用户名: 密码: 验证码:
多通道热导率数据采集与处理软件的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底热流数据是开展海洋油气资源综合评价的一个重要参数。利用测量的海底热流数据,结合盆地演化认识和数值手段,可以获得各烃源层所经历的温度史,借助有机质成熟模型,有望揭示有机质的成熟历史,从而指导油气的勘探开发。海底热流值也是准确评价和预测天然气水合物资源潜力的重要依据。海底地热研究包含海底温度、沉积物热导率、地温梯度等多项地热参数的测量与计算。
     海底沉积物的热导率测试方法通常有两种,一种是原位测量,另一种是室内测量。前者在测量过程中,要求海上作业,难度很大,设备极易损耗;后者是在实验室完成,可以减少海上作业时间,设备损耗的风险也可以大大降低,并且对比发现,两种方法测量获得的热导率基本一致。但是,现阶段,高精度热导率测量设备试验时间长,效率低,并依赖国外进口。因此,研究开发高效率高精度的热导率测量设备非常必要。本研究主要针对多通道热导率测试设备研究开发上位机软件。
     理论模型是本测量系统的基础,选择合适的理论模型对测量系统最终的成败非常关键。热导率的测试方法有很多,在分析各种热导率理论原理的基础上,本文最终确定了非稳态测试方法中的一种——线热源法。线热源法在实际应用中有几种测量模型:单探针脉冲加热、双探针持续加热、单探针持续加热。结合试验条件和研究的实际需求,本文选择单探针持续加热模型,该方法理论模型较为简单,实验效率相对较高,在海底沉积物测量中应用较多。
     按照单探针持续加热模型的测量原理,设计开发的多通道热导率测试仪主要由上位PC机、下位机、Agilent 34411数字万用表、测量探针(封装了加热丝、热敏电阻)组成。上位机主要负责测量过程的控制、数据采集和处理、分析测量结果以及影响因素。下位机主要解析上位机命令,激发电流,切换通道,测量各通道相关参量。
     上位机软件选用Visual C++6.0开发平台。为方便使用,上位机软件分为两个部分:测量软件和评估软件。前者负责控制测量过程、数据采集、数据解算与处理;后者负责分析测量结果和影响因素。测量软件分为测量参数设定模块、检测模块、数据采集和保存模块、数据显示模块,数据处理模块等几个模块。评估软件分为各次测量结果分析模块和单次测量结果分析模块。
     显示在用户与测控仪器的交互中起到很重要的作用,它的设计既要有美学内涵又能方便用户使用,本文的设计采用经典的微软窗口化设计。在测量软件界面中既方便控制测量过程,也便于用户观察测量的情况,如温度的漂移、加热过程的实时曲线和对应的温度值。评估软件,以点状图、柱状图等形式可以方便的对比各次测量的结果,分析评价测量的影响因素。
     数据采集主要是靠Agilent 34411A数字万用表实现的,它与上位机之间的通信选用USB通信方式,支持IVI仪器驱动,利用该驱动可以方便的对它进行访问。该驱动程序支持多种开发环境,并支持COM编程,实现了VC环境里,使用IVI仪器驱动对Agilent 34411A数字万用表的控制。
     数据处理和评估是软件系统开发的关键部分。按照方案设计要求,上位机从安捷伦万用表中读取当前测量通道的数据后,要运用适当的R-T转换算法,把电阻值转换成为温度值。本研究主要讨论了"Steinhart-Hart"的公式拟合法和插值法,两种方法各有优缺点,在测量中可根据需要选择使用。
     转化后的温度值可形成当前通道的加热曲线,在实际应用中,选择合适的时间段是比较困难的。在加热的最初阶段,热源与全无限空间的接触电阻对热源温度的影响比较大,在简单近似使用中,所得数据需要剔除。而在加热的最后阶段,由于线热源实际长度有限,边界效应影响增加,数据也不能使用。这时,选择一种合适算法,选取合适的时间段来计算热导率值,并能够自动确定加热曲线最优部分就非常重要。本文最终选用高阶近似逼近线热源持续加热代替了一般的一阶近似,该方法简称为SAM算法。它用高阶近似逼近线热源持续加热曲线,考虑到了在传统方法中忽略的一些因素,能够取合适的时间段来计算热导率值,并能够自动确定加热曲线最优部分,得到较真实的热导率。经过该算法处理得出的数据保存在文件中,评估软件将这些数据以点状图、柱状图等的形式表现出来,能更直观、更方便的分析实验数据和评价实验质量,
     由于环境温度测量的结果的影响很大,所以在每次测量之前,系统要判断实验环境的温度是否稳定,即判断温度漂移是否满足要求。因此,温漂的判断方法也很重要。本文对该方法的选择也做了讨论。
     整个系统设计完成后,通过实验完成了细沙、泥土等介质的热导率测量,并通过多次实验对系统的设计进行完善。为检验仪器的测量精度,对国际上通用的热导率标定样品石英标准样进行了测定,实验结果显示,研制的热导率测试仪能实现八个通道的测量,精度达到3%,满足海底沉积物热导率的测量及评估要求。研究成果申请了一项发明专利——多通道热导率测量的硬件电路系统;一项实用新型专利——基于线热源原理的微型探针及制作工艺方法。
     论文研究成果在高效率、高精度的沉积物热导率多通道测量技术及沉积物热导率的多通道测量的数据处理技术上有所创新,为热导率测试工作的进一步展开奠定了基础。
Submarine geothermal research is critical to the comprehensive evaluation of the marine oil and gas resources. Combing with the knowledge of the basin evolution, it can help us to understand the temperature history of hydrocarbon source beds, even the organic matter mature history, which is important to the exploration of the marine oil and nature gas. Submarine geothermal research is also important for the accurate evaluation and prediction of the natural gas hydrate resources. It consists of the measurement and calculation of the submarine temperature, the sediment thermal conductivity and the geothermal gradient, et al.
