用户名: 密码: 验证码:
VLBI2010与GNSS联合数据分析理论及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球尺度范围内,达到1mm定位精度,是新一代VLBI系统VLBI2010的目标之一,目前的数据分析理论和方法还远不能满足这个要求。VLBI和GNSS技术分别作为几何和动力学技术的代表,两者具有很强的互补性。然而受观测条件和数据分析技术的限制,基于两种技术原始几何观测量的联合数据分析始终未能实现,VLBI2010与下一代GNSS技术良好的观测条件以及数据分析和计算机技术的发展,为观测水平上的联合数据分析创造了条件。本文针对两种技术新的需求和各自的特点,建立了基于原始几何观测量联合数据分析的完整理论体系与框架,为建立相应的联合数据分析软件打下了坚实的基础。
     论文的主要研究内容如下:
     1.研究了VLBI2010和下一代GNSS系统的原理、特点及数据分析需求等,分析了VLBI2010宽带相位时延模糊度产生的原因及解算方案。
     2.在广义相对论框架下,研究了基本时空参考系BCRS和GCRS的定义及转换方法,给出了坐标时参考系和空间坐标参考系的定义。
     3.研究了联合解算中的基准问题,分析了基本时空参考系的坐标参考基准,系统研究了定义参考基准的代数约束。
     4.研究了空间数据处理中常用的坐标时系统及它们之间的关系,分析了各种坐标时的定义及其转换方法,研究并比较了各种坐标时转换方法的精度及其适用范围。
     5.研究了空间坐标转换所涉及的概念和方法,分析比较了各种转换方法的优缺点及转换参数之间的关系。研究了IERS建立的ITRF和ICRF,指出了其存在的缺陷和不足。
     6.推导给出了适合VLBI2010的理论时延公式。研究了联合数据分析中地面参考点、信号传播路径、空间参考点以及设备延迟的系统改正模型,给出了联合解算中改进部分系统模型的方法。
     7.研究了基于最小二乘原理的函数模型及随机模型参数估计方法。针对联合数据分析的需要,对相关的估计方法进行了拓展与综合。在可靠性理论的基础上,研究了粗差的探测与定位问题以及附加系统参数的统计检验问题,给出了相关的检验统计量。
     8.建立了基于GNSS非差非组合载波相位观测量及VLBI2010宽带相位延迟观测量的观测方程,推导了相关的偏微分方程。研究并给出了具体的参数化方法与分组约化方案,分析了可用于联合解算的分段线性参数化模型。
     9.给出了适合VLBI2010和下一代GNSS联合解算的初步方案,研究了将联合解算方案应用于建立参考架,校准系统差和提供EOP快速服务的方法。
     论文的主要贡献及创新点如下:
     1.研究了计量基准和参考基准的联系与区别,对常用的代数约束进行了详细的归纳和分类,指出了各种代数约束的优缺点及其应用方法。给出了联合数据分析时应用代数约束加强或定义坐标参考基准的方法,解析了常用时空坐标参考基准的定义及其实现。
     2.深入解析了IAU关于坐标转换的一系列新的概念和方法,详细推导了基于春分点与基于NRO的GCRS与ITRS之间的坐标转换方法,研究了各种转换参数之间的关系及其计算方法。
     3.给出了外部信息的统一处理方法,建立了一种适合并行计算的分组约化方法。基于最小二乘方差分量估计方法,推导了方差因子的BLUE及相关的简化公式。
     4.给出了GNSS非差载波相位观测量的等价单差参数化方法,提出了基于分组约化方法与史赖伯规则的观测方程约化方案。
     5.在TT框架下,推导了适合平面波前及球面波前的VLBI理论时延模型,拓展了球面波前情形下的级数展开法,并在二次方程法的基础上给出了适合地球卫星射电源的VLBI理论时延模型。
One millimeter position accuracy on global scales is one of challenging goals for VLBI2010 which is the new generation VLBI system, this request can not be met far-forth with current theory and method of data analysis. VLBI and GNSS are geometrical and dynamics technical representative respectively, and have strong complementarity to each other. Howerver, combined data analysis can not be carried out because of restrictions of observational condition and data analysis technique, and observational combined data analysis will be realized with nicer observational conditions of VLBI2010 and next generation GNSS as well as developments of data analysis and computer technique. Aiming at new requirements and characteristics of two techniques, a complete theories system and frame of combined data analysis based on origin geometrical observations is built up, and solid foundation is presented to establishment of combined data analysis software.
     The main works of this dissertation are summarized as follows:
     1. The principle, characteristics and requirements of data analysis about VLBI2010 and next generation GNSS system are studied in detail, the origin and solution of broadband phase delay ambiguity resolution is analyzed as well.
     2. In the framework of general relativity, the definitions and transform methods about basic space time reference are studied, definitions of coordinate time reference and space coordinate reference are presented.
