空航天大学博士论文.北京,1997
    [30] Anada H, Shida Y. Materials and Corrsion, 1995,46(8): P129-133
    [31] Mckee D, Huand S. High-Temperature Ordered Intermetallic alloys Ⅳ, 1990,213: P939-946
    [32] Vasudevan VK, CourtSA, KurathP, etal. Effect of purity on the deformation mechanism in the intermetallic compound TiAl. Scripta Metall, 1989,23(6): P907~912
    [33] V. A. C Haanappel, H.Clemens, M.F.Stroosnijder. The high temperature oxidation behavior of high and low alloyed TiAl-based intermetallics. Intermetaliics, 2002, 10: P293-305
    [34] V. A. C Haanappel, J. D. Sunerkotter, M. F.Stroosnijder. The isothermal and cyclic high temperature oxidation behavior of Ti-48Al-2Mn-2Nb compared with Ti-48Al-2Cr-2Nb and Ti-48Al-2Cr. Intermetallics, 1999, 7: P529-541
    [35] Shida Y, Anada H. Role of W, Mo, Nb and Si on oxidation of TiAl in air at high temptrure. Mater Trans, JIM, 1994, 35: P623-634
    [36] Bong Goo Kim, Gil Moo Kim, Chong Jip Kim. Oxidation behavior of TiAl-X (X=Cr, V, Si, Mo or Nb) intennetallics at elevated temperature. Scripta Metallurgica et Materials, 1995,33(7): P1117-1125
    [37] M.Yoshihara, K.Miura. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics, 1995, 3: P357-363
    [38] K.Maki, M.Shioda, M.Sayashi. Effect of silicon and niobium on oxidation resistance of TiAl intermetallics. Materials Science and Engineering, 1992,A153: P591-596
    [39] M.N.Mungole, R.Balasubramaniam, A.Ghosh. Oxidation behavior of titanium aluminides of high niobium content, Intermetallics, 2000, 8: P717-720
    [40] Schaeffer J, Austin C, Kaempf F. Effect of alloying on the environmental resistance of cast gamma alloys. In: Kim Y-W, Wanger et al. Gamma Titanium aluminides. Warrendale: TMS, 1995, 71
    [41] Zhang W, Chen G, Sun Z. Scr Metall Mater, 1993, 28(5): P563-574
    [42] 贺跃辉,黄伯云,曲选辉等.Sb的添加对TiAl基合金综合性能的影响.航空材料学报,1995,15(3):P19-24
    [43] 唐兆麟,王福会.Cr对TiM金属间化合物高温氧化性能的影响.金属学报,1997,33(10):P1028~1034
    [44] 曲恒磊,周廉,魏海荣.低铬合金化TiAI的高温氧化.稀有金属,2001,25(2):P81-88
    [45] Z.Tang, V.Shemet, L.Niewolak et al. Effect of Cr addition on oxidation behavior of Ti-48Al-2Ag alloys. Intermetallics, 2003, 11: P1-8
    [46] 李向阳,林建国,黄正等.γ-TiAl基合金的显微组织与机械性能.稀有金属材料与工程,1994,23(5):P9-13
    [47] Huang S. Abstracts 95-0581, 95-0582. Materials and Corrsion, 1995, 46(3): P54-58
    [48] 陈健,黄伯云,谭毅等.TiAl-Sb-Mo合金的高温氧化行为和机理.材料科学与工艺,1998,6(4):P11-18
    [49] Hanamura T, Ikematsu Y, Morikawa H et al. Improvement of oxidation resistance and ductility in titanium aluminides by small additon of Vb or Vib elements. In: Izumi O.JIMIS-6. Japan, 1991, P179-191
    [50] Schmacher G, Dettenwanger F. XRD Investigations of phosphorus effect on the oxidation of TiAl alloys by high resolution methods. Oxidation of Metals, 2001, 54(3/4): P317-326
    [51] Taniguchi S, Shibata T. ISIJ Int, 1993, 33(8): P869-877
    [52] 王福会,楼翰一.CoCrAl微晶涂层对TiAl金属间化合物抗高温氧化性能的影响.金属学报.1993,29(3)):P115-123
