用户名: 密码: 验证码:
激光位相相干控制CS_2分子反应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据Brumer和Shapiro提出的相干控制原理,利用相干控制系统结合飞行时间质谱仪,由基频光355nm和三倍频光118nm共同作用于CS_2分子,对其反应机制进行了实验研究。
     根据实验结果得到了母体离子和碎片离子的调制曲线,即我们就可以通过改变位相调制气体的压强来控制母体离子和碎片离子的产量。结合位相相干控制原理,多光子电离、解离机制和CS_2分子的能级图,得出了CS_2分子在355nm和118nm共同作用下所发生的是先电离后解离的机制,即碎片是由母体离子进一步解离得到的。
     另外,在实验过程中得到了这样一种实验手段:通过移动透镜的位置,即相应的移动了焦点相对于分子束的位置,进而选择性的改变355nm和118nm在反应过程中的作用,从而影响反应过程的实验手段,并根据这一实验手段研究了CS_2分子的团簇谱,发现在355nm和118nm共同作用于CS_2团簇时,必须在偏离焦点位置并且有118nm的参与才能得到CS_2分子的团簇谱,并且最多发现了八个CS_2分子的团簇。
Scientists always pursue for controlling over the outcome of a chemical reaction in the field of reaction dynamics, and wish to control the direction and progression of a chemical reaction. The control of the molecular reaction may maximize the yield of a desired compound while reducing the yields of unwanted by-products. With the advent of lasers, which have the virtue of high monochromaticity, short pulse duration, people have achieved of control the molecular reaction by the character of the laser phase coherent. Now the field of coherent is one of the most important research areas in the physics, chemistry, biology, and so on.
     In this paper, we adopt the method of coherent control, which proposed by Brumer and Shapiro in 1986, by using two weak laser pulses to excite the molecule simultaneously through two distinct optical paths, and the photons transition to the same final state from the initial state. The probability of a transition from the initial state to final state equal to:
     We may control the yield of the product of the molecular reaction by alteringΔΦ_(12), which is different for the phases of the two laser beams.
     In my experiment, w_3=355 nm, w_1=118 nm which produce by focusing a laser beam of frequency w3 into a chamber containing Xe. We alter the phase difference of two laser beams by varying the pressure of Ar. The two laser beams simultaneously interact with the CS_2 molecule. We may obtain the modulation curves by analyzing the intensities of the parent ion and fragment ions, respectively.
     With the coherent control principle, multiphoton ionization/dissociation mechanism and the energy levels of the CS_2 molecule, we could deduce the reaction mechanism:
     In addition, we obtain an experiment method: the reaction progress will be affected by moving the lens location. we future study the CS_2 cluster with the experiment method. When the 355 nm and 118 nm simultaneously interact with the CS_2 cluster, we could gain (CS_2)_n~+(n≤8).
引文
[1] R. J Gordon,L.C. Zhu. Coherent control of chemical reactions Accounts of Chemical Research, 1999 32: 1007-1016
    [2] R N Zare. Laser Control of Chemical Reaction. Science, 1998 279: 1875-1879
    [3] Anderson, S. Mode Selective Differential Scattering as a Probe of Polyatomic Ion Reaction Mechanisms. Acc. Chem. Res. 1997, 30, 28-36.
    [4] Crim, F. F. Vibrationally Mediated Photodissociation:Exploring Excited-State Surfaces and Controlling Decomposition Pathways. Annu. Rev. Phys.Chem. 1993, 44, 397-428.
    [5] A Sinha, J D Thoemke, F F Crim. Controlling bimolecular reactions: Mode and bond selected reaction of water with translationally excited chlorine atoms. Chemcal Physics, 1992 96: 372-376,
    [6] A Sinha, J D Thoemke,F F Crim, State and bond-selected unimolecular reactions. Science, 1990 249: 1387
    [7] R L Vander, J L Wal, F F Scott, K W Crim, R Schinke. An experimental and theoretical study of the bond selected photodissociation of HOD. Journal of Chemical Physics, 1991 94: 3548-3555
    [8] R J Gordon, S A Rice. Active control of the dynamics of atoms and moleculers. Annual Review of Physics Chemical, 1997 48: 601-641
    [9] M Shapiro, P Brumer. Laser control of product quantum state populations an unimolecular reactions. Journal of Chemical Physics, 1986 84, 4103-4104
    [10] Brumer, M Shapiro. Control of Unimolecular Reactions Using Coherent Light. Chemical Physics Letters, 1986 126: 541-546
    [11] M Shapiro, J W Hepburn, P Brumer. Simplified laser control of unimolecular reactions : simultaneous( ω 1, ω 1)excitation. Chemical Physics Letters, 1988 149: 451-454
    [12] D J Tannor, S A Rice, Control of selectivity of chemical reaction via control of wave packet evolution. Journal of Chemical Physics, 1985 83: 5013-5018
    [13] Herek, J. L.; Materny, A.; Zewail, A. H. Femtosecond Control of an Elementary Unimolecular Reaction From the Transition-State Region. Chem. Phys. Lett. 1994, 228, 15-26.