     3. The problem of datum about combined algorithms is studied in detail, the coordinate reference datum of basic space time reference system is analyzed, some algebraic constraints used to define the reference datum are studied in detail.
     4. The commonly used coordinate time system and their relations are studied, their definitions and transformations are analyzed, and transformation precision and scope of application among various coordinate time is compared and studied as well.
     5. The concepts and methods to transform space coordinate are studied, transform methods between GCRS and ITRS are derived, advantages, disadvantages and their relations of various transform parameters are analyzed as well. ITRFs and ICRFs combined by IERS are studied, and deficiencies and limitations are pointed out.
     6. The VLBI theoretical time delay formula fitted to VLBI2010 is derived. The corrected models of terrestrial reference points, signal spread path, celestial reference points and instrumental delays which may be used in combined with data analysis are studied in detail, improved methods to some corrected models are given as well.
     7. The parameter estimation methods about parameters of function model and statistical model based on least square principle are studied. The relevant parameter estimation methods for the requirements of combined data analysis are developed and summaried. Problems to detect and fix blunders and statistical test to assistant parameters are studied based on reliability theory, and relevant statistical quantity are presented as well.
     8. Observational equations in terms of broadband phase delay of VLBI2010 and uncombined and undifferenced carrier phase of GNSS are established, formulas of partial differential coefficients about relevant linear equations are derived. The parameterization methods and scenarios of equivalently eliminated methods are studied and presented, a method which applies piece wise linear offsets models to combined solution is analyzed.
     9. An elementary solution which can be used to combine with data analysis VBLI2010 and next generation GNSS system is given, approaches to use combined solution in combining the reference frame, calibrating systemic errors and providing EOP services are researched.
     The main contributions and innovations of this dissertation are summarized as follows:
     1. The relations and differences between metric datum and coordinate reference datum are studied, various algebraic constraints are summarized and classified, and advantages, disadvantages and usages of various algebraic constraints are pointed out as well. Methods in data analysis to define or strengthen the coordinate reference datum are given, and definitions and realizations of space time reference system in common use are parsed.
     2. A series of new concepts and methods about coordinate transform presented by IAU are parsed in depth, methods of coordinate transformation between GCRS and ITRS based on vernal equinox and NRO are derived in detail, relations among various transform parameters and their calculated methods are studied.
     3. The unified approaches about exterior formation are given, an equivalently eliminated method which fits parallel computing well is developed. BLUEs of variance component and simplified formulas are derived based on the least-square variance component estimation.
     4. An equivalent single differencing parameterization to undifferenced carrier phase observations of GNSS is developed, eliminated scenarios of observational equation which make use of developed equivalently eliminated method and shi laibo rules are given.
     5. The VLBI theoretical time delay models fitted to plane wave front and curved wave front respectively are developed based on time argument with TT-compatible, a series expansion method with curved wave front is improved, a relevant theoretical VLBI time delay model which can be used to earth satellites is given based on quadratic equation methods.
引文
[1] PETRACHENKO B, NIELL A, BEHREND D, et al. Design Aspects of the VLBI2010 system, Progress Report of the IVS VLBI2010 Committee, NASA/TM-2009-214180[R].Goddard Space Flight Center, 2009.
    [2] PETRACHENKO B. VLBI2010: An Overview: VLBI2010: From Vision to Reality, International VLBI Service for Geodesy and Astrometry 2010 General Meeting Proceedings, Hobart, Tasmania, Australia, 2010[C]. NASA/CP–2010–215864.
    [3] Hofmann-Wellenhof Bernhard, Lichtenegger Herbert, Wasle Elmar. GNSS—Global Navigation Satellite Systems. GPS, Glonass, Galileo & more[M].程鹏飞,蔡艳辉,文汉江,等,译.北京:测绘出版社, 2007.
    [4]陈俊勇. GPS现代化重大进展—GPS L5和L3频率的发射[J].全球定位系统, 2009(4):7-8.
    [5]丁翔宇,赵玉生. GNSS现代化及研究的热点问题[J].物探装备, 2010,20(1):57-60.
    [6]杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报, 2010(01):1-6.
    [7] IUGG. Terms of Reference Global Geodetic Observing System (GGOS)[S]. 2007.
    [8]陈俊勇.空间大地测量技术对确定地面坐标框架、地形变与地球重力场的贡献和进展--出席2005年国际大地测量协会(IAG)科学大会札记[J].地球科学进展, 2005,20(10):1053-1058.
    [9] PEARLMAN M, ALTAMIMI Z, BECK N, et al. Global Geodetic Observing System—Considerations for the Geodetic Network Infrastructure[J]. Geomatica, 2006,60(2):193-205.
    [10] BEUTLER G, MOORE A W, MUELLER I I. The international global navigation satellite systems service (IGS): development and achievements[J]. Journal Of Geodesy, 2009,83(3-4):297-307.
    [11]党亚民,陈俊勇. GGOS和大地测量技术进展[J].测绘科学, 2006,31(1):131-133.
