用户名: 密码: 验证码:
NiO/TiO_2光电极与染料敏化光阳极的光电化学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用太阳光发电和制氢是根本解决人类未来能源需求和环保问题的一个重要途径,也是纳米科技领域的前沿热点之一。本论文主要针对光解水制氢及染料敏化太阳电池领域中,提高光电化学性能和光电转换效率的关键问题展开研究。主要内容如下:
     (1)以HF+NaH_2PO_4水溶液为电解液,通过阳极氧化过程在钛箔表面制备出TiO_2纳米管阵列;采用化学镀镍并结合空气中热处理过程,在TiO_2纳米管阵列表面复合生长出NiO纳米颗粒层。这种新颖的NiO/TiO_2光电极相对于TiO_2纳米管阵列表现出显著的光吸收红移,并在可见光范围光吸收明显增强。对引起红移和可见光范围的光吸收增强的可能机理进行了讨论。
     (2)在AM 1.5G照射下,NiO/TiO_2光电极的短路电流为2.82 mA/cm2,开路电压为0.755 V,光电转化效率为1.41%。NiO/TiO_2光电极表现出远比TiO_2更好的光电化学性质,其机理在于,NiO/TiO_2光电极有较宽的光吸收范围,使更多的光子能被利用;而且在NiO与TiO_2复合界面区域,形成了很多微型的p-n结,有利于在光阳极中形成的光生电子-空穴对的高效率分离,并抑制光生电子-空穴对的重新复合。
     (3)对比了相同电子给体相同共轭π结构不同电子受体的三种染料的电化学能带、光谱吸收和电物理特性,发现染料分子结构中的电子受体对HOMO位置影响不大,主要影响LUMO的位置。而染料的HOMO和LUMO位置进一步影响到器件的电荷输运特性。采用腈基丙烯酸做的电子受体的染料Dye1表现出较好的光电特性。研究了相关DSC器件光电性质随温度的变化规律。
     (4)用丝网印刷将粒径为15-20 nm的ZnO纳米颗粒印刷在FTO导电玻璃上,350℃退火得到ZnO薄膜电极来取代传统500℃退火的TiO_2薄膜电极。由这种新颖的电极通过C106敏化得到的DSC器件具有较优异的光电转换性质,光电池效率为5.26%。
Nowadays, one of man’s endeavors is to cope with the energy crisis and environmental pollution for the sustainable development of human society, in which energy is vital. Solar and hydrogen energy are considered as the‘Green energy’which is most likely to gradually replace fossil fuels. Currently, the conversion of solar to electrical energy and the hydrogen production from water splitting using solar light are the two most promising research directions.
     Developing the efficient, low-cost and practical photoelectrode is absolutely vital for hydrogen production from water. TiO_2-based nanostructure semiconductors have been extensively studied due to their excellent chemical stability, nontoxicity, low-cost, and high photocatalytic activities. They were considered as particularly versatile materials with technological application prospects in solar cell and hydrogen production from water photolysis, and more. Especially over the past few years, highly ordered, vertically oriented TiO_2 nanotube arrays fabricated by electrochemical anodization constitute a material architecture that offers a large specific surface area, favorable surface chemistry and narrow distribution of diffusion path not only for entering the tubular depth but also for species to be transported through the tube wall, have attracted tremendous efforts. However the low efficient due to the narrow photo absorption, it is urge to expand the reponse spectrum. Based on the previouse researches, we functionalized the self-organized TiO_2 nanotube arrays with 200 nm NiO nanopartice layer by electroless plating and annealing. Compared with the TiO_2 electrode, this noval NiO/TiO_2 junction electrode demonstrated red-shift photoresponse. The short-circuit photocurrent density (Jsc), open-circuit photovoltage (Voc) of NiO/TiO_2 junction electrode under an irradiance of AM 1.5G full sunlight are 2.82 mA cm~(-2), 755 mV, yielding an overall conversion efficiency (η) of 1.41%.
