用户名: 密码: 验证码:
顺酐常压氢化合成γ-丁内酯的催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-丁内酯作为一种重要的精细化工中间体,广泛应用于石油化工、纺织、香料、农药和医药等工业领域。工业上主要采用1,4-丁二醇脱氢法合成γ-丁内酯。由于顺酐成本大幅降低,氯碱工业的H2大量排空造成资源浪费,采用顺酐加氢法合成γ-丁内酯备受关注。针对当前工业上顺酐加氢催化剂使用过程中活性、选择性不稳定,寿命短等问题,本文对顺酐加氢合成γ-丁内酯的催化剂进行了系统的研究。
     采用并流共沉淀法制备了一系列的Cu/ZnO、Cu/ZnO-SiO2、Cu/ZnO-Al2O3、Cu/ZnO-C催化剂,通过对催化剂的载体进行筛选,结果表明活性炭作载体可使Cu/Zn催化剂的比表面积增大、活性组分分散、介孔分布增加、还原温度下降,并使顺酐加氢合成γ-丁内酯的反应温度降低至250℃,比工业值低20~30℃。对催化剂各组分的比例进行了优化,确定了Cu、Zn、活性炭三组分的摩尔比在2:2:1~2:2:2之间为宜。
     考察了催化剂的制备工艺,结果表明焙烧温度对催化剂表面各组分的分散度、孔径分布及还原温度有明显的影响,从而影响了催化剂的性能。根据催化剂表征与活性考察数据确定催化剂的焙烧温度以350℃为最佳。催化剂的还原温度确定为230℃,还原气选择H2含量为5%的氮氢混合气。
     考察了顺酐催化氢化合成γ-丁内酯工艺条件,结果表明最适于Cu/ZnO-C催化剂的反应条件为温度250℃,顺酐液空速0.1h-1,氢酐摩尔比50:1。在该条件下,顺酐转化率为100%,γ-丁内酯选择性大于90%,产物中没有检测出丁二酸酐。
     对Cu/ZnO-C催化剂的寿命进行了考察,结果表明Cu/ZnO-C的活性、选择性稳定,单程寿命可达2000小时,大于工业上使用的Cu/ZnO-Al2O3催化剂。
     对Cu/ZnO-C催化剂的失活因素进行了分析,结果表明催化剂的烧结与积炭是导致催化剂失活的主要原因。
     以上研究表明,我们开发的Cu/ZnO-C催化剂具有活性、选择性高,反应温度低,催化性能稳定等特点,在提倡节能环保,注重经济效益的全球环境下将会引起行业的关注。
γ-Butyrolactone (GBL) is an important fine chemical intermediate, widely used in petrochemicals, textile, pharmaceutical and pesticide industries.γ-Butyrolactone is mainly synthesized from 1,4-butanediol dehydrogenation in industry. Due to the significantly reduction of maleic anhydride cost and the empty waste of H2 in chlor-alkali industry, malefic anhydride hydrogenating toγ-Butyrolactone was much concerned. However, the low activity, unstable selectivity and short life of the current industrial catalyst used in maleic anhydride hydrogenation have been seriously restricted the application of the method. Herein, the catalyst on maleic anhydride hydrogenation ofγ-butyrolactone was systematically studied.
     A series of Cu/ZnO, Cu/ZnO-SiO2, Cu/ZnO-Al2O3 and Cu/ZnO-C catalysts was prepared by means of parallel flow co-precipitation method. The carriers of catalysts were screened. The results showed that the activated carbon as carrier in Cu/Zn catalyst could lead to larger specific surface, better distribution of the active component and wider mesoporous distribution as well as lower reduction temperature of the catalyst. With the Cu/ZnO-C catalyst, the temperature of maleic anhydride hydrogenation toγ-butyrolactone could be decreased to 250℃which was 20~30℃lower than the industrial value. By optimizing the ratio of each component, the best mole ratio of Cu:Zn:C(active carbon) was between 2:2:1 and 2:2:2. The catalyst preparation conditions were studied. The results showed that the catalyst calcining temperature could affect specific surface, mesoporous distribution, reduction temperature, which affect the performance of the catalysts. According to catalyst characterization and catalytic activity of inspection data to determine the calcination temperature to 350℃for the best. Catalyst reduction temperature was 230℃under a mixture gas of 5% H2&N2.