    [12] PETIT G, LUZUM B. IERS Conventions (2010), ITRS Technical Note 36[R].Bundesamt für Kartographie und Geod?sie, Frankfurt am Main, 2010.
    [13] BOLOTIN S, GIPSON J M, MACMILLAN D S. Development of a New VLBI Data Analysis Software: IVS 2010 General Meeting Proceedings, Hobart, Tasmania, Australia, 2010[C]. NASA/CP 2010–215864.
    [14] BOEHM J, SPICAKOVA H, PLANK L, et al. Plans for the Vienna VLBI Software VieVS: Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, 2009[C].
    [15] HOBIGER T, GOTOH T, OTSUBO T, et al. c5++ - Multi-technique Analysis Software for Next Generation Geodetic Instruments: IVS 2010 General Meeting Proceedings, Hobart,Tasmania, Australia, 2010[C]. NASA/CP 2010–215864.
    [16] LUZUM B, CAPITAINE N, FIENGA A, et al. Report of the IAU Working Group on Numerical Standards of Fundamental Astronomy[J]. to be submitted to Celest. Mech. Dyn. Astr., 2010.
    [17]卢德馨.大学物理学[M].北京:高等教育出版社, 2003.
    [18]唐祖平,周鸿伟,胡修林,等. Compass导航信号性能评估研究[J].中国科学:物理学、力学、天文学, 2010(5):592-602.
    [19]冉一航,胡修林,刘禹圻,等. Compass系统导航信号的兼容性研究[J].中国科学:物理学、力学、天文学, 2010(5):676-684.
    [20] FENG Y. GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals ionosphere-reduced virtual signals[J]. Journal of Geodesy, 2008,82:847-862.
    [21] PETRACHENKO B. VLBI2010 Frequency Considerations[Z]. IVS memo 2008-015v01, 2008.
    [22]许其凤.空间大地测量学—卫星导航与精密定位[M].北京:解放军出版社, 2001.
    [23]郑勇. VLBI大地测量[M].北京:解放军出版社, 1998.
    [24] SOVERS O J, FANSELOW J L, JACOBS C S. Astrometry and geodesy with radio interferometry: experiments, models, results[J]. Review of Modern Physics, 1998,70(4):1393-1454.
    [25] Rohlfs K., Wilson T. L.射电天文工具[M].姜碧沩,译.北京:北京师范大学出版社, 2008.
    [26] JACKSON N. Principles of Interferometry[J]. Lect. Notes Phys., 2008(742):193-218.
    [27] FOMALONT E. Astrometry: Very Long Baseline Interferometry and the VLBA ASP Conference Series, vol 82, 1995[C]. NASA Astrophysics Data System.
    [28] PETRACHENKO B, COREY B, HIMWICH E, et al. Final Report of the Observing Strategies Sub-Group of IVS Working Group 3: VLBI2010[Z]. 2004.
    [29] PETRACHENKO B. VLBI2010 Sensitivity and Data Storage Requirements[Z]. IVS Memorandum 2008-009v01, 2008.
    [30] PETROV L. Usage of phase delay measurements produced by VLBI for geodetic applications[J]. Annales Geophysicae, 1998,16(Supp.1):399.
    [31] WHITNEY A R. Creating a Global Radio Telescope the Diameter of the Earth[Z]. 2010.
    [32] WHITNEY A, RUSZCZYK C, ROMNEY J, et al. The Mark 5C VLBI Data System: VLBI2010: From Vision to Reality, International VLBI Service for Geodesy and Astrometry 2010 General Meeting Proceedings, Hobart, Tasmania, Australia, 2010[C]. NASA/CP–2010–215864.
    [33] PETRACHENKO B. Performance of Broadband Delay (BBD) Sequences[Z]. IVS memo 2008-005v01, 2008.
    [34] NIELL A E. Source Structure Simulation[Z]. IVS Memorandum 2006-017v01, 2006.
    [35] NIELL A E. Source Structure Examples[Z]. IVS Memorandum 2006-018v01, 2006.
    [36] ROGERS A E E. Simulations of broadband delay measurements[Z]. Mark 5 memo #043: 2006.
    [37] PETRACHENKO B. A Monte Carlo Simulator for Geodetic VLBI[Z]. IVS Memorandum 2006-011v01, 2005.
    [38] PANY A, BOHM J, MACMILLAN D, et al. Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions[J]. Journal of Geodesy, 2011,85(1):39-50.
    [39]上海天文台DBBC项目组. VLBI2010系统的设计特点—IVS VLBI2010委员会进展报告[M].中国科学院上海天文台编译, 2010.
    [40] BEHREND D, BAVER K. International VLBI Service for Geodesy and Astrometry 2009 Annual Report, NASA/TP-2010-215860[R].National Aeronautics and Space Administration, Goddard Space Flight Center, 2010.
