用户名: 密码: 验证码:
若干单分子反应及分子团簇稳定性的理论计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单分子反应包括单分子解离反应和异构化反应,理论研究单分子反应对理解其化学反应机理起到至关重要的作用。另一方面,研究分子团簇和质子化团簇的电子特性和结构稳定性等方面的性质,对深入理解单分子组成分子团簇的形成机理、团簇动力学、质子转移过程、溶剂化效应等是非常重要的。
     量子化学以量子力学为原理,它可以获得实验上难以观察的微观信息,例如,预测分子的结构和能量,化学反应路径,过渡态的结构和能量,激发态的电子结构等,从而认识反应机理,解释实验现象。目前量子化学计算方法被广泛用于从理论上研究分子的结构与其稳定性及其反应性的关系和确定团簇的稳定结构等诸多方面。
     本论文应用量子化学计算方法研究了几种分子的解离反应和异构化过程,以及分子团簇的结构和稳定性等问题。主要内容概括如下:
     (1)研究双电荷分子离子的结构和解离机制,对认识等离子体、大气电离层以及星际空间的化学物理过程等具有重要价值。NCO自由基和它的阳离子是包含有机化学和生物学中最常见元素N、C、O的最小化合物,在燃烧化学和环境化学中有重要应用。所以,选择双电荷分子离子NCO~(2+)作为研究体系。通过CASSCF和MRCI方法计算了NCO~(2+)低激发态的势能面,讨论了它的稳定性和解离过程。得到了0~12eV的垂直电子激发能所对应的态,它们是从价分子轨道(6σ)、(7σ)或(1π)向(2π)或(3π)轨道激发一个或者两个电子获得的。给出了NCO~(2+)低激发态的N~+–CO~+和NC~+–O+共线解离路径和随着角度变化的能量变化曲线。NCO~(2+)的基态X2Π和最低激发态a4Σ-都是亚稳的,获得了它们的结构和光谱参数。NCO~(2+)的X~2Π和a~4Σ-态都能够解离为N~+(X~3Pg)+CO~+(X~2Σ~+),是主要的解离通道。在NCO~(2+)形成和解离过程中显示了非绝热跃迁的重要性,并定位了NCO~(2+)势能面上存在的一些避免交叉点和圆锥交叉点。能量在3~8eV之间的电子态存在着强相互作用,快速的预解离过程是主要的,高于8eV的电子态是排斥态。获得的信息有助于理解各种极端环境下涉及NCO自由基的反应和基本过程。
     (2) α-CHD分子是六元环体系中的一个重要结构单元,在生物学和合成学中具有重要的应用。在α-CHD的真空紫外吸收光谱和诱导光解离实验中发现一些碎片需要经过异构-解离过程获得,并且α-CHD在三重态有α-解离特性。为了了解α-CHD分子异构的情况和弄清楚这些碎片的来源,通过B3LYP和CCSD(T)方法研究了α-CHD分子单、三重态解离反应的势能面,得到了产物P1(~(1,3)c-C_5H_8O+~1CO)、P2(~(1,3)C_2H_4+~1C_2H_4+2~1CO)、P3/P3'(~(1,3)CH_2CHCH_2CH_2CHO+~1CO)、P4(~(1,3)C_2H_2O+~1C_2H_2O+~1C_2H_4)、P5(~1CH_3CHCO+~1CH_2CHCHO)和P5'(~3CH3CHCO+~1C_2H_4+~1CO)的反应路径。反应机制可以概括为异构和解离过程,主要通过氢原子的转移,开环以及C–C键的断裂完成。α-CHD分子的三重态可以直接进行α解离,验证了TDDFT计算的结果,但入口能量较高。除此之外三重态还可以像单重态解离反应过程一样先发生异构再进行α解离,这个过程所需能量相对较小,通道更容易打开。基于用激发波长为253.7nm(112.7kcal/mol)的紫外光对α-CHD分子进行直接光解离的实验,结合理论计算的单重态和三重态的势能面,考虑各个路径经过过渡态的能量和数量,得到结论:Path1是最可行的路径,Path3是较为可行的路径,Path1(2)、Path3(2)、Path2(3)和Path2(4)是可行的,而Path5可能会实现。因此,P1是主要产物,P2和P3是次要产物,可能有少量的1CH_3CHCO存在,而产物P4、P3'和P5'很难得到。与实验质谱分析的结果基本一致。详细地阐明了α-CHD分子在基态和最低激发态异构和解离的微观反应机理,为深入了解其光谱提供了有价值的信息。
     (3)丁酮是典型的具有挥发性的有机化合物,作为溶剂被广泛应用于工业,在光化学和环境科学中也扮演着重要的角色。从丁酮单分子的质谱分析中发现存在一些如C_2H_3~+和HCO~+不能从丁酮分子直接解离得到的碎片离子,暗示丁酮在解离之前可能发生了异构。通过B3LYP和QCISD(T)方法研究了丁酮单分子的异构化反应过程。通过IRC方法确定了丁酮异构化的6个主要反应路径,相应的产物分别为1-丁烯-2-醇、2-丁烯-2-醇、丁醛或1-丁烯-1-醇、丙烯基甲醚、甲基烯丙基醚和乙烯基乙醚。其中3个路径经过环氧丁烷,表明环氧丁烷是丁酮异构化过程中重要的中间产物。丁酮的异构化反应过程主要通过开环,氢原子的转移,键的形成和断裂实现。环氧丁烷是典型的点手性分子,分别以丁醛和丁酮作为起点研究了环氧丁烷的两种不同的手性转换机制。计算了异构化反应途径中反应物和产物的垂直电离能,与实验值均相符。通过过渡态的相对能量和高能垒的数目比较,认为最可行的丁酮异构化反应路径是丁酮→1-丁烯-2-醇→2-丁烯-2-醇。最可能的产物是1-丁烯-2-醇(2b),次级产物是2-丁烯-2-醇。研究结果给出了一个对于丁酮异构化过程比较全面的理解,为进一步酮类分子异构化研究提供了有价值的信息。另外,我们在355nm和118nm的光照射条件下对丁酮分子团簇的光电离/解离进行了质谱测量,观察到了一些丁酮团簇碎片离子和质子化团簇。通过B3LYP方法优化了丁酮中性团簇(CH_3COC_2H_5)_n和阳离子团簇(CH_3COC_2H_5)_n~+以及质子化团簇(CH_3COC_2H_5)_nH~+(n=2~10)的稳定几何结构,分析了丁酮团簇的结构特点。通过平均结合能、一阶差分能、二阶差分能、HOMO-LUMO能隙等信息分析和讨论了各种尺寸团簇的稳定性并与丙酮团簇进行了比较,发现丁酮中性团簇,阳离子团簇和丙酮团簇均从n=3开始以单环结构最稳定。随着团簇尺寸的增加,双环结构的稳定性不断上升。丙酮团簇(n=7)双环最稳定结构出现比丁酮团簇(包括中性和阳离子团簇,n=8)早。丁酮中性团簇n=3的稳定性最好,与实验上观察到的最强峰对应,而阳离子团簇n=6的稳定性较好。从质子化团簇(CH_3COC_2H_5)_nH~+(n=2~10)的稳定结构对比中可以看出其生长具有规律性,可以将n=2的结构看作是溶剂壳,新增加的分子分别从不同的活性位(丁酮分子与氧原子相连的碳、乙基和甲基)进攻该溶剂壳。比较系统地对丁酮团簇的结构和稳定性进行了分析和讨论。
Unimolecular reaction divides into two different processes, that is dissociation andisomerization. Theoretical study on unimolecular reaction plays an important role tounderstand the mechanism of chemical reaction of unimolecule. On the other hand,investigating the characteristics of the electronic properties and structural stabilitiesfor neutral and protonated molecular clusters, which is very important to understandthe formation mechanism of the molecular clusters composed of unimolecules, clusterdynamics, proton transfer process and solvation effect in-depth.
