用户名: 密码: 验证码:
海底沉积物电阻率原位探测技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文基于国家海洋公益性行业科研专项“我国近海海底沉积声学调查与评价体系研究”项目(编号GY10-01)开展研究,结合我国近海沉积声学调查评价需要,系统地研究了海底沉积物电阻率原位测量技术,研制微型点电极电阻率探针系统和沉积物电阻率甲板测试分析仪器,利用自主研发仪器对南黄海海底沉积物电阻率进行了试验测试研究。
     论文主要研究成果包括:
     系统地研究了沉积物直流电阻率平行板双电极测量、平行四探针电极测量、环形四电极测量等技术,分析了几种电阻率探测技术的特点。重点研究了环形四电极探针测量技术,探讨了探针结构因子对测量结果的影响,提出了结构因子校正方法。
     研究了海底沉积物电阻率的非线性特性及克服非线性特性的优化设计技术,引入了有限元分析方法进行探针结构因子影响分析和误差校正;提出了电阻率探测激励信号的模糊逻辑智能控制方法,有效地克服了探针的系统误差。
     研制了一套满足沉积物电阻率原位探测和室内快速测定需要的点电极微型探针系统,采用系统集成的方法开发了一套沉积物电阻率虚拟测试分析仪器,并进行了试验测试。
     研究了我国近海海底沉积物孔隙度、含水量和粘土矿物对电阻率的影响,初步探讨了海底沉积物电阻率与沉积声学参数的关系。研究了南黄海海底沉积物的电阻率分布特征及其可能的成因。
     论文创新点主要包括以下两个方面:
     1.在电阻率测量技术方面,提出了微型探针结构因子的有限元分析校正方法和高精度恒流源模糊逻辑控制方法,确定了探针的结构因子校正系数,研制了微型原位电阻率探针传感器。
     2.在电阻率测试研究方面,结合沉积声学调查评价体系研究,初步确定了我国近海沉积物电阻率与孔隙度、含水量等沉积物物理性质的关系,首次初步确定了我国近海沉积物电阻率分布特征。
Based on the special project for national ocean research in the public Interest“Chinese offshore seabed sediment acoustic survey and evaluation system research”(No. GY10-01) the research for this article was carried out. Combined with the needof Chinese offshore seabed sediment acoustics research and evaluation, this articlesystematically studied the seabed sediment resistivity in situ measurement techniques,developed micro electrode resistivity probe system and deck test and analysisinstrument for sediment resistivity, and used the instrument to experimentally studythe seabed sediment in the South China Sea and the yellow sea
     The main research achievements are as follows
     1. This article systematically studied the direct resistivity parallel plate doubleelectrode measurement technology for sediment, measurement technology of parallelfour point probe electrode, measurement technology of annular four electrode, andanalyzed the features of their detection technology. The article detailed study theannular four electrode probe measurement technology, discussed the influence ofprobe’s structure factor on measurement results, and on the basis of predecessors'research the structure factor correction method was proposed.
     2. The article studied the nonlinear characteristic of the seabed sedimentresistivity and the optimized technology to overcome it, used the finite elementanalysis method to analysis the impact of probe structure factors and error correction;the intelligent fuzzy logic control method to detect and drive the signal of resistivitywas proposed, and effectively overcome the system error of the probe.
     3. The article developed a set of point electrode micro probe system that meet theneed of sediment resisivity in situ detection and indoor rapid determination,developed a instrument to test and analysis the virtual sediment resistivity and the testwas carried out.
     4. The article studied the Chinese offshore seafloor sediment porosity, moisture content and clay mineral influence on resistivity, preliminary discuss the relations ofseabed sediment resistivity and sedimentary acoustic parameters, studied theresistivity distribution features and their possible causes of seabed sediment in southchina sea and the yellow sea.
     The main innovation points include the following two aspects:
     1. In terms of the resistivity measurement, the article put forward two methods,the first is to analysis and correct the finite element for micro probe structure factorand the second is the high precision constant current source fuzzy logic controlmethod. Determined the structure factor correction coefficient of the probe, the sensorof micro resistivity in situ probe was developed.
     2. In terms of resistivity test, in combination with sedimentary acoustic surveyevaluation system research, the relationship of China offshore sediment resistivity,porosity and water content was preliminarily determined, and the sediment resisitivitydistribution characteristics in our country is identified for the first time.