    [41] BEHREND D, SCHUH H. IVS Status Report 2008-2010[M/OL]. ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2010/presentations/GM2010_S1P01_behrend.pdf.
    [42] SCHLüTER W, BEHREND D. The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects[J]. Journal Of Geodesy, 2007,81(6-8):379-387.
    [43] DOW J M, NEILAN R E, RIZOS C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems[J]. Journal of Geodesy, 2009,83(3-4):191-198.
    [44] TORNATORE V, HAAS R, MOLERA G, et al. Planning of an Experiment for VLBI Tracking of GNSS Satellites: VLBI2010: From Vision to Reality, International VLBI Service for Geodesy and Astrometry 2010 General Meeting Proceedings, Hobart, Tasmania, Australia, 2010[C]. NASA/CP–2010–215864.
    [45] DICKEY J M. How and Why to Do VLBI on GPS: VLBI2010: From Vision to Reality, International VLBI Service for Geodesy and Astrometry 2010 General Meeting Proceedings, Hobart, Tasmania, Australia, 2010[C]. NASA/CP–2010–215864.
    [46] TORNATORE V, HAAS R. Considerations on the observation of GNSS-signals with the VLBI2010 system: Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, Bordeaux, France, 2009[C].
    [47] KWAK Y, KONDO T, GOTOH T, et al. The First Experiment with VLBI-GPS Hybrid System: IVS 2010 General Meeting Proceedings, 2010[C]. Hobart, Tasmania, Australia.
    [48] THOMAS C C, MACMILLAN D. CORE Operation Center Report, International VLBI Service for Geodesy and Astrometry 2009 Annual Report,NASA/TP-2010-215860[R].NASA Goddard Space Flight Center, 2010.
    [49]梁灿彬,周彬.微分几何入门与广义相对论[M].北京:科学出版社, 2006.
    [50]夏一飞,黄天衣.球面天文学[M].南京:南京大学出版社, 1995.
    [51]马高峰,郑勇,杜兰,等.时空参考系中的坐标和时间单位[J].天文学进展, 2010,28(4):383-390.
    [52]张钟华.国际计量单位制SI面临重大发展[J].科技导报, 2007,25(15).
    [53]张钟华.量子计量基准及SI基本单位的重新定义[J].电子测量与仪器学报, 2007,21(1).
    [54]冯杰,郑树文.国际单位制(SI)基本物理量--时间及其测量方法[J].中山大学学报论丛, 2001,21(1).
    [55]张钟华.量子计量基准发展的最新动向基本物理常数与SI基本单位的重新定义[J].中国计量, 2006,""(3):6-9.
    [56] KLIONER S A. Relativistic scaling of astronomical quantities and the system of astronomical units[J]. Astronomy and Astrophysics, 2008(478):951-958.
    [57] KLIONER S A, CAPITAINE N, FOLKNER W M, et al. Units of relativistic time scales and associated quantities: Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings of the International Astronomical Union Symposium No.261, 2009[C]. Cambridge University Press, January 1, 2010.
    [58] MCCARTHY D D, PETIT G. IERS Conventions (2003), IERS Technical Note 32[R].Bundesamt für Kartographie und Geod?sie, Frankfurt am Main, 2004.
    [59]朱文耀,熊福文,宋淑丽. ITRF2005简介和评析[J].天文学进展, 2008,26(1):1-14.
    [60]刘林.人造地球卫星轨道力学[M].北京:高等教育出版社, 1992.
    [61] PAVLIS N K, HOLMES S A, KENYON S C, et al. An Earth gravitational model to degree 2160: EGM2008: General Assembly of the European Geosciences Union, Vienna, Austria, 2008[C].4.13-18.
    [62] MCCARTHY D D. IERS Conventions (1989), IERS Technical Note 3[R]. Paris: Observatoire de Paris, 1989.
    [63] MCCARTHY D D. IERS Conventions (1992), IERS Technical Note 13[R]. Paris: Observatoire de Paris, 1992.
    [64] DREWES H. Reference Systems, Reference Frames, and the Geodetic Datum– Basic Considerations: International Association of Geodesy Symposia 133, 2009[C].
    [65] ALTAMIMI Z, SILLARD P, BOUCHER C. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications[J]. Journal of Geophysical Research (Solid Earth), 2002,107:2214.
    [66] MA C. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry, IERS Technical Note 35[R].BKG, Frankfurt am Main, 2009.
    [67] ALTAMIMI Z, COLLILIEUX X, LEGRAND J, et al. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[J]. Journal of Geophysical Research (Solid Earth), 2007,112:9401.
    [68] ITRF2008[EB/OL]. http://itrf.ign.fr/ITRF_solutions/2008/.
    [69] SILLARD P, BOUCHER C. A review of algebraic constraints in terrestrial reference frame datum definition[J]. Journal of Geodesy, 2001,75:63-73.
    [70]宁津生.现代大地测量参考系统[J].测绘学报, 2002,31(z1):7-11.