     A large amount of research and development efforts has been made to the mesoscopic dye-sensitized solar cell (DSC) ever since the seminal demonstration of its feasibility as a cost-effective photovoltaic technology. The most critical issues are designing dye molecul for high performance DSC device and comprehend the mechanism of device running. Three organic D-π-A dyes with different acceptors such as cyanoacrylic acid,quionolinylcarboxylic acid and phthalic acid have been prepared in combination with the dihexyloxy-substituted triphenylamine donor and the 2,2’-bis(3,4-ethylenedioxythiophene)π-conjugated linker. We have studied the influence of adsorbent units on spectral responses, energy levels, photocurrents, photovoltages and transient photoelectrical decay measurements. Temperature-dependent electrical impedance experiments have also been studied. Emporldering low-temperature annealed semicomductor to
     replace traditional high-temperature annealed TiO_2 layer is a hot issue for flexible DSC research. In this thesis, a screen-printed layer of interconnected ZnO nanopaticles was synthesized by hot-solvent method. the short-circuit photocurrent density (Jsc), open-circuit photovoltage (Voc), fill factor (FF) and conversion efficiency (η) of DSC device based on ZnO electrode under an irradiance of AM 1.5G full sunlight are 12.18 mA cm~(-2)、636 mV,0.636,5.26%。
引文
[1] Gr?tzel M., Photoelectrochemical cells, Nature 2001, 414 (15): 337–740.
    [2] Chapin D. M., Fuller C. S., Pearson G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys. 1954, 25: 676–677.
    [3] Tabor H., Selective Radiation I. Wavelength Discrimination, (in Transactions of the Conference on the use of Solar Energy), The Scientific Basis, Tucson, 1955, 2 (1A): 24(University of Arizona, Tucson, 1958), Also in Bull Res. Counc. 1956, 5A: 119–126.
    [4] Fujishima, A; Honda, K. Nature, 1972, 238 (5358): 37–38.
    [5] Armor, J. N. Catal. Lett., 2005, 101(3-4): 131–135.
    [6] Nazeeruddin M. K., KayA. , Rodicio I. , Humphry-Baker R. , Müller E. , Liska P. , Vlachopoulos N. , Gr?tzel M., Conversion of Light to Electricity by cis-XzBis( 2,2’- bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes, J. Am. Chem. Soc. 1993, 115 (14): 6382–6390.
    [7] Nazeeruddin M. K., De Angelis F., Fantacci S., Selloni A., Viscardi G., Liska P., Ito S., Takeru B., Gr?tzel M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, J. Am. Chem. Soc. 2005, 127 (48): 16835–16847.
    [8] Nazeeruddin M. K., Péchy P., Renouard T., Zakeeruddin S. M., Humphry-Baker R., Comte P., Liska P., Cevey L., Costa E., Shklover V., Spiccia L., Beacon G. B., Bignozzi C. A., Gr?tzel M., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. Am. Chem. Soc. 2001, 123 (8):1613–1624.
    [9] Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han L., Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%, Jpn. J. Appl. Phys. 2006, 45 (2): L638–L640.
    [10] Gao F., Wang Y., Shi D., Zhang J., Wang M., Jing X., Humphry-Baker R., Wang P., Zakeeruddin S. M., Gr?tzel M., Enhance the Optical Absorptivity ofNanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells, J. Am. Chem. Soc. 2008, 130, 10720.
    [11] Bequerel E., Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courantsélectriques. C.R. Acad. Sci. 1839, 9: 145–149.
    [12] Adams W. G. and Day R. E., The Action of Light on Selenium Phil, Trans. R. Soc. Lond. 1877, 167 (1):313–349.
    [13] Fritts C. E., A new form of selenium cell Am.J. Sci. 1883, 26: 465–472.
    [14] Chapin D. M., Fuller C. S., Pearson G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys. 1954, 25: 676–677.
    [15] Goetzberger A., Hebling C., Schock H.-W., Photovoltaic materials, history, status and outlook, Mate. Sci. Eng. R 2003, 40: 1–46.
    [16] Zhao J., Wang A., Green M., 24.5% Efficiency silicon PERT Cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates, Prog. Photovolt.: Res. Appl. 1999, 7: 471–474.
