用户名: 密码: 验证码:
具有新结构的苝衍生物的合成及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子给体-电子受体(Donor-Acceptor)有机分子在光电材料方面的研究进展,并且根据大量有机光电材料领域相关文献的阅读,总结了这一领域目前所遇到的瓶颈:(1)大多有机光电材料对于太阳光的吸收只能在有限的范围。由于不能够充分的吸收太阳光,有机光电材料所能转化的能量也就很低。(2)光电转化过程中,由于电子的激发、传输和接受都意味着氧化和还原过程,这样容易导致有机化合物结构和性能的改变。(3)对于大多数的有机化合物来说,由于其结构的规整度不高,电子在化合物中传导时容易发散或被空穴扑捉,这就导致电子迁移率的低下。
     由于拥有良好的电子传输特性,3,4,9,10-苝四羧基二酰亚胺是一类具有高耐热性典型的n型有机半导体材料,并且它们已经被证实了具有合成超分子和巨分子体系的潜能。因此,通过有机合成方法对苝酰亚胺改性从而改善其化学和物理特性,已经引起人们越来越多的关注。对苝酰亚胺改性主要有两个方法:在亚胺胺基或苝环的港湾位置改性。我们以3,4,9,10-苝四羧酸二酐为原料,通过苝环的亲核取代合成了1,6,7,12-四溴-3,4,9,10-苝四羧酸二酐,再与异辛胺反应合成了可溶于有机溶剂的N,N-二异辛基-1,6,7,12-四溴-3,4,9,10-苝四羧基二酰亚胺。随后以N,N-二异辛基-1,6,7,12-四溴-3,4,9,10-苝四羧基二酰亚胺为单体,通过Stille偶合在苝环的港湾位将N,N-二异辛基-1,6,7,12-四溴-3,4,9,10-苝四羧基二酰亚胺链接起来形成具有带状结构的大π共轭的聚合物。通过FI-IR,NMR等手段证实了其结构,并使用紫外-可见吸收光谱,发射光谱等手段研究了它的光学性能。
     我们还研究了Stille偶合反应过程中,反应时间和催化剂的量对产物的分子量的影响。通过一系列的实验,确认反应时间为72小时,催化剂用量为52μmol时,聚合物聚合度较为合适。对这些实验产物进行GPC检测发现,偶合形成的聚合物的聚合度不高,其原因是由于聚合物近平面的结构产生很大的张力。
     目标聚合物中含有大量的苝环结构,这有利于分子间的堆积,从而使得电子在分子间的迁移更加容易,而且由于大π共轭结构的存在,使得少量电子的得失对于聚合物的结构与性能的影响很小。并且通过紫外-可见光谱的分析发现,目标化合物能吸收波长在300nm-750nm(即太阳光主要分布的波段)的光。这些数据表明化合物具有成为n型电子传输有机材料的潜在能力。
     通过三种不同的方法合成了三种苝酰亚胺桥联硅氧烷。分析比较了这三种方法,发现丙酸溶剂法得到单体品质较好,并对其合成工艺进行了初步讨论。产品的性能研究表明其具有较规整的结构,并且有着良好的热性能和光学性能。
In this article, the development of application in photoelectric material of Donor-Acceptor organic molecular is investigated and presented. Moreover, through reading and researching plenty of literatures about photoelectric material, there are three bottleneck which seriously restrict the development of photoelectric material: (1) for most organic photoelectric material, the absorption of solar light spectra is limited. Due to the absorption of solar light is deficiently, other energy transformed from solar energy by organic photoelectric material are finite; (2) the process of transformation from optical energy to electric energy always accompanies electronic excitation, transmission and acceptance. And that the behavior of electron induces oxidation and reduction of compounds, which easily lead to the changes of organic compounds structure and performance resulting in low transformation efficiency. (3) due to low regularity of the structure of most organic compounds, the electron which transports in organic compounds is very easy to be scattered and trapped, causing low electron mobility.
     Perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs) represent a class of highly thermostable n-type semiconductors with relatively high electron affinity and excellent transport property. They have been proven to be good building blocks for constructing supramolecules and giant-molecular systems. Therefore, more and more attention has been being focused on the modification of perylene bisimide structures through synthetic routes to improve their chemical and physical properties, which is achieved by two strategies: the modification at the imide nitrogen or at the bay position of the perylene core. By nucleophilic substitution, 1,6,7,12-tetrabromoperyle- ne-3,4,9,10-tetracarboxylic acid bisanhydride which is obtained by reaction between perylene-3,4,9,10-tetracarboxylic acid bisanhydride and bromine, reacts with 2-ethylhexylamine, leading to N,N′-Di(2-ethylhexyl)-1,6,7,12-tetrabromoperylene-3,4, 9,10-tetracarboxylic acid bisimide which has a good solubility in the general organic solvents. Subsequently, through Stille coupling, a novelπ-conjugated polymer with structure close to planar is synthesized by link at the bay position of N,N′-Di(2-ethylh- exyl)-1,6,7,12-tetrabromoperylene-3,4,9,10-tetracarboxylic acid bisimide. The structu- re of the polymer is confirmed by FI-IR and NMR, and its optical properties are researched by UV-vis and Normalized emission spectra.
     In Stille coupling, the influence of number-average molecular weight of the compound by different reaction time and dosage of palladium catalyst is also investigaed. Through a series of experiments, when the reaction time is 72 hours and dosage of palladium catalyst is 52μmol, the largest number-average molecular weight is achieved. The low degree of polymerization for this kind of polymer is probably due to the highly tensile force caused by the geometric structure of such polymers close to plane.
     Due to plenty of perylene cores in target product, it is beneficial to packing between moleculars, which results in easily transport of electron. Moreover, because of the existence ofπ-conjugated structure, the gain and loss of a spot of electron has very little influence to the structure and properties of the compound. The analysis about UV-vis spectra of the polymer shows that the major absorption wavelength is 300nm-750nm which matches the wavelength of solar light. These data show that the polymer has a potential ability as n-type organic semiconductor material.
     Through three synthetic methods, three perylene imide linked siloxane are synthesized. Compared the three methods, it is best that propionic acid as solvent, and the synthetic method is discussed. The research of properties of the product represent that the product has good structure, thermal property and optical property.
引文
[1]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005, 1
    [2]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001, 238
    [3] Thomas K R, Lin J T, Tao Y T, et al. New carbazole-oxadiazole dyads for electroluminescent devices: influence of acceptor substituents on luminescent and thermal properties [J]. Chem. Mater., 2005, 16(25): 5437-5445
    [4] Chin T C. Evolution of Red Organic light-emitting diodes: materials and devices [J]. Chem. Mater., 2004, 16(23): 4389-4400
    [5] Roquet S, Cravino A, Leriche P, et al. Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells [J]. J. Am. Chem. Soc., 2006, 128(10): 3459-3466
    [6] Velusamy M, Thomas K R J, Lin J T, et al. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells [J]. Org. Lett., 2005, 7(10): 1899-1902
    [7] Pappenfus T M, Chesterfiled R J, Frisbie C D, et al. Aπ-Stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor [J]. J. Am. Chem. Soc., 2002, 124(16): 4184-4185
    [8] Miao Q, Lefenfeld M, Nguyen T Q, et al. Self-assembly and electronics of dipolar linear acenes [J]. Adv. Mater., 2005, 17(40): 407-412
    [9] Hg M K, Lee D C, Yu L P. Molecular diodes based on conjugated diblock co-oligomers [J]. J. Am. Chem. Soc., 2002, 124(40): 11862-11863
    [10] Metzgr R M. Unimolecular electrical rectifiers [J]. Chem. Rev., 2003, 103(9): 3803-3834