    [53] Zhu Yaocan, Zhang Y et al. The influence of magnetron-sputtered SiO_2 coatings on the the cyclic oxidation behavior of γ-TiAl alloys. Materials Transactions, JIM, 2000, 41(9): P1118-1120
    [54] Chunggen Zhou, Ying Yang, Shengkai Gong, Huibin Xu. Effect of Ti-Al-Cr coatings on the high temperature oxidation behavior of TiAl alloys[J]. Materials Science and Engineering, 2001, A307: P182-187
    [55] 王福会,楼翰一,朱圣龙等.溅射微晶TiAl金属间化合物抗高温氧化性能的研究.金属学报,1995,31:P612-615
    [56] Zhaolin Tang, Fuhui Wang, Weitao Wu. Effect of Al_2O_3 and enamel coatings on 900℃ oxidation and hot corrsion behaviors ofgamma-TiAl. Materials Science and Engineering, 2000, A276: 70-75
    [57] V. Gauthier, F.Dettenwanger, M. Schutze. Oxidation behavior of γ-TiAl coated with zirconia thermal barriers. Intermetallics, 2002, 10: P667-674
    [58] X. Y. Li, S. Taniguchi, Y.-C.Zhu et al. Effects of C, Nb and C+Nb combined ion implantation on the oxidation resistance of γ-TiAl based alloy[J]. Materials Science and Engineering, 2001, A316: P224-230
    [59] X. Y. Li, S. Taniguchi, Y.-C.Zhu et al. Oxidation behavior of TiAl protected by Si+Nb combined ion implantation [J]. Intermetallics, 2001, 9: P443-449
    [60] X. Y. Li, S. Taniguchi, Y.-C.Zhu et al. Oxidation behavior of TiAl protected by Al and Nb combined ion implantation at high temperature [J]. Nuclear Instruments and Methods in Physics Research B, 2002, 187: P207-214
    [61] Y. G. Zhang, X. Y. Li, C. Q. Chen, W. Wang, Vincent Ji. The infuence of Nb implantion upon oxidation behavior and hardness of a Ti-48at%Al alloy [J]. Surface and Coating Technology, 1998, 101: P214-218
    [62] S. Taniguchi, K. Uesaki, Y.-C.Zhu et al. Influce of niobium ion implantation on the oxidation behavior of TiAl under thermal cycle conditions. Materials Science and Engineering, 1998, A249: P223-232
    [63] 王薇,史晶宇,张永刚,张通和.Nb离子注入γ-TiAl的高温循环氧化行为.北京航空航天大学学报,2001,27(2):P125-128
    [64] 朱小鹏,雷明凯,马腾才等.离子注入Cr、Y、Nb对γ-TiAl金属间化合物高温氧化性能的影响.[J].核技术,2001,24(1):P27-32
    [65] S.Taniguchi. Oxidation of intermetallics-Japanese activity. [J]. Materials and Corrosion, 1997, 48: P1-9
    [66] H.Mabuchi, T.Asai, Y.Nakayama. Aluminide coating on TiAl compound. Scripta Metallurgica, 1989, 23: P685-689
    [67] I.C.Hsu, S.K.Wu, R.Y.Lin. A study of aluminide coating on TiAl intermetallics by liquid aluminizing. Materials Chemistry and Physics, 1997,49: P184-190
    [68] T.C.Munro, B.Gleeson. The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method. Metallurgical and Materials Transactions,A 1996, 24: P3671-3680
    [69] 贺跃辉,黄伯云,曲选辉等.渗碳处理提高TiAl基合金高温抗氧化性.材料研究学报,1996,10(6):P603-607
    [70] 朱小鹏.大连理工大学硕士论文.大连,1999
    [71] Rakowski J, Pettit F, Meier G et al. Scr Metall Mater, 1995, 33(6): P997-1007
    [72] 曲恒磊,周廉,魏海荣.影响TiAl高温氧化的两个因素.材料工程,2000,1:P3-9
    [73] Yoshihara M, Tanaka R ,et al. High-Temperature Ordered Intermetallic Alloys Ⅳ. 1990,213: P975-989