    [14] R S Judson, H Rabitz. Teaching Lasers to Control molecules. Physical Review Letters, 1992 68: 1500-1503
    [15] A Assion, T Baumert, M Bergt, T Brixner, B Kiefer, V Seyfried, M Strehle, G. Gerber. Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses . Science, 1998 282: 919-922
    [16] Marcos Dantus and Vadim V. Lozovoy Experimental Coherent Laser Control of Physicochemical Processes Chem. Rev. 2004, 104, 1813-1859
    [17] 孔繁敖 量子相干控制化学反应的进展和机遇 化学物理学报, 2002,15: 166-168
    [18] X B Wang, R. Bersohn Phase control of absorption in large polyatomic molecules. Journal of Chemical Physics, 1996 105: 2992-2997
    [19] M.Shapiro, J.W.Hepburn,and P.Brumer, Simplified laser control of unimolecular reactions:simultaneous (ω1,ω1) excitation. Chemical Physics Letters, 1988 149: 451-454
    [20] R. J Gordon,L.C. Zhu. Coherent control of chemical reactions Accounts of Chemical Research, 1999 32: 1007-1016
    [21] C .Chen,Y.Yin,and D.S.Elliot. Interference between optical transitions. Physical Review Letters, 1990 64: 507-510,
    [22] S P Lu,S. M. Park,Y J Xie, R J.Gordon Coherent laser control of bound-to-bound transitions of HCl and CO. Journal of Chemical Physics, 1992 96: 6613-6620
    [23] L Ch Zhu, V Kleiman, X N Li, Sh P L,K Trentelman, R J Gordon. Coherent laser control of the product distribution obtained in the photoexcitation of HI. Scinece 1995 270: 77-80
    [24] S M Park, S P Liu, R J Gordon. Coherent phase control of the resonance-enhanced multiphotoionization of HCl. Journal of Chemical Physics, 1991 94: 8622-8624
    [25] V D Kleiman, L Ch Zhu, X M Li, R J Gordon. Coherent phase control of the photoionization of H2S. Journal of Chemical Physics, 1995 102: 5863-5865
    [26] V D Kleiman, L Ch Zhu, J Allen, R J.Gordon. Coherent control over the photodissociation of CH3I. Journal of Chemical Physics,1995 130: 10800-10803
    [27] G Q Xing, X B Wang, X Huang, R Bersohn. Modulation of resonant mutiphoton ionisation of CH3I by laser phase variation. Journal of Chemical Physics, 1996 104: 826-831
    [28] X B Wang, R Bersohn. Phase control of absorption in large polyatomic molecules. Journal of Chemical Physics, 1996 105: 2992-2997
    [29] C.K.Chan, P.Brumer. Coherent radiative control of IBr photodissociation via simultaneous( ω 1 , ω 1) excitation. Journal of Chemical Physics,1991 94: 2688-2696
    [30] H Nagai, H Ohmura, F Ito, T Nakanaga. Coherent laser control of the photoexcitation of methyl iodide clusters. Chemical Physics Letters, 2004 383: 240-244
    [31] H. Nagai, H. Ohmura, F. Ito, T. Nakanaga, M. Tachiya. Coherent phase control of the product branching ratio in the photodissociation of dimethylsulfide J. Chem. Phys. 2006 124 034304.