     Catalytic reaction conditions were optimized. At the optimum condition, which temperature was 250℃, LHSV was 0.1h-1 and ratio of H2/MA was 50, the conversion of maleic anhydride was 100%, selectivity ofγ-Butyrolactone was more than 90% as well as succinic anhydride was not detected.
     Catalyst lifetime was investigated. The Cu/ZnO-C catalyst showed stable activity and selectivity in maleic anhydride hydrogenation for about 2000 hours. So the one-way catalyst lifetime of Cu/ZnO-C catalyst should be up to 2000 hours which is much longer than that of Cu/ZnO-Al2O3 used in industry.
     On Cu/ZnO-C catalyst deactivation factors are analyzed, the results show that the catalyst sintering and carbon deposition are the main reasons for catalyst deactivation.
     These studies demonstrated that the Cu/ZnO-C catalyst which we developed had the advantage of high activity and selectivity forγ-butyrolactone meanwhile stable catalytic performance. Our catalyst would be paid more atention to in nowadays of energy saving and emphasizing economic benefit.
引文
[1]杨骏,郑洪岩,朱玉雷,等.γ-丁内酯合成研究的新进展[J].现代化工, 2004, 24(3): 24~27.
    [2]王勤旺.γ-丁内酯的市场前景[J].精细与专用化学品, 2003, 38(9): 9~10
    [3]殷恒波,胡童杰,李海霞,等. 1,4-丁二醇与γ-丁内酯技术市场综述[J].化工科技市场, 2004, 10: 37~41.
    [4] U R Pillar, E S Demessie, D Young. Maleic Anhydride hydrogenation over Pd/Al2O3 catalyst under supercritical CO2 medium [J]. Applied catalysis B: environmental, 2003, 43: 131~138.
    [5]朱玉雷.一种耦合制备γ-丁内酯和2-甲基呋喃的方法[P]. CN01141836.2, 2003-03-26.
    [6]汪多仁.γ-丁内酯的合成技术进展与市场开拓[J].江苏氯碱1998, 2: 17~21.
    [7]徐西庆,申传忠.γ-丁内酯生产路线简介[J].山东化工, 1998, (6): 27-28.
    [8]潘曼娟,凌雅君.γ-丁内酯、四氢呋喃合成路线述评[J].化工进展, 1990, 3: 14~19.
    [9]李雅丽. 1,4-丁二醇生产技术进展[J].石油化工1999, 28: 711~715.
    [10]王俐. 1,4-丁二醇生产技术进展[J].石油化工, 2001, 30: 558~562.
    [11]丁国荣,赵庆国.国内外1,4-丁二醇生产与技术分析[J].化工商情, 2001.
    [12] ISP Investments Inc. Activated catalyst for the vapor phase hydrogena2tion of maleic anhydride to gamma-butyrolactone in high conversion and high selectivity [P]. US5122495, 1992-06-16.
    [13] BASF AG. Process for the production of 1,4-butanediol [P]. EP447963, 1991-12-17.
    [14] Union Carbide Chemicals & Plastics Technology Corporation. Hydrogenation with Cu/Al/X catalysts [P]. US5142067, 1992-08-25.
    [15] Standard Oil Co Ohio. Vapor-phase hydrogenation of maleic anhydride to tetrahydrofuran and gamma-butyrolactone [P]. EP322140, 1989-06-28.
    [16] Davy McKee London. Catalyst [P]. EP0301853, 1989-02-01.
    [17]周寿祖.γ-丁内酯的生产现状和市场前景[J].化工技术经济, 2000, 18(6): 25~27.