    [71]隋立芬,宋力杰,柴洪洲.误差理论与测量平差基础[M].北京:测绘出版社, 2010.
    [72]黄维彬.近代平差理论及其应用[M].北京:解放军出版社, 1992.
    [73]崔系璋,於宗俦,陶本藻,等.广义测量平差[M].武汉:武汉测绘科技大学出版社, 2001.
    [74] B?HR H, ALTAMIMI Z, HECK B. Variance Component Estimation for Combination of Terrestrial Reference Frames[R].Universit?t Karlsruhe, Schriftenreihe des Studiengangs Geod?sie und Geoinformatik, 2007.
    [75]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础(第二版)[M].武汉:武汉大学出版社, 2009.
    [76]宋力杰.测量平差程序设计[M].北京:国防工业出版社, 2009.
    [77]赵铭.天体测量学导论[M].北京:中国科学技术出版社, 2006.
    [78] KLIONER S A, PETIT G, BRUMBERG V A, et al. Commission 52: Relativity in Fundamental Astronomy[J]. Transactions of the International Astronomical Union, Series A, 2009,27:55.
    [79] FAIRHEAD L, BRETAGNON P, LESTRADE J F. The Time Transformation Tdb-Tdt an Analytical Formula and Related Problem of Convention: The Earth's Rotation and Reference Frames for Geodesy and Geodynamics, 1988[C].n/a 1, 1988.
    [80] FAIRHEAD L, BRETAGNON P. An analytical formula for the time transformation TB-TT[J]. Astron Astrophys, 1990,229(1):240-247.
    [81] FUKUSHIMA T. Time ephemeris[J]. 1995,294:895-906.
    [82] IRWIN A W, FUKUSHIMA T. A numerical time ephemeris of the Earth[J]. Astronomy and Astrophysics, 1999,348:642.
    [83] HARADA W, FUKUSHIMA T. Harmonic Decomposition of Time Ephemeris TE405[J]. The Astronomical Journal, 2003,126:2557.
    [84] FIENGA A, LASKAR J, MORLEY T, et al. INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions[J]. Astronomy and Astrophysics, 2009,507(3):1675-1686.
    [85]周衍柏.理论力学教程[M].北京:高等教育出版社, 2006.
    [86]陈俊勇.地面参照系定向理论基础[M].北京:测绘出版社, 1998.
    [87]郭俊义.地球物理学基础[M].北京:测绘出版社, 2001.
    [88] SCHREIBER K U, VELIKOSELTSEV A, ROTHACHER M, et al. Direct measurement of diurnal polar motion by ring laser gyroscopes[J]. Journal Of Geophysical Research, 2004,109(B06405).
    [89] CERVEIRA P J M, WEBER R, SCHUH H. The instantaneous Earth rotation -- still inaccessible?[J]. Vermessung & Geoinformation, 2007,2:113-120.
    [90] WALLACE P T, CAPITAINE N. Precession-nutation procedures consistent with IAU 2006 resolutions[J]. Astronomy and Astrophysics, 2006,459:981-985.
    [91]编写组数学手册.数学手册[M].北京:高等教育出版社, 1979.
    [92] FUKUSHIMA T. Global Rotation of the Nonrotation Origin[J]. The Astronomical Journal, 2001,122:482-486.
    [93]金文敬.岁差模型研究的新进展——P03模型[J].天文学进展, 2008,26(2).
    [94] CAPITAINE N, WALLACE P T, CHAPRONT J. Expressions for IAU 2000 precession quantities[J]. Astronomy and Astrophysics, 2003,412:567.
    [95] LAMBERT S. Empirical modeling of the retrograde free core nutation[EB/OL]. ftp://hpiers.obspm.fr/eop-pc/models/fcn/index.html.
    [96] CAPITAINE N, WALLACE P T. High precision methods for locating the celestial intermediate pole and origin[J]. Astronomy and Astrophysics, 2006,450:855.
    [97] CAPITAINE N, WALLACE P T, MCCARTHY D D. Expressions to implement the IAU 2000 definition of UT1[J]. Astronomy and Astrophysics, 2003,406:1135.
    [98] CAPITAINE N, CHAPRONT J, LAMBERT S, et al. Expressions for the Celestial Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A precession-nutation model[J]. Astronomy and Astrophysics, 2003,400:1145.
    [99] RICKMAN H. Transactions of the International Astronomical Union, 24B: Proceeedings of the 24th Gerneral Assembly, Manchester,UK,August 7-18,2000, 2001[C]. Astronomical Society of the Pacific.
    [100] LUZUM B J, CAPITAINE N, FIENGA A, et al. Division I / Working Group Numerical Standards of Fundamental Astronomy[J]. Transactions of the International Astronomical Union, Series A, 2009,27:60.
    [101] KASS W G, DULANEY R L, GRIFFITHS J, et al. Global GPS data analysis at the National Geodetic Survey[J]. Journal of Geodesy, 2009,83:289-295.