    [32] H. Nagai, H. Ohmura, T. Nakanaga, M. Tachiya. Observation of the phase lags among the molecules in the coherent phase control of multiphoton ionization J.Photochem.Photobiology.A 2006 182 : 209-212
    [33] Vishal J. Barge, Zhan Hu,Joyce Willig, and Robert J. Gordon Role of the Gouy Phase in the Coherent Phase Control of the Photoionization and Photodissociation of Vinyl ChloridePhys.Rev.Lette.2006 97:263001-1—263001-4
    [34] B Sheehy, B Walker, L F Dimaure. Phase control in the two- color photodissociation of HD+. Physical. Review. Letters,. 1995 74: 4799-4802
    [35] Y Y Yin, C Chen, D S Elliott,A V Smith. Asymmetric photoele- ctron angular distributions from interfering photoionization proce -sses. Physical. Review. Letters, 1992 69: 2353-2356
    [36] 王国文 强激光场中离子HD+光解离几率的相干控制. 光子 学报, 1998 27: 673-678
    [37] 包涵, 邵昉伟, 陆靖, 范康年. HCl 激发态上分子波的 Yang 干涉效应. 复旦学报, 2002 41: 419-423
    [38] 周本汉, 詹明生. 激光相干控制选态激发的理论研究 光学学报, 1998 18 1484-1490
    [39] Gedanken A, Robin M B,Kuebler N A. Nonlinear Photochemistry in Organic, Inorganic, and Organometallic Systems. Journal of Physical Chemistry. 1982, 86: 4096-4107
    [40] D S Kliger. Ultrasensitive Laser Spectroscopy. Academic Press. 1983. First Edition: 233
    [41] R A Ganeev, I A Kulagin,T Usmanov, S T Khudaiberganov Investigation of the generation of λ =118.2nm coherent radiation in rare gases. Sov. Journal of Quantum Electron. 1982 12: 1637-1640
    [42] C Chen, D S Elliott. Measurements of optical variations usinginterfering multiphoton ionization processes. Physical Review Letters. 1990 65: 1737-1740
    [43] R A Ganeev, T Usmanov. Frequency conversion of picosecond radiation in ultraviolet (338-366 nm) and vacuum ultraviolet (113.5-117.0 nm) ranges. Journal of Optical A, 2000 2: 550-556
    [44] M P McCann, C H Chen, M G Payne. Two-photon(vacuum ultraviolet+visble)spectroscopy of argon, krypon, xeonon and molecular hydrogen. Journal of Chemical Physics. 1988 89: 5429-5441
    [45] 胡湛 光诱导的丙酮分子及其团簇激发态动力学过程研究 博士论文 2002
    [46] 赵新丽 激光相关控制CH3I单分子反应的实验研究 硕士论文 2004
    [47] L J Zych, J F Young. Limitation of 3547 to 1182 ? conversion efficiency in Xe. IEEE Journal of Quantum Electron, 1978 QE-14: 147-149
    [48] 张丽敏,刘世林等 CS2团簇增强的激光多价电离现象的质谱研究 化学物理学报,1998 9 ,98
    [49] Couris S, Patsilinakou E, Lotz M, Grant E R, Fotakis C,Cossart-Magos C and Horani M J. Chem. Phys. 1994 100 3514
    [50] P. Farmanara, V. Stert, and W. Radloff Ultrafast predissociation and coherent phenomena in CS2 excited by femtosecond laser pulses at 194–207 nm J. Chem. Phys.1999111 5338-5343
    [51] C.P.Safvan R. R.V.Thomas Spatial alignment of molecules by intense linearly-polarized light fields and the effects of space charge Chem.Phys.Lett. 1998 286 329-335
    [52] Akiyoshi Hishikawa, Hirokazu Hasegawa, Kaoru Yamanouchi Sequential three-body Coulomb explosion of CS2 in intense laser fields appearing in momentum correlation map Chemical Physics Letters 2002 361: 245–250
    [53] Ross A. Morgan, Michael A. Baldwin, and Michael N. R. Ashfold resonance enhanced multiphoton ionization spectroscopy of carbon disulphide J. Chem. Phys. 1996 104, 22
    [54] 张建阳 楼南泉 用超短激光研究CS2和NH3激发态寿命 科学通报 2002 47 749-754
    [55] Pramod Sharma and Rajesh K. Vatsa Wavelength-dependent Coulomb explosion in carbon disulphide (CS2) clusters: generation of energetic multiply charged carbon and sulphur ions Rapid Commun. Mass Spectrom. 2007; 21: 2663–2670
    [56] Andrzej Pelc, Leszek Michalak Production of carbon disulphide dimers by an adiabatic gas expansion method International Journal of Mass Spectrometry 2000 194 :85–91
    [57] Xiao Xue, Li Hai-Yang Cluster-assisted generation of multicharged ions in nanosecond laser ionization of carbon bisulfide clusters at 1064 nm Chinese Physics 2005 16 3655-3661

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700