    [18]武志刚,赵永样,董海临,许临萍,刘滇生.顺酐加氢制备下游产品催化体系的研究进展[J],现代化工, 2003,23(3): 22~24.
    [19]赵永祥,武志刚,张临卿,刘滇生,徐贤伦.超细负载NiO/SiO2催化剂用于顺酐选择加氢反应研究[J]分子催化, 2002, 16(1): 55~59.
    [20] Y L Zhu, G W Zhao, J Chang, J Yang, H Y Zheng, H W Xiang, Y W Li,. New insight for reaction route of hydrogenation of maleic anhydride toγ-butyrolactone [J]. Catal.Lett., 2004, 96: 123.
    [21]华文.γ-丁内酯的生产技术和市场分析[J].精细化工原料及中间体, 2006, 5: 39~42.
    [22] M Messori, A Vaccari, Reaction pathway in vapor phase hydrogenation of maleic anhydride and its esters toγ-butyrolactone [J]. J. Catal., 1994,150: 177~185.
    [23]项一非,郭柏麟,沈伟,等.顺酐常压气相加氢合成γ-丁内酯[P]. CN1058400A, 1992.
    [24]王海京.顺酐直接加氢制备γ-丁内酯工艺研究[J].石油化工, 2002, 31(11): 917~912.
    [25]赵晓静.顺酐加氢与1,4-丁二醇脱氢耦合工艺制备γ-丁内酯的研究[D].天津大学, 2007.
    [26]钱伯章,朱建芳.γ-丁内酯的生产技术与市场分析[J].化工中间体, 2006, 9: 10~14.
    [27] Y Hara, H Kusaka, H Inagaki, K Takahashi, K Wada. A nxovel production ofγ-butyrolactone catalyzed by ruthenium complexes [J]. J.Catal., 2000, 194(2): 188~197.
    [28] U R Pillar, E S Demessie. Selectivehydrogenation of maleic anhydride toγ-butyrolactone over Pd/Al2O3 catalyst using super critical CO2 as solvent [J]. Chem.Commun., 2002, (5): 422~423.
    [29] Davy McKee Ltd. Process for the production of butane-1,4-diol [P].US4584419, 1986.
    [30] J H Schlander, T Turek .Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol andγ-butyrolactone over copper/zinc oxide catalysts [J]. Ind.Eng.Chem.Res., 1999, 38(4): 264~270.
    [31] Y L Zhu, J Yang, G Q Dong, H Y Zheng, H H Zhang, H W Xiang, Y W Li. An environmentally benign route toγ-butyrolactone through the coupling of hydrogenation and dehydrogenation [J]. Applied Catalysis B: Environmental, 2005, 57: 183~190.
    [32] D Z Zhang, H B Yin, J J Xue, et al. Selective hydrogenation of maleic anhydride toγ-butyrolactone and tetrahydrofuran by Cu–Zn–Zr catalyst in the presence of ethanol [J]. Journal of Industrial and Engineering Chemistry, 2009, 15: 537~543.
    [33]胡童杰,张瑞超,殷恒波,等.顺酐气相加氢Cu-Zn-Ti催化剂的研究[J].精细石油化工, 2006, 23(5): 26~30.
    [34]陈庚,沈伟,徐华龙.添加组分对Cu/ZnO/Al203催化剂顺酐加氢合成γ-丁内酯活性的影响[J].石油化工, 2002, 31(10): 791~794.
    [35]童立山.顺酐气相氢化制备1,4-丁二醇和/或γ-丁内酯[J].石油炼制与化工, 199, 26 (8): 16~18.
    [36] H Jeong, T H Kim, S H Cho et al. The hydrogenation of maleic anhydride toγ-butyrolactone using mixed metal oxide catalysts in a batch-type reactor [J]. Fuel Processing Technology, 2006, 87: 497~503.