     Quantum chemistry, based on the principles of quantum mechanics, can obtainmicroscopic information which is difficult to observe in experiment, for example,predicting molecular structure and its energy, chemical reaction path, structure andenergy of the transition state, electronic structure of the excited state and so on. So itis an efficient way to understand the reaction mechanism and explain the experimentalphenomena. Nowadays, the quantum chemical calculation methods are widely used tostudy the relationships between molecular structure and its nature, molecular structureand its reactivity, and determine the structure of clusters, etc.
     In this thesis, we have studied the processes of the dissociation and isomerizationreactions of several unimolecules, and the structures and stabilities of molecularclusters by quantum chemistry calculational method. The main contents aresummarized as follows:
     (1) Study the structure and dissociation mechanism of doubly charged molecularions, which plays an important role in understanding the chemical and physicalprocess of plasma, ionospheric and interstellar space. NCO radical and its chargedions are the smallest chemical compounds including nitrogen, carbon, oxygen whichare the most commonly found elements in organic chemistry and biology, it plays animportant role in astrophysical and environmental chemistry. It was chosen as theresearch object. The potential energy surfaces of the low-lying states of NCO~(2+)havebeen explored by CASSCF and MRCI methods, and its stability and dissociationprocess have been discussed. Given the dominant electron configurations of theelectronic states of NCO~(2+)in the energy range of0~12eV with respect to the groundelectronic state of NCO~(2+), they were consisted by exciting one or two electrons fromthe valence orbital of6,7or1to2or3orbital. The N~+–CO~+and NC~+–O~+collinear dissociation paths were mapped and energy variations with bendingcoordinate have been explored for the lowest excited states of NCO~(2+). The groundstate X2and the lowest excited state a4are metastable with a major collineardissociation channel into N~+(X~3Pg)+CO~+(X~2). It showed the significant effect ofnonadiabatic transition in the formation and decomposition processes of NCO~(2+). Forthe excited states with energies of3~8eV the pre-dissociation processes are dominant,while those states with energies above8eV are repulsive. Several avoided crossingsand conical intersections for NCO~(2+)have also been assigned. The obtainedinformation is useful for understanding the reactions and basic processes of NCOradicals, involved in various extreme environments.
     (2) α-CHD molecule is an important structural unit of six-membered ringsystems, which has important applications in the study of biology and syntheticscience. It is found that some fragments can be obtained through isomerization anddissociation, and the α-dissociation can be done in triplet state in the vacuumultraviolet absorption spectrum and induction photolysis experiment of α-CHD. Inorder to understand the molecular isomerization of α-CHD and reveal the resource ofthose fragments, the potential energy surfaces of the isomerization and dissociation reaction for α-CHD molecule in singlet and triplet states were studied by B3LYP andCCSD(T) methods. It obtained the reaction paths of the products, such asP1(~(1,3)c-C_5H_8O+~1CO), P2(~(1,3)C_2H_4+~1C_2H_4+2~1CO), P3/P3'(~(1,3)CH_2CHCH_2CH_2CHO+~1CO), P4(~(1,3)C_2H_2O+~1C_2H_2O+~1C_2H_4), P5(~1CH_3CHCO~+1CH_2CHCHO) andP5'(~3CH_3CHCO+~1C_2H_4+~1CO). The reaction mechanism can be summarized as theisomerization and dissociation processes, and the processes mainly involve thehydrogen atom transfer, ring-opening and C-C bond cleavages. The triplet state ofα-CHD molecule can complete α-dissociation directly, verified by the TDDFT results,but the entrance energy is very high. In addition, as same as the singlet state, thetriplet state can also isomerize first, and then dissociate. In such case, the requiredenergy is much smaller and the channel can be opened more easily. Based on the UVphotolysis experiment of α-CHD with the wavelength of253.7nm (112.7kcal/mol)and the theoretical calculations of the singlet and triplet potential energy surfaces, werecognize that Path1is the most possible channel, Path3is the second one, Path1(2),Path3(2), Path2(3) and Path2(4) are unlikely ones, and Path5is difficult to beachieved. So P1is the major product, P2and P3are subsidiary products, maybe aminor distribution of~1CH_3CHCO, but the products P4, P3' and P5' are difficult to beobtained. It agrees well with the analysis results of mass spectrometry in experiment.The studied results clarify the microcosmic reaction mechanism of the isomerizationand dissociation for α-CHD molecule in the ground state and the first excited state. Itwill provide important reference for realizing its spectrum in-depth.
     (3) Butanone is the organic compound with volatile typical, as the solvent iswidely used in industry, and it plays an important role in the photochemistry andenvironmental science. It is found that some fragments such as C2H3+and HCO~+could not be produced directly from the bond-cleavage of butanone by analyzing themass spectra, implying that an isomerization may occur prior to decomposition ofbutanone. The isomerization processes of butanone molecule were studied by B3LYPand QCISD(T) methods. Six main reaction pathways are confrmed using the IRCmethod, and the corresponding isomerization products are1-buten-2-ol,2-buten-2-ol, butanal or1-buten-1-ol, methyl1-propenyl ether, methyl allyl ether, and ethyl vinylether, respectively. Among them, there exist three pathways passing through butyleneoxide, indicating that butylene oxide is important intermediate product duringbutanone isomerization. These isomerizations are mainly caused by ring opening,hydrogen transfer, and formation/breakdown of the bonds. Since butylene oxide is atypical point chiral molecule, we also discussed the chirality switching mechanism ofbutylene oxide taking butanal and butanone as a starting point respectively. Thecalculated vertical ionization energies of the reactant and its products are in a goodagreement with the available experimental values. Considering the relative energies oftransition states and the number of high-energy barriers, we infer that the reactionpathway butanone→1-buten-2-ol→2-buten-2-ol is the most competitive one. Ourresults give a relative comprehensive view for understanding the mechanism ofbutanone isomerization, and provide useful information for future studies on theketone molecular isomerization. Additionally, we have observed some clusterfragment ions and protonated cluster of butanone by the mass spectrometrymeasurement of photoionization/photodissociation for butanone molecular clusters,under the irradiation of355nm and118nm laser light. We optimized the stablegeometric structures of neutral butanone clusters (CH_3COC_2H_5)n, cationic clusters(CH_3COC_2H_5)n+and protonated cluster (CH_3COC_2H_5)nH+(n=2~10) atB3LYP/6-31G(d) level with density functional theory. The structural characteristicsand stabilities of various size of clusters for butanone clusters, inculding the averagebinding energy, first-order difference energy, second-order difference energy andHOMO-LUMO gap, were analyzed and discussed systematically, and we alsocompared these results with acetone clusters. It is found that single ring structure isthe most stable for these clusters from the beginning of n=3. With cluster sizeincreasing, the stability of double ring structure rises ceaselessly. The most stablestructure of acetone clusters (n=7) is double ring which appeared earlier thanbutanone clusters (including the neutral and cationic clusters, n=8). The stability ofneutral butanone cluster in n=3is the best, it corresponds to the strong peaks inexperiment, and the stability of cationic clusters in n=6is better. It can be seen that the growth of structures of protonated clusters (CH_3COC_2H_5)nH+(n=2~10) hasregularity, which can be the structure of n=2as solvation shell, a new moleculeattacks the solvation shell from the different active site (the carbon attached to oxygenatom, ethyl and methyl of those butanone molecules) separately. The structures andstability of butanone cluster are analyzed and discussed systematically.
