用户名: 密码: 验证码:
棒状聚合物薄膜传感器的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年重大煤矿事故频发,因此发展应用于煤矿瓦斯探测的低成本传感技术就显得极为迫切。气敏材料是气体传感器的核心,与传统的无机半导体材料相比,高分子气敏材料具有价廉易得、制备工艺简单,环境要求低的优点,最重要的是它可以在常温下使用,从而打破了气体传感器原有的应用范围。而相对于其他导电高分子体系,棒状导电聚合物由于良好的导电性、优良的环境稳定性等优点而成为当今最具潜力的研究热点之一。然而单一的棒状导电聚合物分子间相互作用力大,在室温下呈胶状,加工性能和机械性能差,对气体的吸附解吸效率较低。而将无机纳米材料掺杂在棒状导电聚合物中既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应而且兼有高分子材料本身的优点使得它们在电、磁、敏感等方面呈现出常规材料不具备的特性。针对以上问题,本文主要研究了以几个部分:
     (1)首先制备了PDMEB薄膜、PDMEB/ SnO2复合薄膜及PDMEB/ In2O3复合薄膜,分别对制备的薄膜进行了表面形貌和红外光谱等分析。发现SnO2纳米粉体和In2O3的存在使复合薄膜呈现出比PDMEB薄膜更有利于气体扩散的多孔状结构,气孔分布更均匀。分别在石英晶体微天平(Quartz Crystal Microbalance,简称QCM)和声表面波(Surface Acoustic Wave,简称SAW)器件上制备了PDMEB薄膜、PDMEB/ SnO2复合薄膜及PDMEB/ In2O3复合薄膜传感器,研究室温下对瓦斯气体CH4和CO的敏感特性。研究表明,PDMEB/ SnO2复合薄膜及PDMEB/ In2O3复合薄膜气体传感器对CH4具有更高的灵敏度和更快的响应恢复时间。通过对SAW传感器的研究表明,,PDMEB/ SnO2复合薄膜及PDMEB/ In2O3复合薄膜气体传感器对CH4具有更高的灵敏度。
     (2)制备了另一种具有π结构共价键的导电聚合物材料Pt-DEB,与PDMEB相比,Pt-DEB在聚合物主干链上加入了金属Pt原子,使得电子形成配位金属耦合对,因此具有更好的导电性。并对其进行了红外光谱、XPS图谱分析以及核磁共振的分析表征。接着采用旋涂法分别制备了Pt-DEB薄膜QCM和SAW传感器,研究了其在室温下对于瓦斯气体CH4的敏感特性。研究表明Pt-DEB薄膜QCM传感器在室温下对于瓦斯气体CH4的敏感特性,发现对CH4气体发生吸附过程后,很难回到初始频率,并且对不同浓度的瓦斯气体响应灵敏度呈非线性。但是Pt-DEB薄膜传感器对不同浓度的有机蒸汽THF、CHCl3、MeOH和EtOH体现出了良好的响应特性和重复性,稳定性很理想。Pt-DEB薄膜SAW传感器在吸附CH4气体后,频率有所下降,再用N2解吸时,频率无法恢复到初始水平。对有机蒸汽THF、CHCl3、EtOH的灵敏度,均呈现良好的线性度和可重复性。
During recent years, there were many explore disasters because of gas exploding in coal mine. Thus, it is very important to monitor gas concentrations quickly and accurately in the coal mine. Conducting polymer/inorganic nanocomposites are particularly challenging due to the combined nature of flexibilities and improved process ability of polymers, and attractive modulus, transparency, surface hardness and heat resistance properties of inorganic components.Conjugated conducting polymer nanocomposites, especially organic-inorganic nanocomposites, have drawn the attention of scientists over the last years due to a wide range of potential use of these composites. However, because of theπsystem in the chain carbone backbone, polymer is colloid at room temperature. So it is difficult to be processed and patternmaking. There is no doubt that these properties will block its gas-sensing film to absorb and release gas detected. As a result, the material has different electric, magnetic, sensitive performance compared with normal materials. In order to solve the problem mentioned above, the thesis contained 2 sections as follows:
     (1) Firstly, PDMEB films, PDMEB/ SnO2 and PDMEB/ In2O3 composite films were prepared on QCM (Surface Acoustic Wave) and SAW (Surface Acoustic Wave) substrate separately using spin coating technique. The films were characterized by optical focus microcopy and FTIR. Spectrum analyses indicated that some kind of interaction did take place between PDMEB and SnO2/In2O3 nanoparticles.The morphology analyses revealed that, a typical stomata structure could be found in the PDMEB/ SnO2 and PDMEB/In2O3 nanocomposite material, and It is evident that there are many pores on the surface of the composite thin film.The result is found that the exist of SnO2 nano-powder and In2O3 have the abilities to make the composite thin film present a vacuum coating porous structure, which is more suitable to the diffusion of gas. By studying their sensitivity to CH4 and CO at the room temperature. PDMEB/ SnO2 and PDMEB/ In2O3 composite thin film gas sensors are more sensitive and their response recovery time is much shoter. According to the study to SAW sensor with different thickness of the film, the thicker the film is, the more serious insertion loss and difficult in starting oscillation.