     There are two kinds of test methods for sediment thermal conductivity, the first one is in-situ measurement, the other one is Indoor measurement. In the former measuring process, marine operation is required, which is very difficult and the equipment is easy to wear and tear; the latter is done in the laboratory, which could reduce the time for maritime operations and the risk of damaging the equipment. After the comparison of these two methods, two ways of measuring the thermal conductivity was almost the same. However, at this stage, the time of thermal conductivity test time is long and inefficient high-precision measurement equipments dependence on imports. Therefore, it is necessary for development of highly efficiency and precision equipment for measuring thermal conductivity. This paper is focuses on the software development of equipment.
     Choosing a suitable theoretical model, which is the basis of this measurement system, is very critical. In wide ranges of approaches for measuring thermal conductivity, line source method which is one kind of unsteady method is selected in this paper. In practice, there are several measurement models:Pulse Infinite Line Method, dual-probe heat-pulse measurement theory, single-probe continued heating method. The theory of single-probe continued heating method is used in the equipment's design because it is simple & high efficiency.
     Based on the theory, multi-channel thermal conductivity meter, which is mainly composed of four parts, is designed. It's composed of PC, one-chip computer module, Agilent 34411 and measuring probe (packaged heating wire and thermistor). PC is employed in measurement controlling, data processing and analysis of results. One-chip computer module is employed in analysis of host computer (PC) commands, excitation current, switching channels. Agilent 34411 is employed in data acquisition.
     Software developed in Visual C++6.0 platform is divided into two parts:the measuring software & evaluation software. The former is employed in controlling measuring process, data acquisition, data calculation and processing. The later is employed in result analysis. Measuring software has several modules:measurement parameter setting module, detection module, data acquisition modules, data processing and save module, and so on. Evaluation software has been divided into analysis for each measurement modules & analysis for single measurements module.
     Human-computer interaction, which has been designed to be not only aesthetic but also user-friendly, plays an important role in the software. In the measuring software, it is convenient for user to control measurement and observe the situation of measurement, such as the drift, real-time temperature curve in the heating process. In the evaluation software, point-like diagram, histogram and other forms is used; it can be easily to compare the results of the measurements.
     Data acquisition was mainly achieved by Agilent 34411A digital multimeter, which uses USB to communication with the PC and IVI instrument drivers is supported. Therefore, it is easily to use multimeter.
     Data processing and evaluation is a key part of the software system. In accordance with design requirements, the resistance value gathered by multimeter must be converted into temperature value by suitable algorithm. Curve fitting ("Steinhart-Hart" formula) and interpolation are used in this paper on account of their own advantages and disadvantages.
