用户名: 密码: 验证码:
无污染水下储油模式与漏油应急回收关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国已经探明的海洋油气主要分布在近海海域,其中很多边际小区块油田有待开发。对于这样的小区块边际油田,如果采用管道集输、固定储罐平台或者单井靠船的生产方式进行开发,则开发成本过高,出现入不敷出的窘况。因此出现了水下储油的生产方式,即将开采的原油直接储存在水下的储罐内,然后利用油轮集中输运。水下储油需要克服储罐所受的巨大浮力,主要有重力式平台水下储油和油水置换水下储油两种方式。重力式平台规模大、投资高,且储油量变化引起地基受力变化大,一般不适合边际油田采用。油水置换的储油方式虽然合适,但是容易造成海洋污染,限制了油水置换技术的应用。由此出现了隔离式无污染水下储罐。
     本研究在无污染水下储油技术的基础上,首先提出了无污染水下储油模式。针对海上石油开采、储存过程中可能出现的石油泄漏问题,提出了新型的水下漏油应急回收和储存装置,进行了相关的原理试验以及海上中间试验。主要完成的研究工作包括:提出了三种新型的无污染水下储油模式,即浅海固定式平台+油罐模式、浅海沉垫水下储油平台模式、深海水下储油+浮动卸油码头模式;进行了无污染水下储油的物模验证试验,包括工艺试验和保温性能测试两部分。分别选用柴油、凡士林油、含水柴油作为介质,开展油水置换工艺试验,试验显示,油水隔离成功地防止了油水的接触污染,证明了油水隔离水下储油工艺的可行性;选用涂塑玻璃纤维布作为保温内胆的制作材料,通过基于神经网络的软测量方法计算得到原油温度,进行了保温性能的定性、定量研究,结果表明:高凝原油在一定时间内温度变化不大,仍具有良好的流动性,水下储油系统存储高凝原油是可行的。
     海上石油的开采,一直与事故和风险相伴,由于管道破裂、平台损坏或者工作人员操作不慎等原因,在油气开采过程中可能会出现原油泄漏的事故,其对环境和生态的影响是巨大的。针对水下储油意外事故可能出现的原有泄漏问题,本文提出了一种新的水下漏油应急回收与暂存技术,并通过原理性的验证试验,模拟了水下漏油回收与暂存工作主要阶段和过程,分析了回收装置在原理实现方面可能遇到的问题和在波流作用下的锚系缆受力情况。试验结果证明,水下漏油收集和暂存技术在实际中是可行的。
     本文建立了波浪与漏油收集囊相互作用的CIP数值计算模型,对不同模型形式和尺寸及位置的收集囊的受力和运动响应进行了数值模拟。模拟结果表明,表面光滑的模型受波浪力较小,增大模型的高度会增加模型所受的力,把模型放置在水下可减少模型受波浪的影响。对上述模拟结果进行了频域分析,结果表明,同体积的漏油收集囊,软体囊的受力小于刚体囊。工程设计时,采用刚体囊进行计算,其结果是偏于安全的。另外,本文还对水下隔膜受波浪力的影响进行了模拟,结果表明水油隔膜受波浪力的影响较小。数值结果与试验结果的一致性表明,开发的数学模型对上述问题的研究具有较好的适用性。
     最后,介绍了基于无污染水下储油技术以及水下漏油回收与暂存技术所进行的示例工程设计和海上中间试验。针对胜利海上油田油藏、地质、集输等条件主要进行了1200方浅海水下储油平台总体及结构设计。计算表明,储油平台符合强度与稳定性要求。通过对上述的储油平台储油工艺流程进行设计,比选了各流程的相关方案;通过海上中间试验,测试水下储油的整套工艺及相关流程,验证水下储油防污染及保温关键技术的工程可行性,发现和解决各过程中存在的问题。本试验对无污染水下储油技术以及水下漏油回收与暂存技术的应用和推广,具有非常显著的参考价值和借鉴意义。
Today in China most of the ascertained offshore oil and gas resources are locatedin coastal waters, among which many marginal oil fields are yet to be developed. Itwould cost a lot if equipments like gathering pipelines, fixed storage tank platforms orberthed ships are used to develop marginal oil fields. Therefore, a new productionmode of underwater oil storage was proposed, which means the extracted crude oilwould be directly stored in the underwater storage tanks, waiting to be transported byoil tankers. Gravity platform underwater oil storage and oil-water replacementunderwater oil storage are the two main ways of underwater oil storage. But the hugebuoyancy need to be overcome. The gravity platform is not quite suitable for marginaloil fields because it costs too much due to its large scale, and the load carried by thefoundation varies as the amount of oil changes. Though the oil and water replacementunderwater oil storage is a proper way for marine oil exploration, the marine pollutionrestricts the application of this technology. Then the oil-water separationpollution-free underwater tank is proposed.