     (2) Another composite conductive material Pt-DEB was prepared, which hasπsystem covalent bond in the carbon backbone. Compared with PDMEB, there is a transition metal (Pt) insert into the chain. This difference enhances the conductivity of the material. By studying the sensitivity of Pt-DEB thin film sensor to methane gas CH4, the film sensors was hard to return to initial frequency after the absorption of CH4. And the sensitivity to CH4 with different concentration presented a character of nonlinear. When detecting organic vapor(THF、CHCl3、EtOH and MeOH), Pt-DEB thin film sensor presented excellent response characters and repeatability.
引文
[1]陈友汜,李扬,杨慕杰.高分子及其复合物气敏材料的研究进展.科技通报,2005,21(2),226-227
    [2] Seiyama T, Kato A, Fujishi K, A new detector for gaseous using semiconductor thin film. Anal Chem.1962, (34): 1502-1505
    [3] Mexner H, Lampe U. Metal Oxide sensors. Sensors and Actuators B, 1996, (33): 198-202
    [4] Srczurek A, Szecowka P.M, Licmmki B.W. Application of sensor amy and neural networks for quantification of organic solvents vapors in air, Sensors and Actuators B, 1999, (58): 427-432
    [5] Gardner J W, Odour discrimination with an electronic nose, Transducers’95, 1995: 671-674
    [6] Maksiovich N. P, Yeremina L. E. Sensors and Actuators B, 1993, (13-14): 256-258
    [7]王玮.基于气体传感器阵列的混合气体检测系统:[博士学位论文].西北工业大学,2002,1-128
    [8] Nandini Das, Asim K. Halder, Jalaluddin Mondal A. Sonochemically prepared tin-dioxide based composition for methane sensor. Materials Letters 60 2006 991-994
    [9] Bose S, Chakraborty S, Ghosh B K, Methane sensitivity of Fe-doped SnO2 thick films, Sens. Actuators B 105 2005 346–350.
    [10] Lee D S, Jung H Y, Lim J W, Explosive gas recognition system using thick film sensor array and neural network. Sens. Actuators B 71 2000 90-98
    [11] Kim J C, Jun H K, Huh J S, Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst, Sens. Actuators B 45 1997 271–277.
    [12] De Angelis L, Riva R. Selectivity and stability of a tin oxide sensor for methane, Sens. Actuators B 28 1995 25–29.
    [13] P. Bhattacharyya, P.K. Basu, H. Saha, Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method. Sens. Actuators B 2007 in press
    [14]宋玲燕光谱分析法检测变压器油中甲烷气体浓度的研究:[硕士论文] .吉林大学,2007.5:4
    [15] LIU Li; SHEN Guang-yu; SHEN Guo-li; YU Ru-qin, Detection of T4 Using a QCM Immunosensor Based on Electro-polymerized Polytyramine Films and Self-Assembled Gold Nanoparticl es,CNKI:ISSN:1004-1699.0. 2007- 02-003
    [16]赵明镜.氨敏薄膜的制备及特性研究:[硕士论文].电子科技大学, 2007.5:16
    [17] WANG Y D, SLTN X D, LI Y F, Perovskite-type NiSn03 used as the ethanol sensitive material. Solid-State Electron, 2000, 44: 2009-2014.