    [74] Yoshihara M, Miura K, Kim Y-M. Oxidation behavior of structure-controlled TiAl. In: Kim Y-W ,et al. Gamma Titanium Aluminides.Warrendale: TMS, 1995, P24-35
    [75] Taniguchi S, Murakai A, Shibata T. Oxidations of Metals, 1994, 41(1-2): P103-111
    [76] Taniguchi S, Shibata T. ISIJ Int, 1993, 33(8): P869-881
    [77] 陈伶晖,贺跃辉,曹鹏,黄伯云等.TiAl基合金显微组织对高温抗氧化性的影响.热加工工艺,1995.6:P7-14
    [78] X. Y. Li, S. Taniguchi, Y.-C.Zhu et al. Effects of C, Nb and C+Nb combined ion implantation on the oxidation resistance of γ-TiAl based alloy [J]. Materials Science and Engineering, 2001, A316: P224-230
    [79] X. Y. Li, S. Taniguchi, Y.-C.Zhu et al. Oxidation behavior of TiAl protected by Si+Nb combined ion implantation [J]. Intermetallics, 2001, 9: P443-449
    [80] X. Y. Li, S. Taniguchi, Y.-C.Zhu et al. Oxidation behavior of TiAl protected by Al and Nb combined ion implantation at high temperature [J]. Nuclear Instruments and Methods in Physics Research, 2002, B187: P207-214
    [81] Y.G.Zhang, X.Y.Li, C.Q.Chen ,W.Wang ,Vincent Ji. The infuence of Nb implantion upon oxidation behavior and hardness of a Ti-48at%Al alloy [J]. Surface and Coating Technology, 1998, 100: P 214-218
    [82] S. Taniguchi, K. Uesaki, Y.-C.Zhu et al. Influce of niobium ion implantation on the oxidation behavior of TiAl under thermal cycle conditions. Materials Science and Engineering, 1998, A249: P223-232
    [83] 王薇,史晶宇,张永刚,张通和.Nb离子注入γ-TiAl的高温循环氧化行为.北京航空航天大学学报,2001,27(2):P125-128
    [84] TANG Zhao-lin, WANG Fu-hui, WU Wei-tao, et al [J]The Chinese Journal of Nonferrous Metals, 1999, 9: P63-68
    [85] 袁赵欣.赵斌.孙坚.吴建生.NH_4Cl对TiAl基合金渗氮的影响,机械工程材料,2003,3:P24-31
    [86] G.L.Chen, J.G.Wang, X.T.Wang et al. Reply to the "Comment on 'Investigation on the 1000, 1150 and 1400℃ isothermal section of the Ti-Al-Nb system' "Part Ⅰ. Ordering of Nb in γ-TiAl andγ1 phase. Intermetallics, 1998, 6: P323-327
    [87] Duwez.etal,Trans.AIME, 1952, 194(1): P70-71
    [88] J.B.Mcandrew, etal,J.Meals., 1965, 8: P1348-1353
    [89] H.A.Lipsitt, Metal.Trans. 1975,6A(11): P1991-1996
    [90] T.Kawabata,T.Tamura and O.Izumi,Effect of Ti/Al ration and Cr,Nb and Nf addtion on Material factor and mechanical properities in TiAl,Metal.Trans, 1993, 24A(1): P141-150
    [91] S.C.Huang, E.L.Hall, 6th world conf.On Titanium ,Cannes, France,1988, P1109-1114
    [92] S.C.Huang, E.L.Hall, MRS Meeting, Boston,1988, P1253-1331
    [93] Yong-Won Kim, Intermetallic alloys based on gamma titanium aluminide, JOM, 1989, 41(7): P24-30
    [94] S.R.Club,D.A.Paconstantopoulos,B.M.Klein, First-principle study of Ll_0Ti-Al and V-Al alloys, PHYS.Rev. 1988, 38(17): P12120-121124
    [95] M.E.Eberhart, D.P.Clougherty and J.M.Maclaren,Charge density topology and its relationship to properties intermetiallic alloys ,phil.Mag., 1993, 68(4): P455-614
    [96] M.Morinaga,J.saito,N.Yukawa,etal,Electronic effect on the ductility of alloyed TiAl compound, Acta Metall.Mater., 1990, 38(1): P25-29