引文
[1]邢其毅,徐瑞秋,周政,裴伟伟.基础有机化学(第二版)[M].高等教育出版社,1993.
    [2] Born M, Oppenheimer R. Zur quantentheorie der molekeln [J]. Ann. Phys.,1927,84(20):457-484.
    [3] Eyring H. The activated complex and the absolute rate of chemical reactions [J].Chem. Rev.,1935,17(1):65-77.
    [4] Mclver J W, Komornicki A. Structure of transition states in orgamic reactions.general theory and an application to the cyclobutene-butadiene isomerizationusing a semcempirical molecular orbital method [J]. J. Am. Chem. Soc.,1972,94(8):2625-2633.
    [5] Dewar M J S, Healy E F, Stewart J J P. Location of transition states in reactionmechanisms [J]. J. Chem. Soc., Faraday Trans.,1984,80(3):227-233.
    [6] White D N J, Boliner M J. Investigation of the hydroboration-oxidation ofhindered cycloalkenes via molecular mechanics calculations [J]. J. Chem. Soc.,Perkin Trans.,1983,2(3):225-229.
    [7] Tapia O, Andres J, Safont V S. Enzyme catalysis and transition structures invacuo. transition structures for the enolization, carboxylation and oxygenationreactions in ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco)[J]. J. Chem. Soc. Faraday Trans.,1994,90(16):2365-2374.
    [8] Andres J, Moliner V, Krechl J et al. A PM3quantum chemical study of thepyruvate reduction mechanism catalyzed by lactate dehydrogenase [J]. Bioorg.Chem.,1993,21(3):260-274.
    [9] Hu Z, Jin M X, Xu X S, et al. Acetone: isomerization and aggregation [J]. Front.Phys. China,2006,1(3):275-282.
    [10] Xu X S, Hu Z, Jin M X, et al. Studies on the isomerization of acetoneCH3COCH3[J]. Journal of Molecular Structure (Theochem),2003,638(1-3):215-228.
    [11] Wu D, Wang Q, Cheng X et al. Effect of Cation Absorption onIonization/Dissociation of Cycloketone Molecules in a Femtosecond Laser Field[J]. J. Phys. Chem. A,2007.111(38):9494-9498.
    [12]吴迪,成西会,王巧巧,等,环戊酮C5H8O的同步辐射真空紫外光电离解离研究[J].原子与分子物理学报,2008,25(1):1-5.
    [13] Wang Q, Mineo H, Wu D etal. Molecular ionization of cyclohexnone infemtosecond laser fields: an application of ADK theory [J]. Laser Phys.,2009,19(8):1671-1676.
    [14] Wang Q, Wu D, Jin M etal. Experimental and theoretical investigations ofionization/dissociation of cyclopentanone molecule in a femtosecond laser field[J]. J. Chem. Phys.,2008,129(20):204302-204316.
    [15] Wang Q, Wu D, Zhang D etal. Ionization and dissociation processes ofpyrrolidine in intense femtosecond laser field [J]. J. Phys. Chem. C,2009,113(27):11805-11815.
    [16]冯端,金国钧.凝聚态物理新论[M].上海:上海科学技术出版社,1992.
    [17] Cheng H P, Landman U. Controlled deposition and classification of coppernanoclusters [J]. J. Phys. Chem.,1994,98(13):3527-3537.
    [18] Billas I M L, Chatelain A, DeHeer W A. Magnetism from the atom to the bulk innickel, cobalt and iron clusters [J]. Science,1994,265(5179):1682-1684.
    [19] Grantefor G, Eberhardt W. Localization of3d-and4d-electrons in small clusters:the "roots" of magnetism [J]. Phys. Rev. Lett.,1996,76(26):4975-4978.
    [20] Cox D M, Trevor D J, Kaldor A. CO Chemisorption on free gas phase metalclusters [J]. J. Chem. Phys.,1988,88(1):111-119.
    [21] Joireman P W, Ohline S M, Connell L L et al. Picosecond methods applied to astructural study of N-H X hydrogen bonds: geometries of carbazole-water andcarbazole-ammonia by rotational coherence spectroscopy [J]. J. Phys. Chem.,1993,97(48):12504-12508.
    [22] Stanley R J, Castleman A W. Cluster ion dip spectroscopy of hydrogenbonded phenol(H2O)nclusters, n=0-4[J]. J. Chem. Phys.,1991,94(12):7744-7756.
    [23] Huisken F. Infrared Vibrational Predissociation Spectroscopy of SmallSize-Selected Clusters [M]. Advances Chemical Physics, Canada: John Wiley&Sons, Inc.,1992.
    [24] Breen J J, Peng L W, Willberg D M et al. Real-time probing of reactions inclusters [J]. J. Chem. Phys.,1990,92(1):805-807.
    [25] Kebarle P. Ion Thermochemistry and Solvation from Gas-Phase Ion Equilibria [J].Annu. Rev. Phys. Chem.,1977,28:445-476.
    [26] Hineman M F, Kelley D F, Bernstein E R. Proton transfer dynamics and clusterion fragmentation in phenol/ammonia clusters [J]. J. Chem. Phys.,1993,99(6):4533-4538.
    [27] Klemperer W. Intermolecular interactions [J]. Science,1992,257(5072):887-888.
    [28] Shatteburg G N, Bondybey V E. FT-ICR studies of solvation effects in ionicwater cluster reactions [J]. Chem. Rev.,2000,100(11):4059-4086.
    [29] Misaizu F, Houston P L, Nishi N et al. Dissociation dynamics and multiphotonionization mechanism of ammonia clusters [J]. J. Phys. Chem.,1989,93(20):7041-7044.
    [30] Duley W W. Molecular clusters in interstellar clouds [J]. Astrophys. J. Lett.,1996,471(1):57.
    [31] Hansel A, Singer W, Wisthaler A et al. Energy dependencies of the protontransfer reactions [J]. Int. J. Mass Spectrom. Ion Process.,1997,167-168:697-703.
    [32] Shinohara H, Nagashima U, Nishi N. Mass spectroscopic observation of anenhanced structural stability of water-ammonia binary clusters at n=20in theseries (H2O)n(NH3)mH+(0≤n+m≤32)[J]. Chem. Phys. Lett.,1984,111(4-5):511-513.
    [33] Xia P, Hall M, Furlani T R et al. Metastable decomposition of {ROH}nH+Cluster ions (where R=CH3or CH3CH2)[J]. J. Phys. Chem.,1996,100(30):12235-12240.