     The pollution-free underwater oil storage model is firstly put forward in thisresearch on the basis of pollution-free underwater oil storage technology. A newunderwater oil spill emergency recovery and storage equipment is then proposedaiming at oil leakage that may occur during the process of offshore oil drilling and oilstorage. Related theoretical experiments and sea tests are carried out. The main workof this paper is as follows. Three new types of pollution-free underwater oil storagemodes are presented including the mode of shallow water fixed platform with oil tank,the mode of shallow water mat underwater oil storage platform mode, and the modeof underwater oil storage with floating dock in deepwater. A series of physical modeltests are carried out, including the process test and heat preservation property test.Materials of diesel, liquid petrolatum, and diesel with water are successively used tocarry out the oil and water replacement process test which shows that the oil-waterseparation technology can avoid the oil-water pollution, demonstrating the feasibilityof the oil-water separation and replacement technology. Plastic-coated fiberglass clothis used as the material of heat preservation inner tank and soft sensing based on neural-network is used to measure and figure out the temperature of crude oil. Then aqualitative and quantitative research on heat preservation properties is conducted. Theresearch shows that high pour point crude oil still has good fluidity during a certainperiod of time because of small temperature change.
     The exploitation of offshore oil has always been accompanied by accidents andrisks. Oil spill accidents may occur in the process of oil and gas production because ofpipeline breaking, platform damage and careless operation. The consequence will beserious in the environment and ecology. A new underwater oil spill emergencyrecovery and storage equipment is proposed to avild oil leakage that may occur duringthe process of offshore oil drilling and oil storage. And related theoretical experimentsare conducted to simulate the main processes of underwater oil spill recovery andstorage. The problems encountering in the experiment and the force on mooring linesunder wave-current condition are analyzed. Results show that the underwater oil spillemergency recovery and storage technology is feasible in practice.
     The CIP numerical calculation model has been established for the interactionbetween waves and oil collecting bag. The force and response of collecting bags havebeen simulated for different model forms, sizes and their locations in the water depth.The simulated results show collecting bags with smooth surfaces, shorter share andsubmerged in the water will lead to smaller wave forces. Frequency-domain analysisis conducted on the simulated result, showing that the force of soft bags is smallerthan that of rigid ones with the same size. That is to say, it would be relatively safetaking rigid bags instead of soft bags during engineering design. In addition, howwave force affects the underwater diaphragm is simulated. Study results show that theinfluence of wave force on the diaphragm is small. The consistency of numericalsimulation results and experimental results proves that the developed mathematicmodel in this paper is applicative for these problems.
     At last, the example project design and sea tests are introduced based on thepollution-free underwater oil storage technology, underwater oil recovery and storagetechnology. A1200m3shallow underwater oil storage platform is designedconsidering conditions of Shengli oil fields including oil deposit, geology andgathering and transportation. The calculation shows that both strength and stabilitymeet the requirements. Related schemes are compared and better ones are selected forevery single procedure through the above design. The sea tests validate the whole process and verify the feasibility of pollution-free underwater oil storage technologyand the key technology of heat preservation. Corresponding problems are found andsolved in the sea test. This experiment has a significant reference value for theapplication and promotion of pollution-free underwater oil storage technology,underwater oil recovery and storage technology.
引文
[1]赵文芳.海上溢油污染的危害与防治措施[J].安全.健康和环境,2006,6(9):25-26.
    [2]刘景凯. BP墨西哥湾漏油事件应急处置与危机管理的启示[J].中国安全生产科学技术,2011,7(1):85-88.
    [3]杨玉峰,苗韧,安琪,等.墨西哥湾漏油事件因果分析及对我国的启示和建议[J].中国能源,2010,32(8):13-17.
    [4]徐松森.油水隔离置换水下储油技术探讨[J].船海工程,2008,37(4):62-65.
    [5]初新杰.海上储油技术现状及水下无污染储油模式探讨[J].装备制造技术,2011,(4):141-143.