    [17] Green M. A., Emery K., Solar cell efficiency tables (version 3), Prog. Photovolt.: Res. Appl. 1994, 2: 27–374.
    [18] Green1 M. A., Emery K., Hisikawa Y., Warta W, Solar Cell Efficiency Tables (Version 30), Prog. Photovolt: Res. Appl. 2007, 15: 425–430.
    [19] Green1 M. A., Emery K., Hisikawa Y., Warta W, Solar Cell Efficiency Tables (Version 33), Prog. Photovolt: Res. Appl. 2009, 17: 85–94.
    [20] Green1 M. A., Emery K., Hisikawa Y., Warta W, Solar Cell Efficiency Tables (Version 34), Prog. Photovolt: Res. Appl. 2009, 17: 320–326.
    [21]赵玉文,王斯成,励旭东,王文静,刘祖明,宋爽, 2004年中国光伏产业发展研究年度报告(2004-2005),中国可再生能源发展项目办公室, 2006年8月.
    [22] Tshubomura H., Matsumura M., Nomura Y., Amamiya T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell, Nature 1976, 261 (3): 402–403.
    [23] Desilvestro J., Gr?tzel M., Kavan L., Moser J. E., Augustynski J., Highly EfficientSensitization of Titanium Dioxide, J. Am. Chem. Soc. 1985, 107: 2988–2990.
    [24] Sommeling P. M., O’Regan B. C., Haswell R. R., Smit H. J. P., Bakker N. J., Smits J. J. T., Kroon J. M., van Roosmalen J. A. M., Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells, J. Phys. Chem. B 2006, 110 (39): 19191–19197.
    [25] Gracia F, Holgado J P, Caballero A and Gonzalez-Elipe A R 2004 J. Phys. Chem. B 108 17466
    [26] Tian Y and Tatsuma T 2004 Chem. Comm. 1810
    [27] Kudo A, Domen K and Onishi T 1987 Chemical Physics Letters 133 517
    [28] Wolcott A, Smith W A, Kuykendall T R, Zhao Y P and Zhang J Z 2009 Small 1 104
    [29] Feng X, Shankar K, Varghese O K, Paulose M, Latempa T J and Grimes C A 2008 Nano Lett. 8 3781
    [30] Varghese O K, Gong D W, Paulose M, Ong K G, Dickey E C and Grimes C A 2003 Adv. Mater. 15 624
    [31] Ruan C, Paulose M, Varghese O K, Mor G K and Grimes C A 2005 J. Phys. Chem. B 109 15754
    [32] Shankar K, Mor G K, Prakasam H E, Yoriya S, Paulose M, Varghese O K and Grimes C A 2007 Nanotechnology 18 065707
    [33] Albu S P, Ghicov A, Macak J M and Schmuki P 2007 Nano Lett. 7 1286
    [34] Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T A, Fitzgerald A and Grimes C A 2006 J. Phys. Chem. B 110 16179
    [35] Mor G K, Varghese O K, Paulose M, Shankar K and Grimes C A 2006 Sol. Energy Mater. Sol.Cells 90 2011
    [36] Mohapatra S K, Misra M, Mahajan V K, and Raja K S 2007 J. Phys. Chem. C 111 8677
    [37] Zhu K, Neale N R, Miedaner A and Frank A J 2007 Nano Lett. 7 69
    [38] Mor G K, Shankar K, Paulose M, Varghese O K and Grimes C A 2006 Nano Lett. 6 215
    [39] Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B and Anpo M 2003 Catal. Today 84 191
    [40] Macak J M, Zlamal M, Krysa J and Schmuki P 2007 Small 3 300
    [41] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
    [42] Hu C, Lan Y, Qu J, Hu X and Wang A 2006 J. Phys. Chem. B 110 4066
    [43] Macak J M, Gong B G, Hueppe M and Schmuki P 2007 Adv.Mater 19 3027
    [44] Hahn R, Salonen J, Thiemann S and Schmuki P 2009 Angew. Chem. Int. Ed. 48 7236
    [45] Kay A, Cesar I and Gratzel M 2006 J. Am. Chem. Soc. 128 15714
    [46] Mor G K, Prakasam H E, Varghese O K, Shankar K and Grimes C A 2007 Nano Lett. 7 2356