    [34] Echt O, Kreisle D, Knapp M et al. Evolution of―magic numbers‖in mass spectraof water clusters [J]. Chem. Phys. Lett.,1984,108(4):401-407.
    [35] Yang X, Zhang X, Castleman A W Jr, Kinetics and mechanism studies of largeprotonated water clusters, H+(H2O)n, n=1-60, at thermal energy [J]. Int. J. MassSpectrom. Ion Process.,1991,109(1):339-354.
    [36] Fu H, Hu Y J, Bernstein E R. Infrared plus vacuum ultraviolet spectroscopy ofneutral and ionic methanol monomers and clusters: New experimental results [J].J. Chem. Phys.,2006,125(15):154305-154310.
    [37] Shi Y J, Consta S, Das A K et al. A118nm vacuum ultravioletlaser/time-of-flight mass spectroscopic study of methanol and ethanol clusters inthe vapor phase [J]. J.Chem. Phys.,2002,116(16):6990-6999.
    [38] Caldin E, Gold V. Proton transfer reactions [M]. London: Chapman and Hall,1975.
    [39] Card D A, Folmer D E, Sato S et al. Covariance mapping of ammonia clusters:evidence of the connectiveness of clusters with coulombic explosion [J]. J. Phys.Chem. A,1997,101(19):3417-3423.
    [40] Friedrich H, Martin S. Infrared photodissociation of small methanol clusters [J].Chem. Phys. Lett.,1988,144(4):391-395.
    [41] Buzza S A, Snyder E M, Card D A et al. Femtosecond excitation dynamics ofacetone: dissociation, ionization, and the evolution of multiply charged elementalspecies [J]. J. Chem. Phys.,1996,105(17):7425-7431.
    [42] Etienne G, Daniel G, Gabriele S et al. Vibrational spectra of small silicon-monoxide cluster cations measured by infrared multiple photon dissociationspectroscopy [J]. Phys. Chem. Chem. Phys.,2008,10(11):1502-1506.
    [43] Wang X B, Kowalski K, Wang L S et al. Stepwise hydration of the cyanide anion:a temperature-controlled photoelectron spectroscopy and ab initio computationalstudy of CN (H2O)n, n=2-5[J]. J. Chem. Phys.,2010,132(12):124306-124315.
    [44] Purnell J, Wei S, Buzza S A et al. Formation of protonated ammonia clustersprobed by a femtosecond laser [J]. J. Phys. Chem.,1993,97(48):12530-12534.
    [45]张树东,朱湘君,王艳,等.甲醇团簇的多光子电离质谱及其从头算[J].物理化学学报,2007,23(3):379-383.
    [46]胡湛,金明星,许雪松,等.丙酮团簇的多光子电离解离与结构的从头计算[J]. Chem. Res. Chin. Univ.,2003,24(4):671-674.
    [47]许雪松,胡湛,金明星,等.丙酮分子团簇结构的量子化学从头计算研究[J].原子核物理评论,2002,19(2):227.
    [48]许雪松,胡湛,金明星,等.丙酮分子团簇(CH3COCH3)n(n=6,7)的稳定构型[J].原子与分子物理学报,2005,22(4):585-589.
    [49]许雪松.质子化丙酮分子团簇的形成机理[J].大连海事大学学报,2007,33(3):90-93.
    [50]许雪松,胡湛,金明星,等.质子化丙酮分子团簇的结构和振动光谱[J].Chin. J. Chem. Phys.,2004,17(1):21-27.
    [51] Sun Ch K, Hu Z, Yang X, et al. Ionization and fragmentation of butanoneclusters irradiated by photons at355and118nm [J]. Chem. Res. ChineseUniversities,2011,27(3):508-511.
    [52] Mukhopadhyay A, Mukherjee M, Ghosh A K et al. UV photolysis ofα-cyclohexanedione in the gas phase [J]. J. Phys. Chem. A,2011,115(26):7494-7502.
    [53] Vacher J R, Jorand F, Simiand N B et al. Partial ionization cross-sections ofacetone and2-butanone [J]. International Journal of Mass Spectrometry,2008,273(3):117-125.
    [54] Xia Z H, Wei J, Li Z Y et al. Study on resonance enhanced multiphotonionization and fragmentation of2-butanone [J]. Acta. Chim. Sinica,2001,59(1):124-128.
    [1]陈广慧.三类含Si小分子结构和稳定性的理论研究[D].长春:吉林大学,2004.
    [2]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1984.
    [3] Frish A, Frish M J, Trucks G W著. Zork译. Exploring Chemistry with ElectronicStructure Method, Gaussian03用户参考手册[M]. Gaussian, Inc.,2004.
    [4] Pople J A, Bveridge D L著.江元生译.分子轨道近似方法理论[M].北京:科学出版社,1978.
    [5] Koch W, Holthausen M C. A Chemist`s Guide to Density Functional Theory.Second Edition [M]. New York: Wiley-Vch Verlag Gmbh,2001.
    [6] Slater J C. Atomic shielding constants [J]. Physical Review,1930,36(1):57-64.
    [7] Fock V. N herungsmethode zur L sung des quantenmechanischen Mehrk rperproblems [J]. Zeitschrift füR Physik A Hadrons and Nuclei,1930,61(1):126-148.
    [8]徐光宪,黎乐民,王德民.量子化学基本原理和从头算法[M].北京:科学出版社,1985.
    [9] Pople J A, Gordon M H. Quadratic configuration interaction. a general techniquefor determining electron correlation energies [J], J. Chem. Phys.,1987,87(10):5968-5975.
    [10]许雪松.丙酮分子团簇及其单分子异构化过程的理论研究[D].长春:吉林大学原子与分子物理研究所,2003.
    [11] Jensen F. Introduction to Computational Chemistry [M]. Chichester: John Wileyand Sons.,2007.
    [12] Cramer C J. Essentials of Computational Chemistry [M]. Chichester: John Wiley&Sons, Ltd.,2002.
    [13] Bartlett R J. Coupled-cluster approach to molecular structure and spectra: a steptoward predictive quantum chemistry [J]. J. Phys. Chem.,1989,93(5):1697-1708.
    [14] Bartlett R J, Lee T J, Scuseria G E. Quantum Mechanical Electronic StructureCalculations with Chemical Accuracy [M]. Kluwer,1995,47-108.
    [15] i ek J, Paldus J. Correlation problems in atomic and molecular systems III.rederivation of the coupled-pair many-electron theory using the traditionalquantum chemical methodst [J]. Int. J. Quantum Chem.,1971,5(4):359-379.
    [16] Stanton J F, Bartlett R J. The equation of motion coupled-cluster method. asystematic biorthogonal approach to molecular excitation energies, transitionprobabilities, and excited state properties [J]. J. Chem. Phys.,1993,98(9):7029-7039.
    [17] Levine I N. Quantum Chemistry. Fifth edition [M]. New Jersey: Prentice Hall,Upper Saddle River,2000.
    [18] Koutecky V B, Veyret V, Mitri R. Ab initio study of the absorption spectra ofAgn(n=5-8) clusters [J]. J. Chem. Phys.,2001,115(22):10450-10460.
