用户名: 密码: 验证码:
低温铜和氮化铝接触界面热阻实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体材料接触界面热阻广泛地存在于各种工程应用问题当中,如航天器(卫星和宇宙飞船等)热控制技术、大功率集成电路芯片的散热设计、制冷机直接冷却高温超导磁储能系统、低温液体储运设备的设计等,是微结构传热学中的重点和难点,是亟须解决的关键科学问题。本课题来源于国家自然科学基金项目(50876034):基于激光光热法的三维微结构低温固体接触界面层热输运特性研究。本文研究内容即为铜和氮化铝材料接触界面层热阻研究。
     接触界面热阻受多种因素影响,其中,材料的热物性是研究接触界面热阻的基础。本文以激光光热法为研究手段,以两级G-M制冷机为实验冷源,建立低温真空条件下的温度测量与控制系统和实验测量系统,测量50K~300K温区内铜和氮化铝材料的热扩散系数,获得实验数据,以及在0.20MPa~0.57MPa压强范围内,70K~300K温区内铜和氮化铝材料的接触界面热阻。
     基于相关实验数据,使用matlab软件对实验数据进行回归分析和模型仿真,获得接触界面热阻的完全二次型预测模型。揭示微尺度层面下低温固体接触界面层的热输运特性及作用机理。实验研究和仿真表明:氮化铝的热扩散系数在70K~150K温区内随温度变化显著,在150K~300K温区内随温度变化比较缓慢。而铜的热扩散系数在50K~100K温区内随温度变化显著,在100K~300K温区内随温度变化比较缓慢。铜和氮化铝接触界面热阻受温度和压强的耦合作用,温度对接触热阻的影响比压强对接触热阻的影响大,在70K~300K温度范围内接触热阻随温度的升高而减小,在0.20MPa~0.57MPa压强范围内随接触压强的增大而减小。
     由于固体材料接触界面热阻是非常复杂的,是一个具有挑战性的科学问题,不仅在工程应用还是科学研究上面,都是非常有意义的。这需要投入更多的时间和精力来深入研究。
The thermal concact resistance of solid materrials interface widely exist among various engineering applications,such as spacecraft (satellites and spacecraft, etc.) thermal control technology, high-power integrated circuit chip thermal design,the cryocooler conduction cooling system of superconducting magnetic energy storage, cryogenic liquid storage and transportation equipment design, etc.. It is the key factor and difficult point for microstructur heat conduction,it is the urgent need to solve for the scientific problems. This project comes from the National Natural Science Foundation of China (50876034):Research on heat transfer characteristics of 3D microstructure solid-solid contact interface layer at low temperature based on photothermal method by laser.The investigation of this paper is the thermal contact resistance of solid interface between Cu and AlN at low temperature.
     The thermal contact resistance is affected by many factors,thermal properties of materials is the foundation to research the thermal contact resistance.Based on the method of laser photothermal research method,two stage G-M cryocooler as cold source, establish temperature measurement and control system at low temperature and vacuum conditions, measurement thermal diffusion coefficient of Cu and AlN at 50K ~ 300K temperature range,obtained experimental data,and the thermal contact resistance of solid interface between Cu and AlN at 0.20MPa ~ 0.57MPa pressure range, 70K ~ 300K temperature range.
     Based on experimental data, using the matlab software regression analysis and model simulation, to obtain the full quadratic prediction model of thermal contact resistance. Reveal the heat transport characteristics and mechanism of thermal contact sesistance at the micro level.Experimental research and simulation results show that the AlN thermal diffusion coefficient in 70K ~ 150K temperature range increase significantly, in 150K ~ 300K temperature range change slow,and the Cu thermal diffusion coefficient in 50K ~ 100K temperature range increase significantly, in 100K ~ 300K temperature range change slow.The thermal contact resistance of solid interface between Cu and AlN is affected by coupling effect of temperature and pressure.The temperature influence is bigger than pressure to thermal contact resistance. In the 70K ~ 300K temperature range ,thermal contact resistance decreases with increasing temperature, in the 0.20 MPa~ 0.57 MPa pressure range, thermal contact resistance decreases with increasing pressure.
     Because the thermal contact sesistance of solid material interface is very complex,it is a challenging scientific problems.It is very significant,not only in engineering application or scientific research.This requires more time and energy to further study.