引文
[1] Christine Lauer-Leredde, Philippe A. Pezard, Ivan Dekeyser. FICUS, a new in-situ probe forresistivity measurements in unconsolidated marine sediments. Marine GeophysicalResearches,1998,20:95-107
    [2] Peter V Ridd. Electric Potential Due to a Ring Electrode. IEEE JOURNAL OF OCEANICENGINEERING,1994,19(3):464-467
    [3] Knut Seidel and Gerhard Lange. Direct Current Resistivity Methods. EnvironmentalGeology,2007:205-237
    [4] Barker, R D. The offset system of electrical resistivity sounding and its use with a multicorecable. Geophysical Prospecting,1981,29(1):128-143
    [5] P D Jackson. An electrical resistivity method for evaluating the in-situ porosity of cleanmarine sands. Marine Geotechnology,1975,1(2):91-115
    [6] Dawn L, Edward M, etal. The use of a towed, direct-current, electrical resistivity array forthe classification of marine sediments. OCEANS '88. A Partnership of Marine Interests.Proceedings,1988,2:397-404
    [7] A. Kermabon, C. Gehin, P. Blavier. A deep-sea electrical resistivity probe for measuringporosity and density of unconsolidated sediments. Geophysics,1969,34(4):554-571
    [8] I J WON. The Geometrical Factor of a Marine Resistivity Probe with Four Ring Electrodes.IEEE Journal of Oceanic Engineering,1987,12(1):301-303
    [9] Fossa M. Design and performance of a conductance probe for measuring the liquid fractionin two-phase gas-liquid flows. Flow Measurement and Instrumentation,1998,9(2):103-109
    [10] A Rosenberger, P Weidelt, C Spindeldreher, B Heesemann, H Villinger. Design andapplication of a new free fall in situ resistivity probe for marine deep water sediments.Marine Geology,1999,160(3-4):327-337
    [11] Songyu Liu, Lei Chen, Lihua Han. Study on Electrical Resistivity Related Parameters ofContaminated Soils. Geotechnical Engineering for Disaster Mitigation and Rehabilitation,2008,695-701
    [12] David E Woolley. Simulation of four-point test for DC electrical resistivity of moderatelyconductive solids-error due to nonideal specimen size and current electrode configuration.Journal of Testing and Evaluation,2009,37(1):69-76
    [13] A Samoue¨lian, I Cousin, A Tabbagh, A Bruand, G Richarde. Electrical resistivity survey insoil science: a review. Soil&Tillage Research,2005,83(2):173-193
    [14] Archie G E. The electrical resistivity log as an aid in determig some reservoir characteristics.Petroleum Technology,1942,54-62
    [15] Gupta S C, Hanks R J. Influence of water content on electrical conductivity of the soil. SoilScience Society of America Journal,1972,36(6):855–857.
    [16] Rhoades J D, Schilfgaarde J V. An Electrical Conductivity Probe for Determining SoilSalinity. Soil Science Society of America Journal,1976,40(5):647-651
    [17] Kalinski R J, Kelly W E, Bogardi I, Pesti G. Electrical resistivity measurements to estimatetravel times through unsaturated ground water protective layers. Journal of AppliedGeophysics,1993,30(3):161-173
    [18] Shea P F, Luthin J N. An investigation of the use of the fourelectrode probe for measuringsoil salinity in situ. Soil Science,1961,92(5):331–339
    [19] Van Dam J C, Meulenkamp J J. Some results of the geoelectrical resistivity method ingroundwater investigations in the Netherlands. Geophysical Prospecting,1967,15(1):92–115
    [20] Palacky G J. Clay mapping using electromagnetic methods. First Break,1987,5:295–306