     The measuring principle is based on heating a cylindrical source with infinite length, finite radius, and infinite thermal conductivity in a homogeneous and isotropic sample full space with constant heating power for a finite measuring time. Thermal conductivity then is determined from the temperature rise in the source. In practice, the correct choice of the time interval is difficult. In the early stage of heating the source temperature is strongly affected by the contact resistance between source and full space (not accounted for in the simple approximation used).In the later stages of heating, the influence of boundary effects caused by the actually finite length of the line source (assumed infinite in the theory) increases. Inbetween is a time interval in which the source temperature is dominated by the thermal conductivity of the full space and which should be used for the calculation. It is important to choose a method to examine different time intervals for their suitability for thermal conductivity determination. Then the SAM method is selected because it ensures that only results of physical significance are considered. Then the evaluation module uses the data processed by the algorithm. This enables the user to assess the measurement quality and the reliability of the obtained thermal conductivity values.
     All the above, the work laid a foundation for further researches.
引文
[1]http://www.gsdkj.net/pro/view.php?id=2878
    [2]万明浩等编著.岩石物理性质及其在石油勘探中的应用.地质出版社,1994:66
    [3]陈光华.沉积物热导率测试仪关键技术研究.[硕士论文]中国地质大学.2008.6
    [4]王炯等编著.二级C语言程序设计.华大学出版社,2005:29
    [5]贲可荣,何智勇编著.软件工程:基于项目的面向对象的研究方法.北京:机械工业出版社2009.8:1
    [6]顾刚.授课课件.西安交通大学计算机教学实验中心
    [7]Carslaw,H.S.&Jaeg,J.C.,1959,Conduction of heat in solids,Claredon Press,Oxford
    [8]王松年主编,夏雨人,张瑜,张友华,王长缨参编.华东高校计算机基础教育研究会推荐教材:多媒体技术与应用教程.第2版.上海交通大学出版社,2004,07:220-221,
    [9]胡芃,陈则韶编著.量热技术和热物性测定.第二版.合肥:中国科学技术出版社,2009.6:96,111,123
    [10]邢桂菊等.热工实验原理和技术.第一版.北京:冶金工业出版社,2007年9月:144,147,156
    [11]Laubitz, G.D.et al., eds.Compendium of thermophysical property measurement methods,1981: 882
    [12]Pfender M, Villinger H. Miniaturized Data Loggers for Deep Sea Sediment Temperature Gradient Measurement s [J].Mar Geol,2002,186:557.
    [13]Keith L. Bristow, Gerard J. Kluitenberg, A small multi-needle probe for measuring soil, thermal properties, water content and electrical conductivity, Computers and Electronics in Agriculture,31 (2001):265-280
    [14]Lachebruch, A.H.,1957, Probe for in situ measurements of frost thermal conductivity, Transactions of AGU, Vol.38 (5):691-697
    [15]吴江涛等.柴油/碳酸二甲酯混合物液相导热系数实验研究.西安交通大学学报,2005,39(1):79-82
    [16]寿青云等.金属氧化物纳米流体的导热性能研究.材料导报,2006,20(5):117-119
    [17]陈泽韶,李川等.据热扩散率最小离散度确定热导系数的新探针法.中国科学技术大学学报,2000,30(3):312-317
    [18]陈忠荣.海洋地热研究中沉积物热导率的原位测定.海洋技术,1988.3,7(1)
    [19]T.J.Lewis, H.Villinger等,罗贤虎,徐行译.用脉冲针状探针测量岩石碎块热导率.Canadian Journal of Earth Sciences,1993,30 (3):480-485,