    [6]余萍,冯玉华.水下储油方式[J].油气田地面工程,2007,26(3):18-19.
    [7]卢佩琼.水下储存易凝原油的传热规律研究[J].油气储运,1997,16(8):4-9,18.
    [8]赵雅芝,卢佩琼.水下贮油技术——“油水置换”工艺模拟试验[J].中国海洋平台,1999,14(1):18-21.
    [9]韩长青.水下储油罐设计[D].青岛:中国石油大学硕士学位论文,2011.
    [10]郭焕然.水下储油保温测控系统研究设计[D].青岛:青岛科技大学硕士学位论文,2010.
    [11]初新杰,徐松森.无污染水下储油模式探讨.//第十五届中国海洋(岸)工程学术讨论会论文集(上)[C],2011.
    [12]孙东昌,徐松森,田海庆,等.隔离式油水置换水下储罐[P].中国:200520083520.X,2006.
    [13] Chu X J. Study on the Status of Offshore Oil Storage Technology and Non-Pollution OilStorage Technology Underwater[J]. Applied Mechanics and Materials,2012,110:4151-4155.
    [14]楚海明.浅谈水面溢油污染防治技术及其应用[J].石油化工环境保护,2004,(1):16-17.
    [15]濮文虹,周李鑫,杨帆,杨昌柱.海上溢油防治技术研究进展.海洋科学,2005,29(6):73-76.
    [16]裴玉起,储胜利,杜民,等.溢油污染处置技术现状分析[J].油气田环境保护,2011,21(1):49-52.
    [17]洪卫东.日本开发高效回收海上漏油的母船[J].航海,2005(4):42-42.
    [18]刘艳双,王玉梅,舒霞,等.国外管道漏油回收及环境恢复技术[J].油气储运,2006,25(2):18-22.
    [19]夏文香,林海涛,李金成,郑西来.分散剂在溢油污染控制中的应用[J].环境污染治理技术与设备,2004,5(7):39-43.
    [20]王锦.浅议溢油分散剂在油污染防治中的应用[J].中国水运(理论版),2006,4(6):35-36,248.
    [21]李振中.港内溢油油膜加厚技术研究[D].大连:大连海事大学,2007.
    [22] Bayat A, Aghamiri S F, Moheb A, et al. Oil spill cleanup from sea water by sorbentmaterials[J]. Chemical engineering&technology,2005,28(12):1525-1528.
    [23] Wei Q F, Mather R R, Fotheringham A F.用于回收泄漏石油的非织造吸油材料[J].产业用纺织品,2004,22(3):26-28.
    [24]伍建林,李著信,王鹏飞.可移动式水下储供油系统的设计及关键技术研究[J].石油矿场机械,2005,34(4):32-34.
    [25]王宇辉.8000kW海洋救助船浮油回收系统及设备简介[J].船舶轮机,2009,(121):33-36
    [26]董伟.海上溢油回收人工水母模型设计及其特性分析[D].上海:上海海事大学,2005.
    [27]董伟,杨勇生.仿生型海上溢油回收装置的设汁[J].石油机械,2006,(1):40-42.
    [28]张海燕.海上溢油回收人工水母装置模型的特性分析与试验研究[D].上海:上海海事大学硕士论文,2006.
    [29]王峰,孙永明,郑卓胤.基于人工水母的海上溢油回收研究[J].中国水运,2010,(6):38-40.
    [30]初新杰,张海洋,董胜.基于应急收集囊的水下漏油收集试验研究[J].海洋湖沼通报,2013,(3):195-202.
    [31] Bathe K J. Finite element method[M]. John Wiley&Sons, Inc.,2008.
    [32] Dhatt G, Lefran ois E, Touzot G. Finite element method[M]. John Wiley&Sons,2012.
    [33] Reddy J N, Gartling D K. The finite element method in heat transfer and fluiddynamics[M]. CRC press,2010.
    [34] Jha N. A fifth order accurate geometric mesh finite difference method for general nonlineartwo point boundary value problems[J]. Applied mathematics and computation,2013,219(16):8425-8434.
    [35] Sweilam N H, Khader M M, Nagy A M. Numerical solution of two-sided space-fractionalwave equation using finite difference method[J]. Journal of computational and appliedmathematics,2011,235(8):2832-2841.
    [36] Prieto F U, Benito Mu oz J J, Corvinos L G. Application of the generalized finitedifference method to solve the advection–diffusion equation[J]. Journal of Computationaland Applied Mathematics,2011,235(7):1849-1855.