    [21] Fukue M, Minatoa T, Horibe H, Taya N. The microstructure of clay given by resistivitymeasurements. Eng. Geol,1999,54:43–53
    [22] Giao P H, Chung S G, Kim D Y, Tanaka H. Electric imaging and laboratory resistivity testingfor geotechnical investigation of Pusan clay deposits. Journal of Applied Geophysics,2003,52(4):157–175
    [23] Lamotte M, Bruand A, Dabas M, Donfack P, Gabalda G, Hesse A, Humbel F-X, Robain H.Distribution d’un horizon a`forte cohe′sion au sein d’une couverture de sol aride duNord-Cameroun: apport d’une prospection e′lectrique. Comptes Rendus de l'Academie desSciences Serie. Earth Planet. Sci.,1994,318:961–968
    [24] Dae C Kim, Murli H Manghnani. Influence of Diagenesis on the Electrical Resistivity andthe Formation Factor of Deep-Sea Carbonate Sediments. Geo-Marine Letters,1992,12:14-18
    [25] Normiza Mohamad Nor. Review: Soil Electrical Characteristics under High ImpulseCurrents. IEEE, Electromagnetic Compatibility Society,2006,48(4):826-829
    [26] Wilkins R H, Handyside T. Physical properties of equatorial Pacific sediments. In: Mayer, L,Theyer, F, and others. Initial Reports Deep Sea Drilling Project85. U.S. GovernmentPrinting Office, Washington, D C,1985:839-847
    [27] O'Brien D K. Physical, acoustic, and electrical properties of deep-sea sediments.Unpublished Ph. D. dissertation, University of Hawaii, Honolulu, H I,1990:140
    [28] Rosenberger A, Weidelt P, and etal. Soil Salinity Assessment by Electromagnetic Inductionof Irrigated Land. Soil Science Society of America Journal,1992,56(6):1933-1941
    [29] Qiu C H, etal. Electrical resistance tomography for imaging porosity in marine sediments.1996,666-670
    [30] Daniela J, Bernd H, Marion P, Andreas R, Heinrich V. In situ measurement of electricalresistivity of marine sediments, results from Cascadia Basin off Vancouver Island. MarineGeology,2005,216(1-2):17-26
    [31] H Inaki Schlaberg, J aco H Baas, Mi Wang, etal. Electrical Resistance Tomography forSuspended Sediment Measurements in Open Channel Flows Using a Novel Sensor Design.Particle&Particle Systems Characterization,2006,23(3-4):313-320
    [32] Erik Spangenberg, Johannes Kulenkampff. Influence of methane hydrate on electricalsediment properties. Geophysical Research Letters,2006,33(24):1-5
    [33]刘松玉,于小军,缪林昌.水泥土和二灰土的电阻率特性研究.东南大学学报(英文版),2001,17(1),55-59
    [34]于小军,刘松玉.电阻率指标在膨胀土结构研究中的应用探讨.岩土工程学报,2004,26(3),393-396
    [35]刘松玉,查甫生,于小军.土的电阻率室内测试技术研究.工程地质学报,2006,14(2):216-222
    [36]郭秀军,刘涛,贾永刚,黄潇雨.土的工程力学性质与其电阻率关系实验研究.地球物理学进展,2003,3,151-155
    [37]于小军.电阻率模型理论应用于海相软土蠕变研究.岩石力学与工程学报,2007,26(8):1720-1727
    [38]刘国华等.土的电阻率特性及其工程应用研究.岩土工程学报,2004,26(1):83-87
    [39] Kalinski R J. Electracal resistivity measurements for evaluation compacted-soil lines.Journal of Geotechnical Engineering,1994,120(2):451-457
    [40]贾永刚,霍素霞,许国辉,单红仙,郑建国,刘红军黄河水下三角洲沉积物强度变化原位测试研究.岩土力学,2004,25(6):876-881
    [41] Wesley McCall, R G Peter Zimmerman. Direct Push Eiectrical and CPT Logging: AnIntroduction. Proceedings of the seventh international MGLS symposium,2002,103-114
    [42] Peter V ridd. A sediment level sensor for erosion and siltation detection. Estuarine, Coastaland Shelf Science,1992,35(4):353-362
    [43] Hulbert H H, etal. In situ electrical resistivity measurement of calcareous sediments. Amer.Soc. Testing Materials, Special Publ,1982,777:414-428