    [11] Mullekoma H A M, Vekemans J A J M, Havinga E E, et al. Developmwnts in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers [J]. Mater. Sci. Eng., 2001, 32: 1-40
    [12] Ajayaghosh A. Donor-acceptor type low band gap polymer: polysquaraines and related systems [J]. Chem. Soc. Rev., 2003, 32(4)181-191
    [13] Vogtle F, Stodaart J, Shibasaki M I. Electron and energy transfer, in stimulating concepts in chemistry [M]. Paddon-Row, M. N., Ed., Wiley-VCH: New York, 2000: 267
    [14] Gust D, Moore T A, Moore A L. Mimicking photosynthetic solar energytransduction [J]. Acc. Chem. Res., 2001, 34(1): 40-48
    [15]日雀部博之.导电高分子材料[M].北京:科学出版社,1989,41
    [16]李善君,纪才圭,于同隐.高分子光化学原理与应用[M].上海:复旦大学出版社,2003: 42
    [17] Shirota Y, Yoshiyuki, Kuwabare et al. Multilayered organic electroluminescent devices using a novel starburst molecule, 4, 4, 4-tris(3-methylphenylamino) triphenyl-amine as a hole transport material[J].Appl. Phys. Lett., 1994, 65(7): 807
    [18] Ganzorig C, Fujibira M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer [J].Appl. Phys. Lett., 2000, 77(25): 4211-4213
    [19] Yamashita K, Mori T, Schmidt H W, et al. El properties of organic light-emitting-diode using TPD derivatives, with diphenylstylyl groups as hole transport layer. Thin Solid Films, 2000, 263(1): 33-36
    [20] Thelakkat M, Schmidt H W. Synthesis and properties of novel derivatives of 1, 3, 5-tris(diarylamino)benzenes for electroluminescent devices. Adv. Mater., 1998, 10(3): 219
    [21] Yamamoto, Thelakkat M, Schmitz C, et al. Novel functional materials based on triarylamines-synthesis and application in electroluminescent devices and photorefractive systems. PhysChemPhys, 1999, 1(8): 1693-1698
    [22] Kobayashi, Hill I G, Kahn A. Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Phys. Lett., 1998, 72(5): 662-664
    [23] Leeuw D M, Simenon M M J, Brown A R. Stability of n-type doped conducting polymers and consequence for polymeric microelectronic devices. Synth. Met., 1997, 87: 53-59
    [24] Bao Z, Lovinger A J, Brown J. N-channel organic transistor materials based on naphtalene frameworks. J. Am. Chem. Soc., 1996, 118(45): 11331-11332
    [25] Bao Z, Lovinger A J, Brown J. New air-stable n-channel organic thin film transistor. J. Am. Chem. Soc., 1998, 120: 207-208
    [26] Sugimori T, Horike S, Handa M, et al. Preparation and some properties of perfluoroalkoxy-substituted phthalocyanine complexes of iron, nickel and Zinc. Inorga. Chem. Act., 1998, 278(2): 253-255
    [27] Jiang J, Chen Y, Su W, et al. High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes. J. Am. Chem. Soc., 2005, 127: 15700-15701
    [28] Haddon R C, Perel A S, Morris R C, et al. C60 thin-film transistors. Appl. Phys.Lett., 1995, 67(1): 121-123
    [29] Meiher E J, Leeuw D M D, Setayesh S, et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nat. Mater., 2003, 2: 678-682
    [30] Segura J L, Martin N, Gomez R. Highly efficient light-harvesting organofullerenes. Org. Lett., 2005, 7(4): 717-720
    [31] Horowitz G, Delannoy P. Handbook of oligo-and polythiophenes., 1999, 282
    [32] Horowitz G, Hajlaoui R, Fichou D, et al. Gate voltage dependent mobility of oligothiophene field-effect transistors. J. Appl. Phys., 1999, 85(6): 3202-3206
    [33] Faccheti A, Deng Y, et al. Tuning the semiconducting properties of sexithiophene by alpha, omega-substitution-alpha,omega-diperfluorohexylsexithiophene: the first n-type sexithiophene for thin-film transistors. Angew. Chem. Int. Ed., 2000, 399(24): 4547-4551
    [34] Facchetti A, Wang A, Marks T, et al. Omega-diperfluorohexylsexithiophene: synthesis, characterization, and thin-film propertis of the first n-type exithiophene for thin film transistors. Abs. Pap. Amer. Chem. Soc., 2000, 220: 262
    [35] Facchetti A, Yoon M-h, Stern C L, et al. Building blocks for n-type organic electronics: regiochemically modulated inversion of majority carrier sign in per fluoroarene-modified polythiophene semiconductors. Angew. Chem. Int. Ed., 2003, 42(33): 3900-3903
    [36] Facchetti A, Mushrush M, et al. N-type building blocks for organic electronics: a homologous family of fluorocarbon-substituted thiophene oligomers with high carrier mobility. Adv. Mater., 2003, 15(1): 33-38.