    [19] Thomas L H. The calculation of atomic fields [M]. Cambridge Univ Press,1927,542-548.
    [20] Fermi E. Un metodo statistico per la determinazione di alcune priorietadell'atome [J]. Rend. Accad. Naz. Lincei,1927,6(602-607):32.
    [21] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Physical Review,1964,136(3B):864-871.
    [22] Kohn W, Sham L. Self-consistent equations including exchange and correlationeffects [J]. Physical Review,1965,140(4A):1133-1138.
    [23] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules [M].Oxford: Oxford Science Publication,1989.
    [24] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energyformula into a functional of the electron density [J]. Phys. Rev. B,1988,37(2):785-789.
    [25]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [26] Piela L. Ideas of quantum chemistry [M]. Elsevier Science Ltd,2007.
    [27] Eyring H. The aetivated complex and the absolute rate of chemical reactions [J].Chem. Rev.,1935,17(l):65-77.
    [28] Fuiki K. A formulation of the reaction coordinate [J]. J. Phys. Chem.,1970,74(23):4161-4163.
    [29] Fukui K. Constituent analysis of the potential gradient along a reactioncoordinatemethod and an application to methane+tritium reaction [J]. J. Am. Chem. Soc.,1975,97(1):1-7.
    [1] Witasse O, Dutuit O, Lilensten J, et al. Prediction of a CO22+layer in theatmosphere of Mars [J]. Geophys. Res. Lett.,2002,29(8):104-1-4.
    [2] Lilensten J, Witasse O, Simon C, et al. Prediction of a N2++layer in the upperatmosphere of Titan [J]. Geophys. Res. Lett.,2005,32(3):03203-1-4.
    [3] Roithov J, Schrder D. Bond-forming reactions of molecular dications as a newroute to polyaromatic hydrocarbons [J]. J. Am. Chem. Soc.,2006,128(13):4208-4209.
    [4] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry incombustion [J]. Prog. Energy Combust. Sci.,1989,15(4):287-338.
    [5] Lamoureux N, Mercier X, Pauwels J F et al. NCO quantitative measurement inpremixed low pressure flames by combining LIF and CRDS techniques [J]. J.Phys. Chem.,2011,115(21):5346-5353.
    [6] Prasad S S, Huntress Jr. W T. NCO: a potential interstellar species [J]. Mon. Not.R. Astr. Soc.,1978,185:741-744.
    [7] Prasad S S, Huntress Jr. W T. A model for gas phase chemistry in interstellarclouds: I. The basic model, library of chemical reactions, and chemistry among C,N, and O compounds [J]. The Astrophsical Journal Supplement Series,1980,43:1-35.
    [8] Holland R, Style D W G, Dixon R N et al. Nature (London),1958,182:336
    [9] Tan X, Dagdigian P J. Vibrational energy transfer involving Renner-Teller levelsof the NCO (X2Π) molecule [J]. Chem. Phys. Lett.,2003,375(5-6):532-539.
    [10] Dixon R N. The absorption spectrum of the free NCO radical [J]. Phil. Trans. R.Soc. A,1960,252(1007):165-192.
    [11] Dixon R N. A2Π-2Π electronic band system of the free NCO radical [J]. Can. J.phys.,1960,38(1):10-16.
    [12] Saito S, Amano T. Microwave spectrum of the NCO radical [J]. J.mole.spectrosc,1970,34(3):383-389.
    [13] Carrington A, Fabris A R, Howard,B J et al. Electron resonance studies of therenner effect [J]. Molec. Phys.,1971,20(6):961-980.
    [14] Léonard C, Gritli H, Chambaud G. Ab initio study of the spectroscopy of theX2Π electronic ground states of CNO and NCO [J]. J. Mol. Spectrosc.,2007,243(1):90-98.
    [15] Yazidi O, Gritli H, Chambaud G. Electronic structure and reactivity of theCNO/NCO/CON isomers [J]. Mol. Phys.,2005,103(24):3321-3336.
    [16] Hu C, Liu Y, Pei L et al. Collisional quenching of NCO (A2Σ+) by someinorganic molecules [J]. Chem. Phys. Lett.,2003,289(2-3):389-396.
    [17] Macdonald R G. Determination of the rate constant and product channels for theradical-radical reaction NCO(X2Π)+C2H5(X2A″) at293K [J]. Phys. Chem.Chem. Phys.,2007,9(31):4301-4314.
    [18] Pang J L, Xie H B, Zhang S W, Ding Y H et al. Theoretical study on reactionmechanism of isocyanate radical NCO with ethene [J]. Int. J. Quant.Chem.,2009,109(4):801-810.
    [19] Tzeng S Y, Chen P H, Wang N S et al. Kinetics and mechanism of the CN+NCO→NCN+CO reaction studied by experiment and theory [J]. J. Phys. Chem.A,2009,113(22):6314-6325.
    [20] Xiang T, Zhao Y, Xu J et al. A theoretical study of the2NCO+2N2H reaction[J]. J. Mol. Struct:(THEOCHEM),2010,958(1-3):10-14.
    [21] Wang S, Yu J, Ding D et al. Theoretical study on the mechanism of OH+HCNOreaction [J]. Theor. Chem. Acc.,2007,118(2):337-345.
    [22] Wu A A, Schlier Ch. Theoretical investigation of the NCO+molecule-ion [J].Chem. Phys.,1978,28(1-2):73-82.
    [23] Dyke J M, Jonathan N, Lewis A E et al. Vacuum ultraviolet photoelectronspectroscopy of transient species Part16. The NCO(X2Π) radical [J], Mol. Phys.,1983,50(1):77-89.
    [24] Cai Z L, Wang Y F, Xiao H M. The MRSDCI studies of four low-lyingelectronic states of the NCO+molecule [J]. Chem. Phys. Lett.,1992,190(3-4):381-385.
    [25] Prasad R. A theoretical study of the fine and hyperfine interactions in the NCOand CNO radicals [J]. J. Chem. Phys.,2004,120(21):10089-10100.
    [26] Schr der D, Schwarz H. Generation, stability, and reactivity of small, multiplycharged ions in the gas phase [J]. J. Phys. Chem. A,1999,103(37):7385-7394.
    [27] Mathur D. Structure and dynamics of molecules in high charge states [J]. Phys.Rep.,2004,391(1-2):1-118.
    [28] Price S D. Coincidence studies of the bond-forming reactivity and reactiondynamics of molecular dications [J]. Int. J. Mass Spectrom.2007,260(1):1-19.
    [29] Dunning T H. Gaussian basis sets for use in correlated molecular calculations. I.the atoms boron through neon and hydrogen [J]. J. Chem. Phys.,1989,90(2):1007-1023.
    [30] Werner H J, Knowles P J, Knizia G et al. MOLPRO, version2010.1(2011). apackage of ab initio. programs, see http://www.molpro.net.
    [31] Rustic B, Berkowitz J. The H-NCO bond energy and ΔH0f(NCO) fromphotoionization mass spectrometric studies of HNCO and NCO [J]. J. Chem.Phys.,1994,100(6):4498-4508.
    [32] Ramsay D A, Winnewisser M. The electronic absorption spectrum of the CNOfree radical in the gas phase [J]. Chem. Phys. Lett.,1983,96(4):502-504.