    [18] Huiling Tai, Yadong Jiang, Guangzhong Xie, Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sens. Actuators B 2007 in press
    [19]太惠玲,蒋亚东,谢光忠,等.聚吡咯/二氧化钛复合薄膜的制备及气敏性研究.无机材料学报,2007,in press
    [20]周会珠,王岭,王福先,戴磊.一种基于双固体电解质的CO2传感器.稀有金属材料与工程. 2007.36.A02
    [21]樊宇,唐跃进,李敬东,周羽生,杨志.温度对高温超导材料性能的影响.低温与超导.2006.04
    [22] Yun E S, Park T H, Biotechnol Bioprocess Eng, 2000, 5(2): 150.
    [23]姚俊杰李包顺, SiO2—Si3N4天线窗材料的介电性能研究.功能材料与器件学报.1996,(2): 32-35
    [24]曹贵良.LXK系列催化元件的稳定性.舰船科学技术,2001,(3):33-36.
    [25]谢宝卫,李国斌.催化燃烧型瓦斯检测仪器性能特征及影响因素浅析.煤矿安全,2002,33(3):54-55.
    [26] H.Debeda. L.Dulau. P.Dondon, Development of a reliable methane detector:Sensors and Actuators B, 1997. (45):123-130.
    [27]李学诚,李先才.红外线瓦斯传感器在井下的试用.煤矿安全,1999,(2):10-13.
    [28] J.P. Silveira, J. Anguita, F. Briones, Micromachined methane sensor based on low resolution spectral modulation of IR absorption radiation.Sensors and Actuators B ,1998,(48):305-307.
    [29]陈娟,冯锡钰,蒲春华.光纤传感器综述.吉林工学院学报,1997,18(3):14-19.
    [30] H.Inaba., T.Kobayasi, M.Hirama, Optical-fiber network system for air pollution monitoring over a wide area by optical absorption method.Electronics Letters, 1979,(23):749- 751.
    [31]李巍.检测甲烷气敏传感器的制备及研究:[硕士论文].福州大学. 2006.1
    [32]徐毓龙.氧化物与化合物半导体基础.西安电子科技大学出版社, 1991. 44-74.
    [33]清山哲郎.金属氧化物及其催化作用.中国科技大学出版社, 1991. 23-28.
    [34] Lee W H,Son H C,Moon H S, Stoichiometry dependence of electrochemical performance of thin-film SnOx microbattery anodes deposited by radio frequency magnetron sputtering[J].Journal of Power Sources,2000,89:102~105
    [35] Ihokura K,Watson J.The stannic oxide gas sensors-principles and applications[M].CRC Press,1994,ISBN 0-84-932604-4.479~516
    [36] Beck K, Kunzelmann T, von Schickfus M, Contactless surface acoustic wave gas sensor. Sens. Actuators B, 76 1999 103–106
    [37] Lee H M, Han D Y, Ahn H, Design and fabrication of SAW gas sensor with resonator structure. Proceedings of the 5" International Conference on Properties and Applications of Dielectric Materials, 1997, 1058-1061
    [38] Penza M, Vasanelli L. SAW NOX gas sensor using WO3 thin-film sensitive coating. Sens. Actuators B 41 1997. 31-36
    [39] V.I. Anisimkin, M. Penza, A. Valentini, Detection of combustible gases by means of a ZnO-on-Si surface acoustic wave (SAW) delay line. Sens. Actuators B B 23 1995. 197-201
    [40] J. D. Galipeau, R. S. Falconer, J. F. Vetelino, Theory, design and operation of a surface acoustic wave hydrogen sulfide microsensor. Sens. Actuators. B B 24 1995. 49-53
    [41] R. S. Falconer. A versatile, SAW-based sensor system for investigating gas-sensitive coatings. Sens. Actuators. B 24 1995 54-57
    [42] M. D. Antonik, J. E. Schneider, E. L. Wittman, Microstructural effects in WO3 gas-sensing films. Thin Solid Films 256 1995 247-252
    [43] J. D. Galipeau, L. J. LeGore, K. Snow, The integration of a chemiresistive film overlay with a surface acoustic wave microsensor. Sens. Actuators B 35 1996 158-163