    [47] Liu S K, Fu W Y, Yang H B J. Phys. Chem. C 2008 112 19852
    [48] Agarwal P, Paramasivam I, Shrestha N K and Schmuki P 2010 Chem. Asian J. 5 66
    [49] Shrestha N K, Nah Y C, Tsuchiya H and Schmuki P 2009 Chem. Commun. 2008
    [50] Nah Y C, Chicov A, Kim D, Berger S and Schmuki P 2008 J. AM. CHEM. SOC. 130 16154
    [51] Ghicov A, Aldabergenova S, Tsuchyia H and Schmuki P 2006 Angew. Chem. Int. Ed. 45 6993
    [52] Ghicov A, Schmidt B, Kunze J and Schmuki P 2007 Chemical Physics Letters 433 323
    [53] Yasuda K and Schmuki P 2007 Adv. Mater. 19 1757
    [54] Macak J M, Ghicov A, Hahn R, Tsuchiya H and Schmuki P 2006 J.Mater.Res. 11 2824
    [55] Ghicov A, MacaK JM, Tsuchiya H Nano Lett. 2006 6 1080
    [56] Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A and Itoh H 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 254
    [57] Nishijima K, Fujisawa Y and Murakami N 2008 Applied Catalysis B: Environmental 84 584
    [58] Park J H, Kim S and Bard A J 2006 Nano Lett. 6 24
    [59] Hahn R, Ghicov A, Salonen J, Lehto V P and Schmuki P 2007 Nanotechnology 18 105604
    [60] Lin C J, Lu Y T and Hsieh C H 2009 Appl. Phys. Lett. 94 113102
    [61] Gao X F, Li H B and Sun W T 2009 J. Phys. Chem. C 113 7531
    [62] Furube A, Du L and Hara K 2007 J. Am. Chem. Soc. 129 14852
    [63] Seabold J A, Karthik Shankar K and Wilke R H T 2008 Chem. Mater. 20 5266
    [64] Mohapatra S K, Kondamudi N and Banerjee S 2008 Langmuir 24 11276
    [65] Benoit A, Paramasivam I, Nah Y C, Roy P and Schmuki P 2009 Electrochemistry Communications 11 728
    [66] Shrestha N K, Yang M, Paramasivam I and Schmuki P 2010 Electrochemistry Communications 12 254
    [67] Ge R X, Fu W Y and Yang H B 2008 Mater. Lett. 62 2688
    [68] Huang C Y and Pai J F 1998 Eur. Polym. J. 34 261
    [69] Randin J P and Hintermann H E 1967 Plating 54 523
    [70] Kumar P S and Nair P K 1994 J. Mater. Sci. Lett. 13 671
    [71] Osaka T, Usuda M, Koiwa I and Sawai H 1988 Jap. J. Appl. Phys. 27 1885
    [72] Hur K H, Jeong J H and Lee D N 1990 J. Mater. Sci. 25 2573
    [73] Munoz A G 2007 Electrochimica Acta. 52 4167
    [74] Arshak K, Korostynska O and Fahim F 2003 Sensors 3 176
    [75] Chen S F, Zhang S J, Liu W and Zhao W 2008 J. Haza. Mater. 155 320
    [76] Schreifels J A, Maybury P C and Swartz W E 1980 J. Cata. 65 195
    [77] Jiang S R, Feng B X, Yan P X, Cai X M and Lu S Y 2001 Appl Surf. Scie. 174 125
    [78] Lv Y Y, Yu L S, Huang H Y, Liu H L and Feng Y Y 2009 Journal of Alloys and Compounds 488 314
    [79] Shi Q, Yang D, Jiang Z Y and Li J 2006 Journal of Molecular Catalysis B: Enzymatic 43 44
    [80] Myers C E, Franzen H F and Anderegg J W 1985 Inorg. Chem. 24 1822
    [81] Blanchard P E R, Grosvenor A P, Cavell R G and Mar A 2008 Chem Mater 20 7081
    [82] Khan S U M, Shahry M A and Ingler W B J 2002 Science 297 2243
    [83] Das P P, Mohapatra S K and Misra M 2008 J. Phys. D: Appl. Phys. 41 245103
    [84] Bandara J and Weerasinghe H 2005 Sol. Energ. Mat. Sol. C 85 385
    [85] Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P. J. Phys. Chem. C 2009, 113, 6290.