    [44] Watson G N. A treatise on the theory of Bessel Functions.2ndedn Cambridge Univ Press,Cambridge,UK,1966
    [45] Abramowitz M, Stegun I A. Handbook of Mathematical Functions.2ndedn, Dover, NewWork,1972
    [46] A Valentea, R Moraisa, A Tulib, J W Hopmansb, G J Kluitenberg. Multi-functional probe forsmall-scale simultaneous measurements of soil thermal properties, water content, andelectrical conductivity. Sensors and Actuators A: Physical,2006,132(1):70-77
    [47] Buehler, Martin G. Measuring Water Content of Martian Soil Simulants using PlanarFour-Probes. Aerospace Conference, IEEE,2005,648-659
    [48] Schon J H. Physical Properties of Rocks: Fundamentals and Principles of Pertrophysics,(Handbook of Geophysical Exploration, Section1, Seismic Exploration:18), Oxford, U K,1998
    [49] Flanagan T M, Mallon C E, Denson R, Leadon R E. Electrical breakdown properties of soil.IEEE Trans Nucl Sci,1981,28(6):4432-4439
    [50] Flanagan T M, Mallon C E, Denson R. Electrical breakdown characteristics of soil. IEEETrans Nucl Sci,1982,29(6):1887-1890
    [51] Leadon R E, Flanagan T M, Mallon C E, Denson R. Effect of ambient gas on arc initiationcharacteristics in soil. IEEE Trans Nucl Sci,1983,30(6):4572-4576
    [52] Bewley L V. Theory and tests of the counterpoise. Gen. Elect. Rev.,1934,37(2):1163-1172
    [53] Dick W K, Holliday H R. Impulse and alternating current tests on gounding electrodes insoil environment. IEEE Trans. Power App. Syst.,1978,97(1):102-108
    [54]张南纶,肖奚安,朱梧贾.泛布尔代数公理体系.空军气象学院学报,1985(1):338-353
    [55]刘文波,张佑林.基本型逻辑控制的研究.仪器仪表学报,2004年2月,25(1):99-102
    [56]孙晓明.九点控制器控制精度仿真研究.武汉理工大学学报,2002,24(5):91-94
    [57]远坂俊昭.测量电子电路设计-滤波器篇.科学出版社,2006
    [58]岗村迪夫.OP放大电路设计.科学出版社,2006
    [59] Arthur B Williams.电子滤波器设计手册.喻春轩,译.北京:电子工业出版社,1986
    [60]谭青,龙杰强.便携式数据采集系统中自适应抗混叠滤波器的设计.现代电子技术,2007,244(5):98-100
    [61]彭永胜,王太勇,范胜波,吴振勇,王双利.高品质抗混叠滤波器设计西南交通大学学报,2003,38(5):596-601
    [62] A A Adepelumi, A A Solanke, O B Sanusi, A M Shallangwa. Model tank electrical resistivitycharacterization of LNAPL migration in a clayey-sand formation. Environmental Geology,2006,50(8):1221-1233
    [63] Younghwan Son, Myounghak Oh, Seunghak Lee. Influence of diesel fuel contamination onthe electrical properties of unsaturated soil at a low frequency range of100Hz–10MHz.Environmental Geology,2009,58(6):1341-1348
    [64]林凯,何川,毛乐山.基于LabVIEW的多通道振动测试与分析系统.清华大学学报:自然科学版,2003,43(5):659-661,665
    [65]邓炎,王磊.LabVIEW7.1测试技术与仪器应用.北京:机械工业出版社,2004
    [66]沈金松,陈小宏.海洋油气勘探中可控源电磁探测法(CSEM)的发展与启示.石油地球物理勘探,2009,44(1):119-127
    [67]何继善,鲍力知.海洋电磁法研究的现状和进展.石油地球物理勘探,1999,14(1):7-39
    [68] Pfender M, Villinger H. Miniaturized data loggers for deep sea sediment temperaturegradient measurements. Marine Geology,2002,186(3-4):557-560
    [69]孙永福,孙惠风,董立峰.海底土的电阻率特征及其腐蚀性评价.海岸工程,2005,24(2):48-52
    [70]郭秀军,刘涛,贾永刚等.土的工程力学性质与其电阻率关系实验研究.地球物理学进展,2003,18(1):151-155
    [71]查甫生,刘松玉.土的电阻率理论及其应用探讨.工程勘察,2006,(5):10-15
    [72]华南理工大学,东南大学,浙江大学等.地基及基础.北京:中国建筑工业出版社,2002
    [73]单红仙,刘晓磊,贾永刚等.黄河口沉积物固结过程电阻率监测研究.岩土工程学报,2010,32(10):1524-1529
    [74]韦钦胜,于志刚,冉祥滨,臧家业.黄河口沉积物固结过程电阻率监测研究.地球科学进展,2011,26(2):145-156
    [75]赵一阳,李凤业,秦朝阳,等.试论南黄海中部泥的物源及成因.地球化学,1991,(2):112-117
    [76]谢传礼等.末次盛冰期中国海古地理轮廓及其气候效益.第四纪研究,1996,1:1-10
    [77]张志珣,蓝先洪等.1:100万南通幅海洋区域地质调查报告,2007,12
    [78]郑光膺著.黄海第四纪地质.北京:科学出版社,1991
    [79]孟祥梅,刘保华,阚光明,李官保.南黄海海底沉积物声学特性及其影响因素试验研究.