引文
[1]王惠龄,饶荣水,李敬东等.超导电力低温技术展望.电力系统自动化[J], 2001, 65~68
    [2]刘静.微米/纳米尺度传热学[M].科学出版社.2002
    [3]王惠龄,汪京荣.超导应用低温技术[M].北京:国防工业出版社, 2008
    [4]陈进.低温固体界面传热过程计算机仿真研究[D]: [博士学位论文].武汉:华中科技大学, 2004
    [5]张涛,徐烈,熊炜等.接触热阻研究中理论模型的比较与分析,CRYOGENICS AND SUPERCONDUCTIVITY,1998,P58~64
    [6] Rongshui Rao,Huiling Wang,Jin Chen,etc.,An investigation on interface thermal resistance at superconductor cooling by cryocooler,Physica C:Super conductivity Volume 386,15 April 2003,Pages 547~550
    [7] L.s.fletcher,Recent Dvelopment in Contact Conductance Heat Transfer,Journal of Heat transfer,November 1988,Vol.110,Pages 1059~1069
    [8] Ravi S.Prasher,Jim Shipley,etc.,Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials,Journal of Heat Transfer—December 2003--Volume 125,Issue 6,pp.1170~1177
    [9] Sreekant V.J.Narumanchi and Jayathi Y.Murthy,Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction,Journal of Heat Transfer,October 2003,Volume 125,Issue 5,pp.896~903
    [10] N.Laraqi,Thermal Resistance for Random Contacts on the Surface of a Semi-InfiniteHeat Flux Tube,Journal of Heat Transfer--June 2003—Volume 125,Issue 3,pp.532~535
    [11]张涛,徐烈,熊炜等.接触热阻研究中理论模型的比较与分析.低温与超导[J].1998,26(2):58~64
    [12]赵兰萍,徐烈,李兆慈等.固体界面间接触导热的机理和应用研究.低温工程[J].2000,116(4):29~34
    [13]徐烈,张涛,赵兰萍.双热流法测定低温真空下固体界面的接触热阻,低温工程[J],1999,110(4):1865~189
    [14] Little,W.A.,The transport of heat between dissimilar solids at low temperature, Can.J.Phys.37:334~349
    [15] E.T.swart and R.O.Pohl,Thermal resistance at interface,App.Phy.Lett.,1987 ,51(26):2200~2202
    [16] G.Chen,Thermal conductivity and ballistic-phonon transport in the cross-plane direct of superlattices.Physical Review B,1998,57(23):14958~14973
    [17] Louis J.Salerno,Pater Kittel,Thermal conductance of pressed metallic contacts augmented with indium foil or apiezon grease at liquid helium temperature. Applied Physics Letters,1965,12(1):31~33
    [18] L.J.Salerno and P.Kittel,Thermal contact conductance.Low Temperature Physic, 1995,13(1):262~280
    [19]饶荣水,王惠龄,汪京荣等.高温超导直接冷却中AlN与Bi-2223间界面热阻的实验研究,低温工程[J],2002,(5):12~16
    [20] E.T.swart,R.O.Pohl.Thermal resistance at interface,App.Phy.Lett.,1987,51(26): 220~2202
    [21] L.Zhao P.E.Phelan,Thermal contact conductance across filled polymide films at cryogenic temperature,Cryogenics,38(1999):803~809.
    [22] Hiroyuki fujishiro,Tatsuya okamoto,Koichi Hirose,Thermal contact resistance between high-Tc superconductor and copper.Physica C,2001,357~360:785~788.
    [23] A.A.Maznev,J.Hartmann and M.Reichling,Thermal wave propagation in thin films on substrate.J.Appl.Phys.,1995,78(9):5266~5269
    [24] E.T.Swartz,R.O.pohl,thermal boundary resistance,Review of modern physics, 1989,61(3):605~667
    [25] R.J.Stoner,Kapitza conductance and heat flow between solid at temperature from 50 to 300K,physical review B,1993,48(2):16373~16387
    [26] A L Woodcraft,comment on‘thermal boundary resistance of mechanical contacts between solids at sub-ambient temperature’.Journal of physics D:applied physics,2001,34:2932~2934
    [27] R.S.Rao,Huiling Wang,et al. An investigation on interface thermal resistance at superconductor cooling by cryocooler. Physica C,2003,386:547~550.