    [97] 刘志坚,曲选辉,黄伯云.粉末冶金法制各TiAl合金的进展.材料导报,1995,2:P23~28
    [98] 张继,张志宏,邹敦叙,等.TiAl合金细小全片层组织断裂机理.金属学报,1996,32A(10):P1044~1048
    [99] Kim Y W.Ordered intermetallic Alloys Ⅲ.Gamma Titanium Aluminides.JOM, 1994, 49(7): P30~39
    [100] 曹名洲,韩东,周敬,等.含Mn的TiAl基合金的组织和性能.[J]金属学报,1990,26(3):P223-227
    [101] 贺连龙,叶恒强,徐仁根,杨德庄.TiAl—V—Si合金中Ti_(5) Si_3析出相与基体相的取向关系[J]金属学报,1995,4:p28-37
    [102] 刘昌明,李华基,何乃军,等。钕对Ti-44Al合金组织和晶粒尺寸的影响,材料工程,1998,11:P20~23
    [103] Kim Y. W. Effects of microstructure on the deformation and fracture of γ-TiAl alloys. Mater>SCI.Eng.,1996, A192: P519-533
    [104] Hall.E.L, Huanf.S.C. Stoichiometry effects on the deformation of binary TiAl alloys.J.Mater.Res, 1989, 4(3): P595-602
    [105] Hanamura.H,Sugai.T,Tanino.M, Rapidly Quenched intermetallic compounds TiAl and TiAl_3, Elsevier Applied Science Poblishers, Tokyo, 1988, p617-628
    [106] 曹名洲,韩东,张涛,等.快速凝固TiAl基合金微晶的显微组织.金属学报, 1992,28A(10):p426-429
    [107] 蒲忠杰,石建东,邹敦叙,等.TiAl基合金组织对拉伸性能的影响.金属学报 1993,29(8):p363-369
    [108] Y.W.Kim.JOM.1994,46(7): 30-40
    [109] Y.W.Kim High temperature Ordered-intermetallics Alloys.Ⅳ. Edited by C.C.Koch,et.al, (MRS,pttsburgh,PA): 777-793
    [110] Y.W.Kim.Acta Metall Mater.1992,40(4): 1121-1134
    [111] K.S.Chan,Y-W.Kim,Metall Trans.1992,213A(6): 1663-1667
    [112] Y.G.Nakagawa,et al.Mater Sci &Eng., 1992, 152A: 722-725
    [113] B.London, et al. Sturctural Intermetallics ,edited by R.Darolia, et al. (TMS, Warrendal PA: 1993): 151-157
    [114] C.T.Liu, et al .Gamma Titanium Aluminides, edited by Y-W.Kim,et al, (TMS,Lasvegas,NV.1995): 679-688
    [115] J.Kumpfert,Y-W.Kim,D.M.Dimiduk,Mater Sci &Eng.1995, 192/193A: 465-473
    [116] Y-W.Kim.Mater Sci&Eng,1995, 192/193A: 516-533
    [117] D.M.Dimiduk,et al ,Metall Mater Trans.1998, 29A(1): 37-47
    [118] C.T.Liu, P.J.Maziasz,J.L.Wright. High temperature Ordered-intermetallics AlloysⅦ. edited by C.C.Koch,et al,(MRS, Pittsburgh, PA), 1997: 83-90
    [119] E.Abe,M.Nakamara.phil Mag Lett.1997,75(2): 65-73
    [120] M.H.oh,H.Inui,M.Yamaguchi.Acta Metall Mater.,1993,41(7): 1939-1949
    [121] K.S.chan,JoM,1992,44(5): 30-38
    [122] K.S.Chan,Y-W.Kim,Metall Trans.,1992, 23A(9): 1663-1677
    [123] K.S.Chan,Gamma,Titaniam Aluminides.edited by Y-W.Kim,et al.,(TMS,Lasvegas,NV.1995): 835-847
    [124] N.J.Rogers, P. Bowen.Structural Intetmetallics edited by R.Darolia etal.,(TMS,Warrendale,PA: 1993): 231-240
    [125] N.J.Rogers,et al .Mater Sci&Eng,1995,192/193A: 379-386
    [126] R.Gnanamoorthy.et al.Metall Mater Trans.1995,26(2): 305-313
    [127] W.O.Soboyejo,D.S.Schwartz, S.M.L.Sastry.Metall.Trans.,1992, 23A(7): 2039-2059
    [128] Z.J.Pu,et al ,Mater Sci&Eng.,1995,192/193A: 347-355
    [129] Kim Y-W. and Dennis M.Dimiduk.Progress in the understanding of Gama Titanium Aluminides.JOM., 1991, 8: 40-47
    [130] Martin PL,Mediratta M G,Lipsitt H A.Creep deformation of TiAl and TiAl+W alloys [J].Metall Trans, 1983, 14A: 2170-2179