    [37] Sakamoto Y, Komatus S, Suzuki T. Tetradecafluorosexithiophene: the first perfluorinated oligothiophene. J. Am. Chem. Soc., 2001, 123(19): 4643-4644
    [38] Chesterfield R J, Mann L L, Miller L L, et al. High electron mobility and ambipolar transport in organic thin-film transistors based on aπ-stacking quinoidal terthiophene. Adv. Mater., 2003, 15: 1278-1282
    [39] Panppenfus T M, Chesterfield R J, Frisbie C D, et al. Aπ-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor. J. Am. Chem. Soc., 2002, 124(16): 4184-4185
    [40] Tonzola C J, Alam M M, Bean B A, et al. New soluble n-type conjugated polymers for use as electron transport materials in light emitting diodes. Macromolecules., 2004, 37(10): 3554-3563
    [41] Yamashita Y, Ando S, Nishida J I, et al. High performance n-type organic field-effect transistors based on electronic systems with trifluoromethylphenylgroups. J. Am. Chem. Soc., 2005, 127(15): 5336-5337
    [42] Yamashita Y, Ando S, Murakami R, et al. N-type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethylphenyl groups. J. Am. Chem. Soc., 2005, 127(15): 14996-14997
    [43] Facchetti A, Marks T J. High electron mobility in solution-cast and vapor-deposited phenacyl-quaterthiophene-based field-effect transistors: toward n-type polythiophenes. J. Am. Chem. Soc., 2005, 127(39): 13476-13477
    [44] Kaletas B K, Dobrawa R, Wurther F, et al. Photoinduced electron and energy transfer processes in a bichromophoric pyrene-perylene bisimide system. J. Phys. Chem. A., 2004, 108(11): 1900-1909
    [45] Debaerdemaeker T, Wurthner F, et al. Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties.ChemPhysChem,2004,5: 137-140
    [46] Newman C R, Frisbie C D, Silvafilho D A, et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater., 2004, 16(23): 4436-4451
    [47] Siebbeles L D A, Kippelen B, Marder S R. High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv. Mater., 2005, 17(21): 2580-2583
    [48] Kelley T W, Boardman L D, Dunbar T D, Muyers D V, Pellerite M J, Smith T P. High-performance OEFTs using surface-modified alumina dielectrics. J. Phys. Chem. B. 2003, 107(24): 5877-5881
    [49] Horowitz G, Kouki F, Spearman P, Fichou D, Nogues C, Pan X, Gamier F. Eviednce for n-type conduuction in a perylene tetrcarboxylic diimide derivative. Adv. Mater., 1996, 8(3): 242-245
    [50] Ostrick J R. Conductiivity-type anisotropy in molecular solids. J. Appl. Phys., 1997, 81(10): 6804-6808
    [51] Sudholter E J R, Straijk C W, Sieval A B, et al. Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J. Am. Chem. Soc., 2000, 122(45): 11057-11066
    [52] Malenfant P R L, Dimitrakopoulos C D, et al. N-type organic thin-film transistor with high field-effect mobility based on a N,N-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett., 2002, 80(14): 2517-2519
    [53] Facchetti A, Brooks A J, et al. High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4,9,10-bis(dicarboximides).Angew. Chem. Int. Ed., 2004, 43(46), 6363-6366
    [54] Nelson J. Organic photovoltaic films. Current Opinion in Solid State Mater. Sci., 2002, 5(5): 20-27