    [86] For example, see: (a) Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New J. Chem. 2003, 27, 783.
    [87] (b) Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S. Chem. Mater. 2004, 16, 1806.
    [88] (c) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12258.
    [89] (d) Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coord. Chem. Rev. 2004, 248, 1363.
    [90] (e) Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Chem. Commun., 2005, 4098.
    [91] Lin J T, Chen P C, Yen Y S, Hsu Y C, Chou H H and Yeh M C 2009 Org. Lett 11, 97
    [92] (f) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245.
    [93] (g) Li, S.-L.; Jiang, K.-J.; Shao, K.-F.; Yang, L.-M. Chem. Commun. 2006, 2792.
    [94] (h) Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc. 2006, 128, 14256.
    [95] (i) Kim, S.; Lee, J. W.; Kang, S. O.; Ko, J.; Yum, J.-H.; Fantacci, S.; De Angellis, F.; Di Censo, D.; Nazeeruddin, M. K.; Gr?tzel, M. J. Am. Chem. Soc. 2006, 128, 16701.
    [96] (j) Wang, Z.-S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19, 1138.
    [97] (k) Edvinsson, T.; Li, C.; Pschirer, N.; Sch?neboom, J.; Eickemeyer, F.; Sens, R.; Boschloo, G.; Herrmann, A.; Müllen, K.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 15137.
    [98] (l) Wang, M.; Xu, M.; Shi, D.; Li, R.; Gao, F.; Zhang, G.; Yi, Z.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gr?tzel, M. Adv. Mater. 2008, 20, 4460.
    [99] (m) Shi, D.; Pootrakuchote, N.; Yi, Z.; Xu, M.; Zakeeruddin, S. M.; Gr?tzel, M.; Wang, P. J. Phys. Chem. C 2008, 112, 17478.
    [100] (n) Zhou, G.; Pschirer, N.; Sch?neboom, J. C.; Eickemeyer, F.; Baumgarten, M.; Müllen, K. Chem. Mater. 2008, 20, 1808.
    [101] (o) Lin, J. T.; Chen, P.-C.; Yen, Y.-S.; Hsu, Y.-C.; Chou, H.-H.; Yeh, M.-C. P. Org. Lett. 2009, 11, 97.
    [102] (p) Zhang, G.; Bai, Y.; Li, R.; Shi, D.; Wenger, S.; Zakeeruddin, S. M.; Gr?tzel, M.; Wang, P. Energy Environ. Sci. 2009, 2, 92.
    [103] (q) Xu, M.; Wenger, S.; Bara, H.; Shi, D.; Li, R.; Zhou, Y.; Zakeeruddin, S. M.; Gr?tzel, M.; Wang, P. J. Phys. Chem. C 2009, 113, 2966.
    [104] (r) Yum, J.-H.; Hagberg, D. P.; Moon, S.-J.; Karlsoon, K. M.; Marinado, T.; Sun, L.; Hagfeldt, A.; Nazeeruddin, M. K.; Gr?tzel, M. Angew. Chem. Int. Ed. 2009, 48, 1576.
    [105] (a) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Gr?tzel, M. Chem. Commun. 2008, 5194.
    [106] (b) Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang, P. Chem. Commun. 2009, doi: 10.1039/b822325d.
    [107] (c) Zeng, W.; Cao, Y.; Bai, Y.; Wang, P. Chem. Mater. 2010,
    [108] Qin, H.; Wenger, S.; Xu, M.; Gao, F.; Jing, X.; Wang, P.; Zakeeruddin, S. M.; Gr?tzel, M. J. Am. Chem. Soc. 2008, 130, 9202.
    [109] Xu, M.; Li, R.; Pootrakulchote, N.; Shi, D.; Guo, J.; Yi, Z.; Zakeeruddin, S. M.; Gr?tzel, M.; Wang, P. J. Phys. Chem. C 2008, 112, 19770.