    [33] Bondybey V E, English J H. Fermi resonance and vibrational relaxation in theA2Σ+state of NCO in solid argon [J]. J. Chem. Phys.,1977,67(6):2868-2873.
    [34] Elliott N L, Fitzpatrick J A J, Western C M. Sub-doppler spectroscopy of theA2Σ+X2Π and B2Π X2Π transitions of NCO [J]. J. Chem. Phys.2008,129(16):164301-164313.
    [35] Renner R. Z. Phys.,1934,92:172.
    [1] Aloisio S, Francisco J S. The photochemistry of acetone in the presence of water[J]. Chem. Phys. Lett.,2000,329(3-4):179-184.
    [2] Smith G D, Molina L T, Molina M J. Measurement of radical quantum yields fromformaldehyde photolysis between269and339nm [J]. J. Phys. Chem. A.,2002,106(7):1233-1240.
    [3] Kusaba M, Tsunawaki Y. Production of CO by UV irradiation of acetylacetone [J].Radiat. Phys. Chem.,2007,76(8-9):1447-1449.
    [4] Moortgat G K, Meyrahn H, Warneck P. Photolysis of acetaldehyde in air: CH4,CO and CO2quantum yields [J]. Chem. Phys. Chem.,2010,11(18):3896-3908.
    [5] Ananda S, Schlegel H B. Dissociation of acetone radical cation (CH3COCH3+。→CH3CO++CH3。): an abinitio direct classical trajectory study [J]. Phys. Chem.Chem. Phys.,2004,6:5166-5171.
    [6] Wang Q, Wu D, Jin M et al. Experimental and theoretical investigations ofionization/dissociation of cyclopentanone molecule in a femtosecond laser field[J]. J. Chem. Phys.,2008,129(20):204302-204316.
    [7] Badr Y, Mahmoud M A. On interaction of193nm excimer laser with acetone (3sRydberg state)[J]. J. Mol. Struct.,2005,748(1-3):189-193.
    [8] Haas Y. Photochem. photochemical α-cleavage of ketones: revisiting acetone [J].Photobiol. Sci.,2004,3(1):6-16.
    [9] Cui G L, Li Q S, Zhang F et al. Combined CASSCF and MR-CI study onphotoinduced dissociation and isomerization of acryloyl chloride [J]. J. Phys.Chem. A,2006,110(42):11839-11846.
    [10] Ding W J, Fang W H, Liu R Z et al. Selectivity of the α and β bond fissions forbromoacetyl chloride upon n→π*excitation: a combined complete-active-spaceself-consistent field and multireference configuration interaction study [J]. J.Chem. Phys.,2002,117(19):8745-8753.
    [11] Xiao H Y, Liu Y J, Fang W H. Multireference theoretical investigation onselectivity of the bond fissions in photodissociation of acetyl cyanide [J]. J.Chem. Phys.,2007,127(24):244313-244319.
    [12] He H Y, Fang W H. A CASSCF/MR-CI study toward the understanding ofwavelength-dependent and geometrically memorized photodissociation of formicacid [J]. J. Am. Chem. Soc.,2003,125(51):16139-16147.
    [13] Chen W K, Cheng P Y. Ultrafast photodissociation dynamics of acetone at195nm: II. unraveling complex three-body dissociation dynamics by femtosecondtime-resolved photofragment translational spectroscopy [J]. J. Phys. Chem. A.,2005,109(31):6818-6829.
    [14] Rajakumar B, Gierczak T, Flad J E et al. The CH3CO quantum yield in the248nm photolysis of acetone, methyl ethyl ketone, and biacetyl [J]. Journal ofPhotochemistry and Photobiology A: Chemistry.,2008,199(2-3):336-344.
    [15] Horowitz A, Meller R, Moortgat G K. The UV-VIS absorption cross sections ofthe α-dicarbonyl compounds: pyruvic acid, biacetyl and glyoxal [J]. J.Photochem. Photobiol. A: Chem,2001,146(1-2):19-27.
    [16] Jackson A W, Yarwood A. Emission and deactivation of the excited states of2,3-pentanedione [J]. J. Can. J. Chem.,1972,50(9):1338-1344.
    [17] Klotz B, Graedler F, S rensen S, Branes I, Becker K. A kinetic study of theatmospheric photolysis of α‐dicarbonyls [J]. Int. J. Chem. Kinet.,2001,33(1):9-22.
    [18] Araujo M, Lasorne B, Bearpark M J, Robb M A. The photochemistry offormaldehyde: internal conversion and moleculardissociation in a single step?[J].J. Phys. Chem. A,2008,112(33):7489-7491.
    [19] Mukhopadhyay A, Mukherjee M, Ghosh A K et al. UV photolysis ofα-cyclohexanedione in the gas phase [J]. J. Phys. Chem. A,2011,115(26):7494-7502.
    [20] Kupchan S M, Britton R W, Lacadie J A et al. Tumor inhibitors.100. isolationand structural elucidation of bruceantin and bruceantinol, new potentantileukemic quassinoids from Brucea antidysenterica [J]. J. Org. Chem.,1975,40(5):648-654.
    [21] Fukamiya N, Lee K, Muhammad I et al. Structure-activity relationships ofquassinoids for eukaryotic protein synthesis [J]. J. Cancer Lett.,2005,220(1):37-48.
    [22] Hoffken K, Jonat W, Possinger K et al. Aromatase inhibition with4-hydroxyandrostenedione in the treatment of postmenopausal patients withadvanced breast cancer: a phase II study [J]. J. Clin. Oncol.,1990,8(5):875-880.
    [23] Gianturco M A, Giammarino A S, Pitcher R G. The structures of five cyclicdiketones isolated from coffee [J]. Tetrahedron1963,19(12):2051-2059.
    [24] Francis J T, Hitchcock A P. Distinguishing keto and enol structures byinner-shell spectroscopy [J]. J. Phys. Chem.,1994,98(14):3650-3657.
    [25] Duval C, Lecomte J. Acad. Sci.,1962,36:254.
    [26] Samanta A K, Pandey P, Bandyopadhyay B et al. Keto-enol tautomers of1,2-cyclohexanedione in solid, liquid, vapour and a cold inert gas matrix: Infraredspectroscopy and quantum chemistry calculation [J]. J. Mol. Struct.,2010,963(2-3):234-239.
    [27] Schwarzenbach G, Wittwer C. Helv. Chim. Acta.,1947,30:663.
    [28] Bouchoux G, Hoppilliard Y, Houriet R. Gas phase basicity of α, β and γdiketones and their ketoenol tautomers [J]. New J. Chem.,1987,11(3):225-233.
    [29] Shen Q, Traetteberg M, Samdal S. The molecular structure of gaseous1,2cyclohexanedione [J]. J. Mol. Struct.,2009,923(1-3):94-97.
    [30] Mok C Y. Photochemistry of cyclopentanone in the gaseous phase [J]. J. Phys.Chem.,1970,74(7):1432-1438.
    [31] Srinivasan R. Photochemistry of cyclopentanone. I. details of the primary process[J]. J. Am. Chem. Soc.,1961,83(21):4344-4347.
    [32] Blacet F E, Millerc A. The photochemical decomposition of cyclohexanone,cyclopentanone and cyclobutanone [J]. J. Am. Chem. Soc.,1957,79(16):4327-4329.