    [55] Meyer J P, Schlettwein D, Wohrle D, et al. Charge transport in thin films of molecular semiconductors as investigated by measurements of thermoelectric power and electrical conductivity. Thin solind films, 1995, 258(1): 317-324
    [56] Tang C W. Two-layer organic photovoltaic cell. Appl. Phys. Lett., 1986, 48: 183-185
    [57] Schmidt-Mende L, Fechtenkotter K M, Moons E, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Scienece, 2001, 293: 1119-1122
    [58] Riramoto H, Ihara K, Yokoyama M. Fermi level shift in photoconductive organic pigment films measured by Kevin vibrating capacitor method. J. Appl. Phys., 1995, 34: 3803-3807
    [59] Qiu W F, Chen S Y, Zhu D B, et al. Suzuki coupling reaction of 1,6,7,12-tetrabromoperylene bisimide. Org. Lett., 2006, 8(5): 867-870
    [60] Rademacher A, Markle S, Langhals H, et al. Perylene-fluoreszenzfarbstoffe mit holer photostabilitat. Chem. Ber., 1982, 115: 2927-2934
    [61] Du H, Li J, Lindsey J S. PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem. Photobiol., 1998, 68(2): 141-142
    [62] Harris N S. Rotary pump back-migration. Vacuum., 1980, 28(6): 75-78
    [63] Kapoor M P, Yang Q, Inagaki S. Sulfuric acid-functionalized mesoporous benzene-silica with a molecular-scale periodicity in the walls J. Am. Chem. Soc., 2002, 124:9694-9695
    [64] Moreau J J , Vellutini L, Wong Chi Man M, et al. Self-Organized Hybrid Silica with Long-Range Ordered Lamellar Structure. J. Am. Chem. Soc., 2001, 123, 7957-7958
    [65] Wurthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures.Chem. Commun., 2004,4(14): 1564-1579
    [66] Liu S G, Sui G, Cormier R A, et al. Liquid crystalline perylene diimides thin films: spectroscopy, crystallinity and molecular orientation. J.Phys. Chem, B 2002, 106, 1307-1315
    [67] Hobson S T, Shea K J. Bridged Bisimide polysilsesquioxane xerogels: New hybrid organic-inorganic materials. Chem. Mater., 1997, 9(2): 616-623
    [68] Liu Y H, Zhang W A, Chen Y, et al. Polybenzoxazine ContainingPolysilsesquioxane: Preparation and Thermal Properties. Journal of Applied Polymer Science, 2006, 99, 927–936
    [69] Luo Y, Lin J, Duan H X, et al. Self-directed Assembly of Photoactive Perylenediimide-Bridged Silsesquioxane into a Superlong Tubular Structure. Chem. Mater. 2005, 17, 2234-2236
    [70] Yao D J, Bender T P, Gerroir P J, et al. Self-Assembled Vesicular Nanostructures of Perylene End-Capped Poly(dimethylsiloxane). Macromolecules 2005, 38, 6972-6978
    [71] Yao D J, Tuteja B, Sundararajan P R. Pigment-Mediated Nanoweb Morphology of Poly(dimethylsiloxane)-Substituted Perylene Bisimides. Macromolecules 2006, 39, 7786-7788
    [72]李传峰,邵怀启,钟顺和.有机无机杂化膜材料的制备技术.化学进展, 2004,16(1):83-89
    [73] Wahab M A , Hussain H, He C B. Photoactive Perylenediimide-Bridged Silsesquioxane Functionalized Periodic Mesoporous Organosilica Thin Films (PMO-SBA15): Synthesis, Self-Assembly, and Photoluminescent and Enhanced Mechanical Properties. Langmuir 2009, 25(8), 4743–4750 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700