    [37] Khan I, Aziz T, Khan A, et al. Spline Finite Difference Method for a Class ofBoundary-Value Problems[J]. Journal of the Indonesian Mathematical Society,2012,14(1):57.
    [38] Liu Y, Sen M K. Time–space domain dispersion-relation-based finite-difference methodwith arbitrary even-order accuracy for the2D acoustic wave equation[J]. Journal ofComputational Physics,2013,232(1):327-345.
    [39] Sauter S A, Schwab C. Boundary element methods[M]. Springer Berlin Heidelberg,2011.
    [40] Liu Y J, Mukherjee S, Nishimura N, et al. Recent advances and emerging applications ofthe boundary element method[J]. Applied Mechanics Reviews,2011,64(3):030802.
    [41]陈景仁.流动与传热中的有限分析法[M].北京:中国水利水电出版社,2010.
    [42] Wang C T. Variational method in the theory of compressible fluid[J]. Journal of theAeronautical Sciences (Institute of the Aeronautical Sciences),2012,15(11):675-685.
    [43] Sochi T. Using the Euler–Lagrange variational principle to obtain flow relations forgeneralized Newtonian fluids[J]. Rheologica Acta,2014,53(1):15-22.
    [44] Wang C T. A study of the nonlinear characteristics of compressible flow equations bymeans of variational methods[J]. Journal of the Aeronautical Sciences (Institute of theAeronautical Sciences),2012,17(6):343-348.
    [45] Chen C, Xiao F. Shallow water model on cubed-sphere by multi-moment finite volumemethod[J]. Journal of Computational Physics,2008,227(10):5019-5044.
    [46] D’Angelo C, Scotti A. A mixed finite element method for Darcy flow in fractured porousmedia with non-matching grids[J]. ESAIM: Mathematical Modelling and NumericalAnalysis,2012,46(02):465-489.
    [47] Brandt A, Livne O E. Multigrid techniques:1984guide with applications to fluiddynamics[M]. SIAM,2011.
    [48] Liu M B, Liu G R. Smoothed particle hydrodynamics (SPH): an overview and recentdevelopments[J]. Archives of computational methods in engineering,2010,17(1):25-76.
    [49] Price D J. Smoothed particle hydrodynamics and magnetohydrodynamics[J]. Journal ofComputational Physics,2012,231(3):759-794.
    [50] Monaghan J J. Smoothed particle hydrodynamics and its diverse applications[J]. AnnualReview of Fluid Mechanics,2012,44:323-346.
    [51] Monaghan J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics,2005,68(8):1703.
    [52]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [53]王全.基于CIP类方法的液舱晃荡数值模拟研究与应用[D].江苏科技大学,2011.
    [54] Takewaki H, Nishiguchi A, Yabe T. Cubic interpolated pseudo-particle method (CIP) forsolving hyperbolic-type equations[J]. Journal of Computational Physics,1985,61(2):261-268.
    [55] Takewaki H, Yabe T. The cubic-interpolated pseudo particle (CIP) method: application tononlinear and multi-dimensional hyperbolic equations[J]. Journal of ComputationalPhysics,1987,70(2):355-372.
    [56] Sidik N A C, Rahman M R A. Cubic Interpolated Pseudo Particle (CIP)–Thermal BGKLattice Boltzmann Numerical Scheme for Solving Incompressible Thermal Fluid FlowProblem[J]. Malaysian Journal of Mathematical Sciences,2009,3(2):183-202.
    [57] Xiao F, Yabe T, Ito T. Constructing oscillation preventing scheme for advection equationby rational function[J]. Computer Physics Communications,1996,93(1):1-12.
    [58] Xiao F, Yabe T, Nizam G, et al. Constructing a multi-dimensional oscillation preventingscheme for the advection equation by a rational function[J]. Computer physicscommunications,1996,94(2):103-118.
    [59]汤寒松,张德良,李椿萱.对流方程保单调CIP格式[J].水动力学研究与进展a辑,1997,12:61-67.
    [60] Takashi Yabe, Yan Zhang, Feng Xiao. A numerical procedure-CIP-to solve all phases ofmatter together.//Proceedings of the Sixteenth International Conference on NumericalMethods in Fluid Dynamics[C], Springer Berlin,1998:439-457.