    [80]刘振夏.黄海表层沉积物的分布规律.海洋通报,1982,1(1):43-51
    [81]刘敏厚,吴世迎,王永吉.黄海晚第四纪沉积.北京:海洋出版社,1987
    [82]刘锡清.中国边缘海的沉积物分区.海洋地质与第四纪地质,1996,16(3):1-12
    [83]程振波,石学法,陈志华,鞠小华.南黄海表层沉积物中微体化石的沉积特点及物源分析.沉积学报,1999,17:775-781
    [84]张宪军.南黄海中西部全新世沉积特征及物源分析.中国海洋大学,2008,6-7
    [85] Pedersen, G K Thin, fine-grained storm layers in a muddy shelf sequence: an example fromthe Lower Jurassic in the Stenlille1well, Denmark. Journal of the Geological Society,1985,142(2):357-374
    [86] Lesueur, P, Tastet, J P Facies, internal structures and sequences of modern Gironde-derivedmuds on the Aquitaine inner shelf, France. Marine Geology,1994,120(3-4):267-290
    [87]李绍全,刘健,王圣洁,等.南黄海东侧冰消期以来的沉积层序与环境演化.科学通报,1998,43(8):876-880
    [88] Jin, J H, Chough, S K Partitioning of transgressive deposits in the Southeastern Yellow Sea:a sequence stratigraphic interpretation. Marine Geology,1998,149(1-4):79-92
    [89]石学法,申顺喜,Yi Hi-il,等.南黄海现代沉积环境及动力沉积体系.科学通报,2001,46(增刊):1-6
    [90]申顺喜,李安春,姜学钧,等.南黄海的海底侵蚀作用.海洋与湖沼,1998,29(5):542-546
    [91]申顺喜,李安春,袁巍.南黄海中部的低能沉积环境.海洋与湖沼,1996,27(5):518-523
    [92]李凡,张秀荣,李永植,等.南黄海埋藏古三角洲.地理学报,1998,53(3):238-244
    [93]薛春汀,周永青,朱雄华.晚更新世末至公元前7世纪的黄河流向和黄河三角洲.海洋学报,2004,26(1):48-61
    [94]高建华,李军,汪亚平,白凤龙,李家胜,程岩.鸭绿江河口及近岸海域沉积物中重矿组成、分布及其沉积动力学意义海洋学报,2009,31(3):85-94
    [95]吴世迎,房泽诚.黄海海州湾钙结体的特征及其地质意义.地质科学,1982(2):207-216
    [96]朱而勤.黄海和东海钙质结核的特征及成因.海洋学报,1985,7(3):333-341
    [97]郑铁民,秦蕴珊.黄东海浅水区海底钙质结核及其成因的研究.沉积学报,1986,4(2):47-57
    [98]王振宇.南黄海海州湾外侧钙质结核特征及其成因的研究.上海地质,1990,(2):9-19
    [99]李惠卿,袁业立.黄海冷水团热结构及其环流解析研究.海洋与湖沼,1992,23(1):7-13
    [100]袁业立,李惠卿.黄海冷水团环流结构及其生成机制研究:0阶解及冷水团的环流结构.中国科学B,1993,23(1):93-103
    [101]苏纪兰,黄大吉.黄海冷水团的环流结构.海洋与湖沼,1995,26(增刊):1-7
    [102] Naimie C E, Blain C A, Lynch D R. Seasonal mean circulation in the Yellow Sea: a modelgenerated climatology. Cont Shelf Res,2001,21:667-695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700