    [33] Shortridge R G Jr, Lee E K C. Photochemistry of cyclohexanone. II. second andthird singlet excited states [J]. J. Phys. Chem.,1973,77(16):1936-1943.
    [34] Diau E W, K€otting G C, Zewail A H. Femtochemistry of Norrish type‐Ireactions: II. the anomalous predissociation dynamics of cyclobutanone on theS1surface [J]. Chem. Phys. Chem.,2001,2(5):294-309.
    [35] Frisch M J, Trucks G W, Schlegel H B et al. Gaussian03, Revision B04,Gaussian Inc., Pittsburgh, PA:2003.
    [36] Werner H J, Knowles P J, Knizia G et al.MOLPRO, version2010.1(2010). Apackage of ab initio. programs, see http://www.molpro.net.
    [37] Saito S. Microwave spectroscopic detection of vinyl alcohol, CH2=CHOH [J].Chem. Phys. Lett.,1976,42(3):399-402.
    [38] Rappoport Z. The Chemistry of Enols(Chemistry of Functional Groups Series)
    [M]. Chichester: John Wiley&Sons Ltd,1990.
    [39] Wu C C, Lien M H. Ab initio study on the substituent effect in the transition stateof keto-enol tautomerism of acetyl derivatives [J]. J. Phys. Chem.,1996,100(2):594-600.
    [40] Rodler M, Bauder A. Structure of syn-vinyl alcohol determined by microwavespectroscopy [J]. J. Am. Chem. Soc.,1984,106(14):4025-4028.
    [41] Saito K, Sasaki G, Okada K et al. Unimolecular decomposition of pyruvic acid:an experimental and theoretical study [J]. J. Phys. Chem.,1994,98(14):3756-3761.
    [42] Hammett L P. Physical Organic Chemistry: Reaction rates, equilibria, andmechanisms [M]. New York: McGraw-Hill Book Co. Inc.,1970.
    [43] Ingold C K. Structure and Mechanism in Organic Chemistry [M]. Ithaca: CornellUniversity Press,1953.
    [44] Bell R P. The Proton in Chemistry [M]. Ithaca: Cornell University Press,1959.
    [45] Mills S G, Beak P. Solvent effects on keto-enol equilibria: tests of quantitativemodels [J]. J. Org. Chem.,1985,50(8):1216-1224.
    [46] Majumder C, Jayakumar O D, Vatsa R K. Multiphoton ionisation of acetone at355nm: a time-of-flight mass spectrometry study [J]. Chem. Phys. Lett.,1999,304(1-2):51-59.
    [47] Chong D P, Hu C H. Density-functional calculation of the inner-shell spectra fortwo stable enol tautomers: acetylacetone and malonaldehyde [J]. J. Electron.Spectros.,1998,94(1-2):181-185.
    [48] Le H T, Flammang R, Gerbaux P et al. Ionized phenol and its isomers in the gasphase [J]. J. Phys. Chem. A,2001,105(51):11582-11592.
    [49] Egawa T, Rosario A del, Morris K et al. Vibrational frequencies andconformational stability of1,4-cyclohexanedione in the gas phase as studied byinfrared and raman spectroscopy and ab initio calculations [J]. J. Phys. Chem. A,1997,101(47):8783-8787.
    [50] Raczyn′ska E D, Duczmal K, Darowska M. Experimental (FT-IR) andtheoretical (DFT-IR) studies of keto-enol tautomerism in pyruvic acid [J].Vibrational Spectroscopy,2005,39(1):37-45.
    [51] Ferrari E, Saladini M, Pignedoli F et al. Solvent effect on keto-enol tautomerismin a new β-diketone: a comparison between experimental data and differenttheoretical approaches [J]. New J. Chem.,2011,35(12):2840-2847.
    [1] Mercha′n M, Roos B O, McDiarmid R et al. A combined theoretical andexperimental determination of the electronic spectrum of acetone [J]. J. Chem.Phys.,1996,104(5):1791-1803.
    [2] McDiamrmid R, Sabljic A. Experimental assignments of the3p Rydberg states ofacetone [J]. J. Chem. Phys.,1988,89(10):6086-6095.
    [3] Walzl K N, Koerting C F, Kupperman A M. Electron-impact spectroscopy ofacetaldehyde [J]. J. Chem. Phys.,1987,87(7):3796-3803.
    [4] Majumder C, Jayakumar O D, Vatsa R K et al. Multiphoton ionisation of acetoneat355nm: a time of flight mass spectrometry study [J]. Chem Phys Lett.,1999,304(1-2):51-59.
    [5] Farmanara P, Stert V, Radloff W. Ultrafast photodissociation dynamics of acetoneexcited by femto-second155nm laser pluses [J]. Them. Phys. Lett.,2000,320(5-6):697-702.
    [6]王仍,孔祥和,张树东,等.355nm激光作用下质子化丙酮-水团簇的多光子电离质谱[J].光子学报,2007,6(6):1124-1127.
    [7] Wang R, Kong X H, Zhang S D et al. Multi-photon ionization of acetone-waterclusters at355mn [J].光电子快报(英文版):2006,2(5):396-398.
    [8]胡湛,金明星,许雪松,等.丙酮团簇的多光子电离解离与结构的从头计算[J].高等学校化学学报,2003,24(4):671-674.
    [9]许雪松.质子化丙酮分子团簇的形成机理[J].大连海事大学学报,2007,33(3):90-93.
    [10]许雪松,胡湛,金明星,等.质子化丙酮分子团簇的结构和振动光谱[J].化学物理学报,2004,17(1):21-27.
    [11] Hu Z, Jin M X, Xu X S et al. Acetone: isomerization and aggregation [J]. Front.Phys. China,2006,1(3):275-282.
    [12] Xu X S, Hu Z, Jin M X et al. Studies on the isomerization of acetone CH3COCH3[J]. Journal of Molecular Structure (Theochem),2003,638(1-3):215-228.
    [13]许雪松,胡湛,金明星,等.丙酮分子团簇结构的量子化学从头计算研究[J].原子核物理评论,2002,19(2):227.
    [14]许雪松,胡湛,金明星,等.丙酮分子团簇(CH3COCH3)n(n=6,7)的稳定构型[J].原子与分子物理学报,2005,22(4):585-589.
    [15] Dubnikova F, Lifshitz A. Isomerization of propylene oxide. quantum chemicalcalculations and kinetic modeling [J]. J. Phys. Chem. A,2000,104(19):4489-4496.
    [16] Elango M, Maciel G S, Palazzetti F et al. Quantum chemistry of C3H6Omolecules: structure and stability, isomerization pathways, and chiralitychanging mechanisms [J]. J. Phys. Chem. A,2010,114(36):9864-9874.
    [17] Liu F, Sheng L, Qi F et al. A vacuum ultraviolet photoionization massspectrometric study of propylene oxide in the photon energy region of10-40eV[J]. J. Phys. Chem.,1999,103(41):8179-8186.
    [18] Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds [J].Chem. Rev.,2003,103(12):4605-4638.
    [19] Shen L, Zhang B L, Suits A G. Photoelectron imaging and (2+1) resonanceenhanced multiphoton ionization spectroscopy study of2-butanonephotoionization dynamics [J]. J. Phys. Chem. A,2010,114(9):3114-3120.