    [61] Masato Ida. An improved unified solver for compressible and incompressible fluidsinvolving free surfaces.Part I. Convection[J]. Computer Physics Communications,2000,132:44–65.
    [62] Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphaseanalysis[J]. Journal of Computational Physics,2001,169(2):556-593.
    [63] Yabe T, Ogata Y, Takizawa K, et al. The next generation CIP as a conservativesemi-Lagrangian solver for solid, liquid and gas[J]. Journal of computational and appliedmathematics,2002,149(1):267-277.
    [64] Yabe T, Mizoe H, Takizawa K, et al. Higher-order schemes with CIP method and adaptiveSoroban grid towards mesh-free scheme[J]. Journal of Computational Physics,2004,194(1):57-77.
    [65] Hu C, Kashiwagi M. A CIP-based method for numerical simulations of violent free-surfaceflows[J]. Journal of Marine Science and Technology,2004,9(4):143-157.
    [66] Hu C, Kashiwagi M, Faltinsen O.3-d numerical simulation of freely moving floating bodyby cip method.//Proceedings of the Fifteenth International Offshore and Polar EngineeringConference[C]. International Society of Offshore and Polar Engineers,2005.
    [67] Kawasaki J. Numerical model of2-D multiphase flow with solid-liquid-gas interaction[J].International Journal of Offshore and Polar Engineering,2005,15(3):198-203.
    [68] Takizawa K, Yabe T, Tsugawa Y, et al. Computation of free-surface flows and fluid–objectinteractions with the CIP method based on adaptive meshless Soroban grids[J].Computational Mechanics,2007,40(1):167-183.
    [69]郭彦,刘儒勋.紧致型CIP方法数值棋拟非线性波的传播[J].中国科学技术大学学报,2009,39(3):233-240.
    [70] Guo Y, Liu R X. The compact-type CIP method for the numerical simulation of thepropagation of non-linear waves[J]. Journal of University of Science Foundation andTechnology of China.2009,39(3):233-240.
    [71] Lee S J, Lee I. Two-dimensional half-staggered Soroban grids for the CIP/CCUPmethod[J]. Computers&Fluids,2010,33(9):1491-1499.
    [72] Hu C H, Yang K K, Kim Y H.3-D numerical simulations of violent sloshing by CIP-basedmethod[J]. Journal of Hydrodynamics, Ser. B,2010,22(5):253-258.
    [73] He G. A new adaptive Cartesian-grid CIP method for computation of violent free-surfaceflows[J]. Applied Ocean Research,2013,43:234-243.
    [74] Konno M, Okubo K, Tsuchiya T, et al. Performances of Various Types of ConstrainedInterpolation Profile Method for Two-Dimensional Numerical Acoustic Simulation[J].Japanese Journal of Applied Physics,2008,47(5S):3962.
    [75] Tsuchiya T, Okubo K, Takeuchi N. Numerical simulation of nonlinear sound wavepropagation using constrained interpolation profile method: one-dimensional case[J].Japanese Journal of Applied Physics,2008,47(5S):3952.
    [76] Konno M, Okubo K, Tsuchiya T, et al. Two-dimensional simulation of nonlinear acousticwave propagation using constrained interpolation profile method[J]. Japanese Journal ofApplied Physics,2009,48(7S):07GN01.
    [77] Harada Y, Okubo K, Tagawa N, et al. An Improvement of Absorbing Boundary ConditionBased on Algorithm of Constrained Interpolation Profile Method for Finite-DifferenceTime-Domain Acoustic Simulation[J]. Japanese Journal of Applied Physics,2010,49(7S):07HC09.
    [78]初新杰.海上储油技术现状及水下无污染储油模式探讨[J].装备制造技术,2011,(4):141-143.
    [79]丁忠军,李金亮,张士华,等.水下储油保温材料热传导测试技术研究[J].测控技术,2009,28(7):85-87.
    [80]丁忠军,徐松森,张士华,等.水下储油保温监控系统研究[J].海洋工程,2009,27(1):101-105.
    [81]徐松森,高恒庆.滩海工程模拟实验室主要性能与特色[J].黄渤海海洋,2000,18(4):62-67.
    [82] Hu C, Kashiwagi M. Two-dimensional numerical simulation and experiment on stronglynonlinear wave–body interactions[J]. Journal of marine science and technology,2009,14(2):200-213.
    [83]龚纯,王正林. MATLAB语言常用算法程序集[M].北京:电子工业出版社,2008.