    [37] S M Jung, E Godard, S Y Jung, et al. Liquid-phase hydrogenation of maleic anhydride over Pd-Sn/SiO2, Catalysis Today, 2003, 87(1): 171~177.
    [38]赵永祥,秦晓琴,武志刚,等. NiO-SiO2, NiO-Al2O3和NiO-Al2O3-SiO2催化剂上顺酐选择加氢性能的比较[J].燃料化学学报, 2003, 30(3): 263~266.
    [39]李君,蒋毅,程极源,王华明.顺酐常压催化加氢制γ-丁内酯[J].应用化学, 2000, 17(4): 379~382.
    [40]沈伟,徐华龙,甄胜艳,郭柏麟,项一非,等.顺酐加氢催化剂XYF-5的TPD、TPR研究[J].石油化工, 1993, 22(12): 785~788.
    [41]武志刚,赵永祥,刘滇生.在NiO-SiO2气凝胶催化剂上顺酐液相加氢合成γ-丁内酯[J].精细化工, 2002, 19(9): 536~537.
    [42]赵永祥,武志刚,许临萍,等.后处理温度对NiO/SiO2气凝胶催化剂顺酐选择加氢性能的影响[J].天然气化工, 2001, 26(6): 8~11.
    [43]许健,孙鲲鹏,任运来,徐贤伦. Pd组分的添加对Ni-B非晶态合金催化剂顺酐选择加氢制γ-丁内酯反应的影响[J].分子催化, 2006, 20(5): 385~389.
    [44]贺德华,李宣文,袁为民,韦平.顺丁烯二酸酐加氢合成γ-丁内酯催化剂的研究[J].工业催化, 1997, 5(4): 21~25.
    [45]贺德华,朱起明.顺酐及其衍生物加氢合成γ-丁内酯的研究[J].天然气化工, 1997, 22(1): 32~35.
    [46] U R Pillar, E S Demessie. Strontium as an efficient promoter for supported palladium hydrogenation catalysts [J]. Applied Catalysis A: General, 2005, 281(1-2): 31~38.
    [47] S M Jung, E Godard, S Y Jung, et al. Liquid-phase hydrogenation of maleic anhydride over Pd/SiO2: effect of tin on catalytic activity and deactivation [J]. Journal of Molecular Catalysis A: Chemical, 2003, 198: 297~302.
    [48] P Liu, K M Yan, Y Liu, et al. Selective hydrogenation of maleic anhydride toγ-butyrolactone using homogeneous Ru/PPh3 catalyst system [J]. Journal of Natural Gas Chemisty, 1999, 8(2): 157~165.
    [49]刘蒲,刘晔,殷元骐.顺丁烯二酸酐均相加氢制琥珀酸酐和γ-丁内酯[J].催化学报, 1999, 20(1): 51~54.
    [50]刘蒲,刘省明,殷元骐.顺酐催化加氢衍生物的研究(Ⅱ)琥珀酸酐加氢制γ-丁内酯[J].分子催化, 1998, 12(1): 9~14.
    [51] H Adkins, R Conner. The catalytic Hydrogenation of Organic Compounds over Copper Chromite [J]. J.A.C.S., 1931, 53: 1091~1095.
    [52] B Miya, F Hoshino, M Matuda. Process for producing gamma-buytrolactone [P]. US3580930, 1971-05-25.
    [53] R Fischer, R Pinkos. Method for producting gamma-butyrolactone [P]. US6521763, 2003-02-18.
    [54] H Borchert, S Schlitter, R H Fischer, et al. Method for the hydrogenation ofmaleic anhydride and related compounds in tow serial reaction zones [P]. US6831182, 2004-02-14.
    [55] G Kaibel, A Weck, R T Rahn, et al. Method for distillative separation of mixtures containing tetrahydrofuran,γ-butyrolactone and/or 1,4-butanediol [P]. US6846389, 2003-01-25.
    [56]吴玉塘,陈文凯,刘兴泉,等.铜铬催化剂的制备方法[P]. CN95111385.2, 1996-12-04.