    [131] Loiseau A,Lasalmonie A.Influence of the thermal stability of TiAl on its creep behaviour at high temperature [J]. Mater Sci Eng, 1984, 67: 163-172
    [132] Takahashi T, Nagai H,Oikawa H.Creep characteristics in Ti50Al single phase polycrystals [J].Mater Trans,JIM,1989, 30: 1044-1056
    [133] 彭超群,黄伯云,贺跃辉。TiAl基合金蠕变研究进展[A].中国有色金属学会第三屑学术会议论文集.1997
    [134] Nagai.H,Takahashi T,Oikawa H.Effect of grain size on creep if Ti53Al intermetallics at 1100K [J]. J Mater Sci, 1990, 25: 629-632
    [135] Kim Y-W, Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy [J]. Acta Metall Mater, 1992, 40: 1121-1132
    [136] Husang S C. Microstructures and property tradeoffs in wrought TiAl-base alloys [J]. Metall Trans, 1992, A23: 375-387
    [137] Huang S C, Hall E L. Plastic deformation and fracture of binary TiAl-based alloys [J].Metall Trans, 1991. A22: 427-436
    [138] Huang S C,Hall E L.The effects of Cr additions to binary Ti-Al base alloys [J]. Metall Trans. 1991, A22: 2619-2627
    [139] Kimm D I, Wolfenstine J. Effect of grain size on the creep behavior of fully transformed γ-TiAl[J]. Scr Metall Mater,1994, 30: 615-619
    [140] Hayes R W, Mcquay P A. A first report on the creep deformation and damage behavior of a fine grained fully transformed lamellar gamma TiAl alloy [J]. Scr Metall Mater, 1994, 30, 259-264
    [141] Hayes R W, London B. On the creep deformation of a cast near gamma TiAl alloy Ti-48Al-Nb [J]. Acta Metall Mater, 1992, 40: 2167-2174
    [142] Zhang W J.Scripta Materialia,1997. 36(9): 981-991
    [143] Zhu Y B. J Mater Proce Techn. 1997, 63: 927-936
    [144] 陈国良,张卫军,刘自成.高铌TiAl基合金的组织和性能.金属学报,1999,(35):P396-400
    [145] 雷新颖,闫蕴琪,梁清华.Nb含量及固溶处理温度对TiAl基合金组织的影响.金属热处理,2001,2):1-12
    [146] Jin-Jun Ding, Shi-Ming Hao, Reply to the "Comment on 'Investigation on the 1000, 1150 and 1400℃ isothermal section of the Ti-Al-Nb system'"——Part Ⅱ. Modification of 1000 and 1150℃ isothermal sections of the Ti-Al-Nb system[J]. Intermetallics, 1998, 6: 329-334
    [147] 曹京霞,丁进军,郝士明,陈国良等.Ti-Al-Nb三元系1150℃等温截面的研究.金属学报,1995,31:P555-558
    [148] 王西涛,陈国良.Ti-Al-Nb三元系1400℃等温截面图.金属学报,1995,31:p550-554
    [149] Perpezko J.H, Chang Y.A, Seitzman L.E et al. High Temperature aluminides and intermetallics. Warrendate, OH: TMS, 1990, 9
    [150] Jingguo Wang, Guoliang Chen, Zuqing Sun. Phase relations in TiAl+Nb system. J. Mater. Sci.Technol., 1994, 10: 359-366
    [151] 王西涛,倪晓东,陈国良,倪克铨.Nb和Al含量对Nb在TiAl中有序化的影响.北京科技大学学报,1997,19(1):52-54
    [152] Xiaodong Ni, Xidong Hui, Guoliang Chen. Distribution of Nb atom in the TiAl+Nb system. Rare Metals, 2001, 20(1): 5-12
    [153] 王金国,陈国良,孙祖庆.TiAl+Nb系中一个新的三元有序金属间化合物的结构.金属学报,1994,30(11):A526-A530
    [154] 曹京霞,丁进军,郝士明,陈国良.Ti-Al-Nb三元系中NbTiAl_3(γ_1相)当量合金成份的研究.金属学报,1995(31):p559-561
    [155] T.J.Jewett. Comment on 'Investigation on the 1000, 1150 and 1400℃ isothermal section of the

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700