    [84]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社有限公司,2004.
    [85] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of freeboundaries[J]. Journal of computational physics,1981,39(1):201-225.
    [86] Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolictangent function[J]. International journal for numerical methods in fluids,2005,48(9):1023-1040.
    [87] Yokoi K. Efficient implementation of THINC scheme: A simple and practical smoothedVOF algorithm[J]. Journal of Computational Physics.2007,226(2):1985-2002.
    [88] Dalrymple R A, Dean R G. Water wave mechanics for engineers and scientists[M].Prentice-Hall,1984.
    [89] Spinneken J, Swan C. Second-order wave maker theory using force-feedback control. PartI: A new theory for regular wave generation[J]. Ocean Engineering,2009,36(8):539-548.
    [90]陶建华.水波的数值模拟[M].天津:天津大学出版社,2005.
    [91]周宜林.淹没丁坝附近三维水流运动大涡数值模拟[J].长江科学院院报,2001,18(5):28-31.
    [92]张贤达.现代信号处理[M].北京:清华大学出版社有限公司,2002.
    [93] Priestley M B. Spectral analysis and time series[M]. Academic Press,1982:15-18.
    [94]张佳明,马秀荣,秦宝连,等.非参数模型谱估计算法性能比较[J].天津理工大学学报,2009,25(4):19-22.
    [95] Burg J P. Maximum entropy spectral analysis.//37th Ann. Int. Soc. Explar Geophysicsmeeting[C]. Oklahoma,1967.
    [96] Lagunas M A. Gepstrum constraints in ME spectral estimation.//Proc. IEEE ICASSP83[C],1983,1442-1445.
    [97] Thara S. Maximum entropy spectral analysis and ARMA processes[J]. IEEE Trans, Inform.Theory,1984,30:377-380.
    [98] Frieden BR. Restoring with maximum likelihood and maximum entropy[J]. J. Opt. Soc.Amer.,1997,62:511-518.
    [99] Blackman R B, Tukey J W. The Measurement of Power Spectra[M]. New York: DoverPublication Inc.,1959.
    [100] Gray R M. Entropy and Information Theory[M]. New York: Springer-Verlag,1990.
    [101] Lagunas M A, Santamaria M E, Figueiras A R. ARMA model maximum entropy powerspectral estimation[J]. IEEE Trans. Acoust., Speech, Signal Processing.1984,32:984-990.
    [102] Poularikas A D. The Handbook of Formalas and Tables for Signal Processing[M]. CRCPress, Springer, IEEE Press,1998.
    [103]魏鑫,张平.周期图法功率谱估计中的窗函数分析[J].现代电子技术,2005,28(3):14-15.
    [104]史建锋,朱良学.有限数据下循环谱的频域平滑对称式周期图法估计性能分析[J].数据采集与处理,2004,19(2):155-159.
    [105]余训锋,马大玮,魏琳.改进周期图法功率谱估计中的窗函数仿真分析[J].计算机仿真,2008,25(3):111-114.
    [106]王晓峰,王炳和.周期图及其改进方法中谱分辨率的MATLAB分析[J].武警工程学院学报,2004,19(6):75-77.
    [107]瞿海雁,李鹂,钱小凌.如何在Matlab中优化基本周期图法对随机信号进行的功率谱估计[J].首都师范大学学报:自然科学版,2006,27(5):33-36.
    [108]郑星亮,程洁.数字信号处理中的窗效应及窗函数的应用原则[J].北京联合大学学报:自然科学版,1997,11(2):33-37.
    [109]解翔,卫红凯,马珂.窗函数对传统功率谱估计精度的影响[J].舰船电子对抗,2009,32(2):84-86.
    [110]赵静,刘琦. Welch法谱估计和参数模型谱估计的MATLAB分析[J].水利电力机械,2006,28(4):48-50.
    [111]杨蔚原. Welch功率谱估计方法的参数选择[J].环境技术,2009,27(5):23-27.
    [112]刘嵩,罗敏.基于Matlab的Welch法功率谱估计[J].湖北民族学院学报:自然科学版,2007,25(2):215-216.
    [113]毕鹏杰. FPSO不停产原油舱清洗火灾综合安全评估研究[D].大连:大连海事大学硕士学位论文,2008.
    [114]张翀. VLCC货油装卸主系统安全运行监控研究[D].大连:大连理工大学硕士学位论文,2006..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700