    [102]马高峰,马国强,张捍卫,等.岁差章动量的关系与坐标转换方法[J].测绘科学技术学报, 2011,28(1):5-9.
    [103]马高峰.岁差章动参数的选择与岁差章动转换:测绘学科博士生学术论坛论文集,郑州信息工程大学测绘学院, 2009[C].
    [104] LIESKE J H, LEDERLE T, FRICKE W, et al. Expressions for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants[J]. Astronomy &Astrophysics, 1977,58:1-16.
    [105] HILTON J L, CAPITAINE N, CHAPRONT J, et al. Report of the International Astronomical Union Division I Working Group On Precession and the Ecliptic[J]. Celestial Mechanics and Dynamical Astronomy, 2006,94:351-367.
    [106] FUKUSHIMA T. A New Precession Formula[J]. The Astronomical Journal, 2003,126:494-534.
    [107] AOKI S, KINOSHITA H. Note on the relation between the equinox and Guinot's non-rotating origin[J]. Celest Mech, 1983,29(4):335-360.
    [108] WILLIAMS J G. Contributions to the Earth's obliquity rate, precession, and nutation[J]. The Astronomical Journal, 1994,108(2):711-724.
    [109]吕志平,乔书波.大地测量学基础[M].北京:测绘出版社, 2010.
    [110] MORITZ H. Geodetic Reference System 1980[J]. Journal of Geodesy, 2000,74(1):128-162.
    [111] CHAPRONT J, CHAPRONT-TOUZéM, FRANCOU G. A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements[J]. Astron Astrophys, 2002,387(2):700-709.
    [112] FEISSEL-VERNIER M, MA C, GONTIER A M, et al. Analysis strategy issues for the maintenance of the ICRF axes[J]. Astronomy and Astrophysics, 2006,452:1107.
    [113]乔书波,李金岭,孙付平,等. ICRF的现状分析及未来的发展[J].天文学进展, 2007,25(2):147-160.
    [114]金文敬,李东明,夏一飞,等.第二代天体测量卫星及后依巴谷地面天体测量的进展[J].天文学进展, 2006,24(2).
    [115]金文敬.第二代天体测量卫星( gaia )项目的进展[J].天文学进展, 2011,29(2):131-140.
    [116]朱新颖,李春来,张洪波.深空探测VLBI技术综述及我国的现状和发展[J].宇航学报, 2010,31(8).
    [117] PITJEVA E V. EPM ephemerides and relativity: Relativity in Fundamental Astronomy, 2009[C]. Proceedings IAU Symposium.
    [118] DACH R, HUGENTOBLER U, FRIDEZ P, et al. User mannal of the Bernese GPS Software Version 5.0[R]. Bern: Astronomical Institute, University of Bern, 2008.
    [119]姚宜斌. GPS精密定位定轨后处理[M].北京:测绘出版社, 2008.
    [120] SCHERNECK. http://www.oso.chalmers.se/~loading/cmc.html.
    [121]陈俊勇. IERS地球参考系统、大地测量常数及其实现[J].大地测量与地球动力学, 2005,25(3).
    [122]金文敬.天文常数研究的进展——IAU2009天文常数系统[J].天文学进展, 2011,29(1):71-80.
    [123] IERS. ftp://tai.bipm.org/iers/convupdt/chapter7/dehanttideinel.f.
    [124] GUOCHANG X. GPS:Theory, Algorithms and Applications[M]. Berlin Heidlberg New York: Springer Verlag, 2007.
    [125] SOVERS O J, JACOBS C S. Observation Model and Parameter Partials for the JPL VLBI Parameter Estimation Software "MODEST"--1994[R]. Pasadena California: NASA, Jet Propulsion Laboratory, 1994.
    [126] RAY R D, PONTE R M. Barometric tides from ECMWF operational analyses[J]. Ann. Geophys., 2003,21(8):1897-1910.
    [127] RP03 model[EB/OL]. http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html.
    [128] DESAI S D. Observing the pole tide with satellite altimetry[J]. Journal of Geophysical Research, 2002,107(C11):3186.
    [129] SCHMID R, STEIGENBERGER P, GENDT G, et al. Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas[J]. Journal Of Geodesy, 2007,81(12):781-798.
    [130] IGS. ftp://igs.org/igscb/station/general/igs05.atx.
    [131] NOTHNAGEL A. Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI[J]. Journal of Geodesy, 2009,83(8):787-792.
    [132] Antenna Parameters[EB/OL]. http://vlbi.geod.unibonn.de/IVS-AC/Conventions.
    [133] BOLLI P, MONTAGUTI S, NEGUSINI M, et al. Photogrammetry, Laser Scanning, Holography and Terrestrial Surveying of the Noto VLBI Dish: IVS 2006 General Meeting Proceedings, 2006[C]. NASA/CP-2006-214140.