    [20] Sun Ch K, Hu Z, Yang X et al. Ionization and fragmentation of butanone clustersirradiated by photons at355and118nm [J]. Chem. Res. Chinese Universities,2011,27(3):508-511.
    [21] Sebbar N, Bozzelli J W, Bockhorn H. Thermochemistry and kinetics for2-butanone-3yl and4yl radicals (CH3C(=O)CH CH3andCH3C(=O)CH2C H2) reactions with O2[M]. Proceedings of the EuropeanCombustion Meeting,2011.
    [22] Szopa S, Aumont B, Madronich S. Assessment of the reduction methods used todevelop chemical schemes: building of a new chemical scheme for VOCoxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistrysimulations [J]. Atmos. Chem. Phys.,2005,5(9):2519-2538.
    [23] Calve′S L, Hitier D, Bras G L et al. Kinetic studies of OH reactions with a seriesof ketones [J]. J. Phys. Chem. A,1998,102(24):4579-4584.
    [24] Kroll J A, Weaver S L W, Shipman S T. The laboratory and observational studyof2-butanone as a test for organic chemical complexity in various interstellarphysical environments [C]. International Symposium on Molecular Spectroscopy,66th Meeting, Ohio State University,2011.
    [25] Taatjes C A, Hansen N, McIlroy A et al. Enols are common intermediates inhydrocarbon oxidation [J]. Science,2005,308(5730):1887-1889.
    [26] Wang J, Li Y Y, Zhang T Ch et al. Interstellar enols are formed in plasmadischarges of alcohols [J]. The Astrophysical Journal,2008,676(1):416-419.
    [27] Holmesla J L, Lossing F P. Gas-phase heats of formation of keto and enol ions ofcarbonyl compounds [J]. Journal of the American Chemical Society,1980,102(5):1591-1595.
    [28] Vacher J R, Jorand F, Simiand N B et al. Partial ionization cross-sections ofacetone and2-butanone [J]. International Journal of Mass Spectrometry,2008,273(3):117-125.
    [29] Xia Z H, Wei J, Li Z Y et al. Study on resonance enhanced multiphotonionization and fragmentation of2-butanone [J]. Acta. Chim. Sinica,2001,59(1):124-128.
    [30] Simmie J M, Curran H J. Energy barriers for the addition of H, C H3, and C2H5toCH2═CHX [X=H, CH3, OH] and for H-atom addition to RCH═O [R=H, CH3,C2H5, n-C3H7]: implications for the gas-phase chemistry of enols [J]. J. Phys.Chem. A,2009,113(27):7834-7845.
    [31] Nadasdi R, Zugner G L, Farkas M et al. Photochemistry of methyl ethyl ketone:quantum yields and S1/S0-diradical mechanism of photodissociation [J].ChemPhysChem,2010,11(18):3883-3895.
    [32]王仍,孔祥和,张树东.355nm激光作用下丁酮多光子电离质谱信号分析[J].光谱实验室,2006,23(3):417.
    [33] Olivato P R, Guerrero S A, Modelli A et al. Electronic interaction inheterosubstituted acetones studied by means of ultraviolet photoelectron andelectron transmission spectroscopy [J]. J. Chem. Soc. Perkin Trans.,1984,2:1505-1509.
    [34] McAlduff E J, Caramella P, Houk K N. Photoelectron spectra of3-substitutedcyclopentenes. correlations between ionization potentials and cycloadditionregioselectivity [J]. J. Am. Chem. Soc.,1978,100(1):105-110.
    [35] Turecek F, Brabec L, Korvola J. Unstable enols in the gas phase. Preparation,ionization energies, and heats of formation of (E)-and (Z)-2-buten-2-ol,2-methyl-1-propen-1-ol, and3-methyl-2-buten-2-ol [J]. J. Am. Chem. Soc.,1988,110(24):7984-7990.
    [36] Kimura K, Katsumata S, Yamazaki T et al. UV photoelectron spectra and sumrule consideration: out-of-plane orbitals of unsaturated compounds withplanar-skeleton structure [J]. J. Electron Spectrosc. Relat. Phenom.,1975,6:41.
    [37] Holmes J L, Lossing F P. The need for adequate thermochemical data for theinterpretation of fragmentation mechanisms and ion structure assignments [J]. Int.J. Mass Spectrom. Ion Phys.,1983,47:133-136.
    [38] McAlduff E J, Houk K N. Photoelectron spectra of substituted oxiranes andthiiranes. substituent effects on ionization potentials involving σ orbitals [J]. Can.J. Chem.,1977,55(2):318-332.
    [39] Yu H T, Fu H G, Chi Y J et al. Structure and stability of interstellar molecule C3S[J]. Chin. J. Chem.,2002,20(12):1487-1493.
    [40] TureEek F, Cramer C J. Thermochemistry of simple enols and enol cationradicals revisited. A G2(MP2) ab initio study [J]. J. Am. Chem. Soc.,1995,117(49):12243-12253.
    [41] Noyori R. Asymmetric Catalysis in Organic Synthesis [M]. New York: Wiley,1994.
    [42] Umeda H, Takagi M, Yamada S et al. Quantum control of molecular chirality:optical isomerization of difluorobenzo[c]phenanthrene [J]. J. Am. Chem. Soc.2002,124(31):9265-9271.
    [43] Hoki K, Koseki S, Matsushita T et al. Quantum control of molecular chirality: abinitio molecular orbital study and wave packet analysis of l,l′-binaphthyl [J].Journal of Photochemistry and Photobiology A: Chemistry,2006,178(2-3):258-263.
    [44] Kalsi P S. Stereochemistry: Conformation and Mechanism [M]. New Delhi:Wiley Eastern,1990.
    [45] Shimanouchi T. Tables of Molecular Vibrational Frequencies ConsolidatedVolume I, National Bureau of Standards [M]. Washington: DC,1972,1-160.
    [46] Mouvier G, Hernandez R. Ionisation and appearance potentials of alkylketones[J]. Org. Mass Spectrom.,1975,10(11):958-969.
    [47] Li Y, Hu Y J, Lu R C et al. Multiphoton ionization and ab initio calculation ofC4H5N-(NH3)nhydrogen-bond clusters [J]. Acta Phys. Chim. Sin.,2000,16(9):810-817.
    [48] Rao B K, Jena P. Evolution of the electronic structure and properties of neutraland charged aluminum clusters: a comprehensive analysis [J]. J. Chem. Phys.,1999,111(5):1890-1904.
    [49] Torres M B, Fernandez E M, Ballbas L C. Theoretical study of structural,electronic, and magnetic properties of AunM+clusters (M=Sc, Ti, V, Cr, Mn, Fe,Au; n=9)[J]. Physical Review B,2005,71(15):155412-155418.
    [50] Li X B, Wang H Y, Yang X D et al. Size dependence of the structures andenergetic and electronic properties of gold clusters [J]. J. Chem. Phys.,2007,126(8):084505-084512.
    [51] Hirao K, Sano M, Yamabe S. Theoretical study on the gas-phase solvation of theprton by methanol and simethyl ether [J]. Chem. Phys. Lett.,1982,87(2):181-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700