    [57] S I Fujita, Y Kanamori, A M Satriyo, et al. Methanol synthesis from CO2 over Cu/ZnO catalysts prepared from various coprecipitated precurors [J]. CatalysisToday, 1998, 45: 241~244.
    [58] J R Jensen, T Johannessen, S Wedel, et al. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by ultrasonic treatment during the course of preparation procedure [J]. Applied Catalysis A: General, 1996, 139(1-2): 87~96.
    [59] I M Cabrera, M L Dranados. Reverse Topotactic Transformation of a Cu-Zn-Al catalyst during Wet Pd Impregnation: Relevance for the Performance in Methanol Synthesis from CO2/H2 Mixtures [J]. Journal of Catalysis, 2002, 210: 273~284.
    [60] J Agrell, H Birgersson, Boutonnet M, et al. Production of hydrogen frommethanol over Cu/ZnO catalyst promoted by ZrO2 and Al2O3 [J]. Journal of Catal ysis, 2003, 219: 389~403.
    [61]易国斌,王乐夫,吴超,等.顺酐加氢制备γ-丁内酯的催化体系研究进展[J].化工进展, 2001, 20(2): 37~39.
    [62]沈伟,王玉,项一非,等.顺酐常压气相加氢合成γ-丁内酯[J].石油化工, 1992, 21(9): 571~573.
    [63] M Mokhtar, C Ohlinger, J H Schlander, et al. Hydrogenolysis of dimethylmaleate on Cu/ZnO/Al2O3 catalysts [J]. Chemical Engineering Technology, 2001, 24(4): 423~426.
    [64]卢伟京,卢冠忠,毛俊,等.在Cu-SnO2/Al2O3催化剂上顺酐的选择性加[J].华东理工大学学报, 2003, 29(4):388~391.
    [65]卢伟京,卢冠忠,吕光烈,等. Pd(Ni)对铜基催化剂的调变及对顺酐选择物加氢产物的调控[J].催化学报, 2002, 23(5): 408~412.
    [66]李君,程极源,王华明,等.络合物共沉积法制顺丁烯二酸酐加氢催化剂[J].合成化学, 2001, 9(4): 329~323.
    [67]李君,程极源,蒋毅,王华明.担载型铜-锌催化剂上顺丁烯二酸酐加氢制γ-丁内酯[J].燃料化学学报, 2000, 28(2): 189~192.
    [68]令海,杨志坚,郑立金,等.γ-丁内酯的合成及应用[J]中国氯碱, 2004, 4: 15~16.
    [69]甄开吉,王国甲,李荣生,等.催化作用基础[M].第3版.北京:科学出版社, 2005: 244~245
    [70]吴越.催化化学[M].北京:科学出版社, 1998, 54.
    [71]刘希尧,等.工业催化剂与分析测试表征[M].北京:烃加工出版社, 1990, 283~287.
    [72]何余生,李忠,奚红霞,等.气固吸附等温线的研究进展[J].离子交换与吸附, 2004, 20(4): 376~384.
    [73]李君.顺丁烯二酸酐常压加氢制γ-丁内酯催化剂的研究[D].中国科学院长春应用化学研究所, 2000.
    [74]沈伟,徐华龙,甄胜艳,郭柏麟,项一非.顺酐加氢催化剂XYF-5的还原条件研究[J].石油化工, 1996, 25(8): 529~531.
    [75]朱玉雷,吴稼祥,黄晢,等.顺酐气相加氢制γ-丁内酯催化剂及其用途[P]. CN1095400C, 2002-12-04.
    [76]黄仲涛,林维明,庞先桑,王乐夫.工业催化剂设计与开发[M].广州,华南理工大学出版社, 1991, 244.
    [77]李承烈,李贤均,张国泰.催化剂失活[M].北京:科学出版社, 1989, 35~60.
    [78]朱玉雷.耦合法制备有机中间体的研究[D].中国科学院山西煤炭化学研究所, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700