    [134]骆亚波. 500米口径球面射电望远镜天线测量研究[D].郑州:解放军信息工程大学测绘学院一系, 2009.
    [135] ICHIKAWA R, ISHII A, TAKIGUCHI H, et al. Development of a Compact VLBI System for Providing over 10-km Baseline Calibration, in Measuring the Future: Proceedings of the Fifth IVS General Meeting, Saint Petersburg, Nauka, 2008[C].
    [136]严豪健,符养,洪振杰,等.天基GPS气象学与反演技术[G].北京:中国科学技术出版社, 2007.
    [137] DATTA-BARUA S, WALTER T, BLANCH J, et al. Bounding higher order ionosphere errors for the dual-requency GPS user[J]. Radio Sci, 2008,43:S5010.
    [138] JAKOWSKI N, PORSCH F, MAYER G. Ionosphere-induced ray-path bending effects in precision satellite positioning systems[J]. Zeitschrift für Satellitengestützte Positionierung, Navigation und Kommunikation, 1994,94(1):6-13.
    [139] HOQUE M M, JAKOWSKI N. Estimate of higher order ionospheric errors in GNSS positioning[J]. Radio Sci, 2008,43:S5008.
    [140] FRITSCHE M, DIETRICH R, KN?FEL C, et al. Impact of higher-order ionospheric terms on GPS estimates[J]. Geophys. Res. Lett., 2005,32:L23311.
    [141] KIM B C, TININ M V. Potentialities of multifrequency ionospheric correction in Global Navigation Satellite Systems[J]. Journal Of Geodesy, 2010,Published online:27-2010.
    [142] SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging of Satellites: The Use of Artificial Satellites for Geodesy, 1972[C].
    [143] SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bull Geod., 1973,107:13-34.
    [144] DAVIS J L, HERRING T A, SHAPIRO I I, et al. Geodesy by radio interferometry: effects of atomospheric modeling errors on estimates of baseline length[J]. Radio Sci., 1985,20(6):1593-1607.
    [145] BOEHM J, HEINKELMANN R, SCHUH H. Short Note: A globle model of pressure and temperature for geodetic applications[J]. Journal Of Geodesy, 2007,81(10):679-683.
    [146] TREGONING P, HERRING T A. Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays[J]. Geophys. Res. Lett., 2006,33:L23303.
    [147] CHEN G, HERRING T A. Eeffects of atomospheric azimuthal asymmetry on the analysis of space geodetic data[J]. J. Geophys. Res., 1997,102(B9):20, 420-489, 502.
    [148] HERRING T A. Modeling Atmospheric Delays in the Analysis of Space Geodetic Data: Proceedings of refraction of transatmospheric signals in geodesy, The Hague, Netherlands, 1992[C]. Netherlands Geodetic Commission Series.
    [149] BOEHM J, WERL B, SCHUH H. Troposphere mapping functions for GPS and very long baseline interferometry from European Center for Medium-Range Weather Forecasts operational analysis data[J]. J. Geophys. Res., 2006,111:B2406.
    [150] NIELL A E. Interaction of atmosphere modeling and VLBI analysis strategy: IVS 2006 General Meeting Proceedings, 2006[C]. NASA/CP-2006-214140.
    [151] NIELL A. Global mapping functions for the atmosphere delay at radio wavelengths[J]. J Geophys Res, 1996,101(B2):3227-3246.
    [152] STEIGENBERGER P, BOEHM J, TESMER V. Comparision of GMF/GPT with VMF1/ECMWF and implications for atomospheric loading[J]. Journal of Geodesy, 2009,83:943-951.
    [153] BOEHM J, NIELL A E, TREGONING P, et al. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data[J]. Geophys. Res. Lett., 2006,33:L7304.
    [154] GIPSON J. Incorporating Correlated Station Dependent Noise Improves VLBI Estimates: Proceedings of the 18th European VLBI for Geodesy and Astrometry Working Meeting, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universit?t Wien, 2007[C].
    [155] PANY A, WRESNIK J, B?HM J. VLBI2010 analysis strategies tested with the PPPSimulator[Z]. IVS Memorandum 2008-018v01, 2008.
    [156] MüLLER J, SOFFEL M, KLIONER S A. Geodesy and relativity[J]. Journal Of Geodesy, 2008,82:133-145.
    [157]魏二虎,王中平,龚真春,等. TEQC软件用于GPS控制网数据质量检测的研究[J].测绘通报, 2008,""(9).
    [158]古伟洪,田鹏波,王振辉,等.运用TEQC软件对GPS数据的预处理与质量评定[J].地理空间信息, 2008,6(6).
    [159]范士杰,郭际明,彭秀英. TEQC在GPS数据预处理中的应用与分析[J].测绘信息与工程, 2004,29(2).
    [160]赵国强,孙汉荣.连续基准网GPS数据质量检测与分析[J].城市勘测, 2009(3):73-75.