    [44] M. Penza, L. Vasanelli. SAW NOx gas sensor using WO3 thin-film sensitive coating. Sens. Actuators B 41 1997 31-36
    [45] Namrata Dewan, S.P. Singh, K. Sreenivas, Influence of temperature stability on the sensing properties of SAW NOx sensor. Sens. Actuators B 2007 In Press
    [46] Y.J. Lee, H.B. Kim, Y.R. Roh, Development of a SAW gas sensor for monitoring SO2 gas. Sens. Actuators A 64 (1998) 173-178
    [47] A. Rügemer, S. Reiss, A. Geyer, Surface acoustic wave NO2 sensing using attenuation as the measured quantity. Sens. Actuators B 56 1999 45-49
    [48] C. Müller, T. Nirmaier, A. Rügemer and M. v. Schickfus, Sensitive NO2 detection with surface acoustic wave devices using a cyclic measuring technique. Sens. Actuators B: 68 2000 69-73
    [49] Anton Le idl, Ralf Hartinger, Mathias Roth and Hanns-Erik Endres, A new SO2 sensor system with SAW and IDC elements. Sens. Actuators B 34 1996 339-342
    [50] Shuji Qin, Zhongjie Wu, Zhongyue Tang, The sensitivity to SO2 of the SAW gas sensor with triethanolamine modified with boric acid. Sens. Actuators B 66 2000 240-242
    [51] Chiang C.K, Fincher Jr C.R, Park Y.W, Heeger A. J, Shirakawa H, Louis E J, Gau S C,etc. Physical Review 1977 (39) 1098
    [52] M. Penza, E. Milella, V.I. Anisimkin, Monitoring of NH3 gas by LB polypyrrole-based SAW sensor. Sens. Actuators B 47 1998 218–224
    [53] Huiling Tai, Yadong Jiang, Guangzhong Xie, Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sens. Actuators B 2007 in press
    [54] M. Penza, G. Cassano, A. Sergi, SAW chemical sensing using poly-ynes and organometallic polymer films, Sens. Actuators B 81 2001 88–98
    [55] K. Suri, S. Annapoorni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors-based on iron oxide–polypyrrole Nanocomposites, Sens. Actuators B 81 2002 277–282.
    [56] Kenkichi Sonogashira, Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides, Journal of Organometallic Chemistry 653 2002 46–49
    [57] Giorgio Giardina, Patrizia Rosi, Antonella Ricci, Claudio Lo Sterzo ,An Efficient One-Pot Access to Poly(arylene ethynylene) Homopolymers: Use of the Bu3SnO Moiety as a Recyclable Carrier to Introduce the Ethynyl Unit into the Chain ,Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 38, 2000 2603–2621
    [58] Cinzia Caliendo, Enrico Verona, Arnaldo D’Amico, Anita Furlani, Guido Infante, Maria Vittoria Russo , Organometallic polymer membrane for gas detection applied to a surface acoustic wave sensor, Sensors and Actuators B 24-25 1995 670-672
    [59]徐善明.采用高分子压电材料的触觉传感器.传感器技术. 1992.03. 7~8
    [60] Baba A, Kaneko F, Advincula R C. Polyelectrolyte adsorption processes characterized in situ using the quartz crystal microbalance technique: alternate adsorption properties in ultrathin polymer films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173: 39–49
    [61]A. A. Oliner. Acoustic Surface Waves. Springer-Verlag Berlin Heidelberg, 1978
    [62]孙崇波.基于有限元方法的高频SAW气体传感器建模仿真:[硕士学位论文].哈尔滨工业大学,2007.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700