    [28] J.Chen,Huiling Wang, et al.Research on the temperature control of thermal properties experiments of superconducting materials. Physica C,2003,386:544~546
    [29] Ling Shi, Huiling Wang.Investigation on thermal contact resistance by photothermal technique at low temperature. Heat Mass Transfer, 2007, 43:1179~1184
    [30] Wang Jian ,Wang Huiling. Thermal contact conductance of ceramic AlN and oxygen-free high-conductivity copper interfaces under low temperature and vacuum for high-temperature superconducting cryocooler cooling. Review of Scientific Instruments,2006 , 77(2):024901.
    [31]张亚黎,王惠龄,庄汉锐等.高导热高电绝缘AlN的微结构及低温热特性分析.低温物理学报[J], 2003, 25(2): 132~136.
    [32]陈进,崔晶晶,王惠龄等.低温固体三维可视化仿真.武汉理工大学学报[J],2005,09:17~19.
    [33]陈进,丁忠军,王惠龄.基于热应力的高温超导薄膜界面热阻仿真研究.华中科技大学学报[J],2005,9:81~83
    [34]陈进,徐征,王惠龄. Ar-Kr低温界面传热过程分子动力学模拟.低温工程[J],2005,3:45~47.
    [35]饶荣水,王惠龄.高温超导制冷机直接冷却中界面热阻的辨识与实验研究.低温物理学报[J],2003,25(3):209~214.
    [36]谢江波,王惠龄,吴钢等.35kJ高温超导磁储能(SMES)的热输运实验研究.低温工程[J],2006,1:31~34.
    [37]石零,王惠龄,赵琰等.调制光热法低温接触界面层热阻研究.低温工程[J],2006,2:7~14.
    [38]时东陆,周午纵,梁维耀.高温超导应用研究[M].上海:上海科学技术出版社, 2008
    [39] Wang Huiling,Zhu Xiaobo,Jiang Zhaohui,etc.A Statistical Method for Investigating the Dynamic In Homogeneity of the Low Temperature Cu+0.13 at Fe ThermalElectrode.Czechoslovak Journal of Physics,1996,46:2533~2534
    [40]陈洗.固体物理基础[M].武汉:华中工学院出版社,1986
    [41]陈进,王惠龄,王建等. G-M制冷机辐射屏温度随动控制.低温与超导[J],2004(1)52~54
    [42] A.Salazar,Thermal diffusivity measurements using linear relation from photothermal wave experiments,Rev.Sci.Instrum., 1994,65(9):386~397
    [43] Y.Ohsone,G.Wu,J.Dryden,F.Zok,A.Majumdar,Optical Measurement of thermal contact conductance between water-like thin solid samples,Journal of Heat Transfer. 1999,121:954~963.
    [44]王惠龄编著.制冷与低温测量技术[M].华中理工大学出版社,1988
    [45]马庆芳编.实用热物理性质手册[M].北京市:中国农业机械出版社, 1986.
    [46] Slack G A, Tanzilli R A, Pohl R O, et al. The intrinsic thermal conductivity of A1N. J. Phys. Chem. Solids. 1987,48(7):641~647
    [47]饶荣水,庄汉锐,王惠龄等.氮化铝陶瓷低温热导率的实验研究.低温工程[J],2003(8):41~45
    [48] Watari K, Ishizaki K, Tsuchiya F. Phonon scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics. J. Materials Sci., 1993,28:3709~3714
    [49] Dryden, J. R, McDonald, K. R., Majumdar, A., and Zok, F. W., 1998,“A photothermal technique for the determination of the thermal conductance of interfaces and cracks,”submitted for journal publication
    [50]石零.低温固-固接触界面热传输研究[D]: [博士学位论文].武汉:华中科技大学, 2006
    [51]石零,王惠龄,赵琰等.调制光热法低温接触界面层热阻研究.低温工程[J],2006,2:7~14.
    [52]王丽萍,陈焕新,毕冬梅等.铜-不锈钢接触界面热阻回归分析及仿真.中国工程热物理学会传热传质学2009年学术会议论文集[J],2009,11
    [53]陈进,徐征,王惠龄等.氮化铝陶瓷与铜界面热阻回归分析仿真模型.计算机仿真[J],2004,11:33~35
    [54] G.. Busch, H. Schade(著),郭威孚,史敬孚(译).固体物理学讲义[M].北京:高等教育出版社, 1987
    [55]房晓勇,刘竞业,杨会静.固体物理学[M].哈尔滨:哈尔滨工业大学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700