    [161]刘林,王海红,胡松杰.人造地球卫星精密定轨(研究生教材)[M].南京:南京大学天文系, 2005.
    [162] GUOCHANG X. orbits[M]. Berlin Heidelberg: Springer Verlag, 2008.
    [163] BEUTLER G, BROCKMANN E, GURTNER W, et al. Extended orbit modeling techniques at the CODEprocessing center of the International GPS Service for Geodynamics (IGS): theory and initial results[J]. Man Geod, 1994,19:367-386.
    [164] DACH R, BROCKMANN E, SCHAER S, et al. GNSS processing at CODE: status report[J]. Journal of Geodesy, 2009,83(3-4):353-365.
    [165] FOMALONT E. VLBA Phase Referencing for Astrometric Use: IVS 2006 General Meeting Proceedings, 2006[C].
    [166]袁运斌,欧吉坤. GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方法[J].测绘学报, 1999,28(2):111-114.
    [167]张健,欧吉坤. GPS仪器偏差的求解方法及其对电子总量的影响[J].测绘工程, 2003,12(3).
    [168]孙正明,王坚,高井祥,等.利用双频GPS数据研究区域电离层TEC变化规律[J].测绘科学技术学报, 2008,25(3).
    [169]李德仁,袁修孝.误差处理与可靠性理论[G].武汉:武汉大学出版社, 2002.
    [170]杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006.
    [171] AMIRI-SIMKOOEI A. Least-squares variance component estimation: theory and GPS applications[D]. Delft University of TechnologyDelft institute of Earth Observation and Space systems (DEOS), 2007.
    [172]郭建锋.模型误差理论若干问题研究及其在GPS数据处理中的应用[D].武汉:中国科学院测量与地球物理研究所, 2007.
    [173]宋力杰,欧阳桂崇.超大规模大地网分区平差快速解算方法[J].测绘学报, 2003,32(3).
    [174]大地教研室.最小二乘法与测量平差[M].郑州:中国人民解放军测绘学院, 1984.
    [175] TEUNISSEN P J G, AMIRI-SIMKOOEI A R. Least-squares variance component estimation[J]. Journal of Geodesy, 2008,82:65-82.
    [176] WALLACE P T, CAPITAINE N. Precession-nutation procedures consistent with IAU 2006 resolutions[J]. 2006,459:981-985.
    [177]李征航,张小红.卫星导航定位新技术及高精度数据处理方法[M].武汉:武汉大学出版社, 2009.
    [178] TEKE K, BOEHM J, SPICAKOVA H, et al. Piecewise Linear Offsets for VLBI Parameter Estimation: Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, Universite Bordeaux1-CNRS, Bordeaux, France, 2009[C]. ACSD-Imprimerie Numérique Reprographie.
    [179] MURRAY C A. Vectorial Astrometry[M]. Bristol: Adam Hilger Ltd, 1983.
    [180] BAKER M J. http://www.euclideanspace.com/maths/algebra/realNormedAlgebra /quaternions/index.htm.
    [181]董绪荣,张守信,华仲春. GPS/INS组合导航定位及其应用[M].长沙:国防科技大学出版社, 1998.
    [182] Euler_angles[EB/OL]. http://en.wikipedia.org/wiki/Euler_angles.
    [183]刘暾,赵钧.空间飞行器动力学[M].哈尔滨:哈尔滨工业大学出版社, 2007.
    [184] WEISSTEIN E W.“Euler Parameters.”and“Euler Angle.”[EB/OL]. http://mathworld.wolfram.com/EulerParameters.html.
    [185] KLIONER S A, PETIT G, BRUMBERG V A, et al. Commission 52: Relativity in Fundamental Astronomy[J]. Transactions of the International Astronomical Union, Series B, 2010,27:142.
    [186] KLIONER S, CAPITAINE N, FOLKNER W, et al. Units of Relativistic Time Scales and Associated Quantities[J]. American Astronomical Society, IAU Symposium #261. Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis 27 April - 1 May 2009 Virginia Beach, VA, USA, #9.03; Bulletin of the American Astronomical Society, Vol. 41, p.883, 2009,261:903.
    [187]张捍卫,郑勇,杜兰.河外射电源地面VLBI观测的相对论时延模型[J].武汉大学学报(信息科学版), 2003,28(5).
    [188]平劲松.太阳系人造天体甚长基线干涉测量方法研究[D].上海:中国科学院上海天文台, 1996.
    [189]张捍卫,郑勇,杜兰.太阳系天体地面VLBI观测的相对论时延模型[J].天文学报, 2003,44(1):28-36.
    [190] SEKIDO M, FUKUSHIMA T. A VLBI delay model for radio sources at a finite distance[J]. Journal Of Geodesy, 2006,80:137-149.
    [191]张捍卫,郑勇,杜兰.人造地球卫星VLBI观测的相对论时延模型[J].测绘学报, 2003,32(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700