    [110] Li R; Lv X; Shi D; Zhou D; Cheng Y; Zhang G; Wang P, J. Phys. Chem. C 2009, doi: 10.1021/jp900972v.
    [111] Cao, Y.; Zhang, J.; Bai, Y.; Li, R.; Zakeeruddin, S. M.; Gr?tzel, M.; Wang, P. J. Phys. Chem. C 2008, 112, 13775–13781.
    [112] Krishnamurthyl, M.; Gooch, B.D.; Beal, P. A. Organic& Biomolecular Chemistry 2006, 4, 639-645.
    [113] Hosangadi, B.; Dave, R. Tetrahedron Letters 37, 35, 1996, 6375-6378.
    [114] Barbe′C. J., Arendse F., Comte P., Jirousek M., Lenzmann F., Shklover V., Gr?tzel M., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, J. Am. Ceram. Soc. 1997, 80 (12): 3157–71.
    [115] Wang P., Zakeeruddin S. M., Comte P., Charvet R., Humphry-Baker R., Gr?tzel M., Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals, J. Phys. Chem. B 2003, 107 (51): 14336–14341.
    [116] Ito S., Murakami T. N., Comte P., Liska P., Gr?tzel C., Nazeeruddin M., Gr?tzel M., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films 2008, 516: 4613–4619.
    [117] Vogel, R.; Hoyer, P.; Weller, H., Quantum-Sized PbS, CdS, AgzS, SbS3, and BiS3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors, J. Phys. Chem. 1994, 98 (12):3183–3188.
    [118] Sakohara S., Tickanen L. D., Anderson M. A., Luminescence Properties of Thin Zinc Oxide Membranes Prepared by the Sol-Gel Technique: Change in Visible Luminescence during Flring, J. Phys. Chem. 1992, 96(26):11086–11901.
    [119] Redmond G., O’Keefe A., Burgess C., MacHale C., Fitzmaurice D., Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films, J. Phys. Chem. 1993, 97 (42):11081–11086.
    [120] Law Matt, Greene L. E., Johnson J. C., Saykally R., Yang P., Nanowire dye-sensitized solar cells, Nat. Mater. 2005, 4: 455–459.
    [121] Law M., Greene L. E., Radenovic A., Kuykendall T., Liphardt J., Yang P., ZnO-Al2O3 and ZnO-TiO2 Core-Shell Nanowire Dye-Sensitized Solar Cells, J. Phys. Chem. B 2006, 110 (45): 22652–22663.
    [122] Bj?rksten U., Moser J., Gr?tzel M., Photoelectrochemical Studies on Nanocrystalline Hematite Films, Chem. Mater. 1994, 6 (6): 858–863.
    [123] Bedja I., Hotchandani S., Kamat P. V., Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis( 2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium( 11) Complex, J. Phys. Chem. 1994, 98(15): 4133–4140.
    [124] Hotchandani S., Bedja I., Fessenden R. W., Kamat P. V., Electrochromic and Photoelectrochromic Behavior of Thin WO3 Films Prepared from Quantum Size Collodal Particles, Langmuir 1994, 10 (1): 17–22.
    [125] Hodes G., Howell I. D. J., Peter L. M., Nanocrystalline Photoelectrochemical Cells, J. Electrochem. Soc. 1992, 139 (11): 3136–3140.
    [126] Spanhel L., Anderson M. A., Synthesis of porous quantum-size cadmium sulfide membranes: photoluminescence phase shift and demodulation measurements Synthesis of porous quantum-size cadmium sulfide membranes: photoluminescence phase shift and demodulation measurements, J. Am. Chem. Soc. 1990, 112 (6): 2278–2284.
    [127] Yishay Diamant, S. G. Chen, Ophira Melamed, and Arie Zaban, Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core, J. Phys. Chem. B 2003, 107, 1977–1981.
    [128] Sun B Q, Sirringhaus H 2005 Nano Letters 5 2408
    [129] Beek W J E, Wienk M M, Janssen R A J 2004 Adv. Mater. 16 1009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700