    [20]丁忠军,李官宝等.基于DPHP理论的海洋沉积物热导率检测系统的研究,电子器件,2007.6,30(30)
    [21]丁忠军,刘保华,李官保.海洋沉积物热导率高精度快速测量系统研究,仪器仪表学报。2008.5,29(5)
    [22]杨振,魏莎莎.热线法测量材料热导率.大学物理,2007.7,7
    [23]沈显杰,杨淑贞等.岩石热物理性质及其测试.第一版.北京:科学出版社.1988.5
    [24]孙雄勇编著.Visual C++6.0入门与提高实用教程.中国铁道出版社,2003:2-3
    [25]康博创作室编著.Visual C++6.0高级编程.清华大学出版社,1999:2-3
    [26]门槛创作室编著.明明白白学程序设计Visual C++6.0.科学出版社,2000:2-3
    [27]http://baike.baidu.com/view/100377.htm?fr=alaO_1_
    [28]徐安主编.微型计算机控制技术.科学出版社,2004.08:156
    [29]林锐,蔡文立著.微机科学可视化系统设计.西安电子科技大学出版社,1996:38-40
    [30]沈洁主编.实用软件工程.机械工业出版社,2004.08:61-63
    [31]USB2.0原理与工程开发(第2版),李英伟、王成儒等编著,北京:国防工业出版社,2007:2-3
    [32]肖踞雄等编著.USB技术及应用设计.清华大学出版社,2003:142
    [33]USB2.0原理与工程开发(第2版),李英伟、王成儒等编著,北京:国防工业出版社:5,6,14
    [34]汤庸编著,结构化与面向对象软件方法,北京:科学出版社,1998
    [35]刘康,基于DM642和USB的图像传输存储系统实现,[硕士学位论文]南京理工大学,2009.5.
    [36]薛园园编著.USB应用开发技术大全.人民邮电出版社,2007:9
    [37]http://www.secomtel.com/UpFiles/Attach/0/2007/11/6/142721.pdf
    [38]http://baike.baidu.com/view/433649.htm?fr=ala0_1_1
    [39]杨志强,赵千里,杨斌著.矿井通风三维仿真模拟理论与矿用空气幕理论.冶金工业出版社,2008:171-173
    [40]本文来自CSDN博客http://blog.csdn.net/Ether_boy/archive/2009/05/12/4171396.aspx
    [41]刘璐,李岭松编著.Visual Basic程序设计与上机指导.清华大学出版社,2007.09.336-337
    [42]倪健,张艳军编著.ASP动态网页程序设计入门实例教程.西安地图出版社,2004.08:226-227
    [43]周肆清,曹岳辉,李利明编著.软件技术基础教程.清华大学出版社,2005:126-130
    [44](美)Ash Rofail,(美)Yasser Chohoud著;邱仲潘等译.COM与COM+从入门到精通.电子工业出版社,2000.
    [45]源江科技编著.VC编程技巧280例.上海科学普及出版社,2002:22-23
    [46]最佳非等距线性插值算法在热敏电阻测温中的应用,严仍友,汪仁煌,《自动化仪表》2005.6,26(6):35-37
    [47]Kristiansen,1982, The Transient Cylindrical Probe Method for Determination of Thermal Parameters of Earth Materials:Geoskrifter, v.18:154
    [48]Kristiansen,1991, NEPR:A Fortran-77 Program for Determining Thermal Conductivity and Diffusivity by Needle-Probe Inversion:Computers & Geosciences, v.17:51-290.
    [49]Blackwell, J. H.,1954, A transient flow method for determination of thermal constants of insulating materials in bulk:J. Appl. Phys., v.25:137-144.
    [50]Blackwell, J. H.,1956, the axial flow error in the thermal conductivity probe:Can. J. Phys., v. 34:412-417.
    [51]Jaeger, J. C.,1956, Conduction of heat in an infinite region bounded internally by a circular cylinder of a perfect conductor:Austr. J. Phys., v.15:167-179.
    [52]Jaeger, J. C., and J. H. Sass,1964, A line source method for measuring the thermal conducti-vity and diffusivity of cylindrical specimens of rock and other poor conductors:Brit. J. Appl. Phys., vol.15:1187-1194.
    [53]Villinger, H.,1983, In Situ Bestimmung der Warmeleitfahigkeit in Bohrungen:Dissertation, Technische Universitat, Berlin:152
    [54]Villinger, H.,1985, solving cylindrical geothermal problems using the Graver-Stehfest inver-se Lapace transform:Geophysics, v.50:1581-1587.
    [55]Villinger, H., and E. E. Davis,1987, A New Reduction Algorithm for Marine Heat Flow Measurements:JGR, v.92(B12):12846-12856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700