用户名: 密码: 验证码:
白桦酯酸通过阻断TLR4/NF-κB信号通路抑制肝纤维化及酒精性脂肪肝的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是发生在所有慢性肝病患者上的一种可逆的创伤性反应。肝纤维化是发展到肝硬化的必经阶段,并与肝癌有关,是所有慢性肝病晚期并发症的共同病理基础。在肝损伤的过程中,活化的肝星状细胞(HSC)是肝纤维化形成过程中产生胶原的主要细胞,关于HSC细胞增殖及ECM产生中的分子机制研究是近来关注的热点。抑制炎症反应,对抗氧化应激,调节相关细胞因子的活性,干扰细胞因子信号转导等途径能够有效地抑制HSC的增殖、活化,从而有效对抗肝纤维化。肝细胞是各种肝毒性介质作用的主要靶细胞,包括各种肝炎病毒,酒精的代谢物和胆汁酸等,破坏肝细胞并释放大量活性氧簇(ROS)和炎性介质,造成炎症细胞的活化并进一步激活HSC,加剧肝纤维化的发生。因此,发现肝保护药物是发展抗肝纤维化治疗的迫切需要。
     本实验采用硫代乙酰胺和酒精建立肝纤维化模型,通过体内、体外实验研究白桦酯酸的抗肝纤维化作用及潜在的作用机制。
     (1)使用硫代乙酰胺(200mg/kg)建立大鼠肝纤维化模型,腹腔注射硫代乙酰胺每周两次连续六周。白桦酯酸(20mg/kg or50mg/kg)与硫代乙酰胺同时给药或在其之后给药直至第六周或第八周,考察白桦酯酸的肝脏预防作用和保护作用。实验结果显示白桦酯酸能够有效对抗和治疗肝纤维化,并减少了由硫代乙酰胺刺激后造成的肝组织中羟脯氨酸和α-SMA的增多。体外实验表明,白桦酯酸能够有效减少由TNF-α激活的HSC的活性,同时在正常人张氏肝细胞中没有毒性作用。此外,白桦酯酸也能够明显降低α-SMA和TIMP-1的水平,增加MMP-13的表达,抑制了TLR4、MyD88的水平并激发了NF-κB的核转导活性,伴有时间依赖性。
     (2)使用乙醇建立酒精肝模型。小鼠灌胃给药乙醇(5g/kg)3次间隔12h。同时给予白桦酯醇或白桦酯酸(50mg/kg或20mg/kg)。体外实验,使用乙醇(50mM)激活HSC,并处理25μM和12.5μM的白桦酯醇和白桦酯酸,观察24小时。病理组织学结果显示在体内白桦酯醇和白桦酯酸能够抑制酒精诱导的肝脏脂肪变性和坏死,同时,白桦酯醇和白桦酯酸能够有效抑制CYP2E1和SREBP-1的表达。体外实验结果表明,酒精浓度在20-200mM没有影响细胞的增殖,而且能够有效抑制ECM的聚集减少collagen-1的水平和α-SMA的表达。同时增加了调控SREBP-1基因的主要蛋白AMPK和STAT3的表达,白桦酯醇和白桦酯酸的保护机制可能与抑制TLR4、MyD88的信号通道,抑制NF-κB的活性有关。且白桦酯酸对抗乙醇诱导的肝纤维化具有更强的保护作用。
     根据上述实验结果可推断白桦酯酸对抑制肝纤维化具有潜在的药理学治疗特性。但是仍需要进一步深入研究、确定其确切的保护机制。
Fibrosis is the progressive pathological process in which the body's wound healing and tissue remodeling mechanisms respond to liver injury in all chronic hepatopath. Hepatic fibrosis is the necessary stage in the development of cirrhosis and plays an important part in liver cancer. It is the common pathological foundation in all advanced stage complications of chronic liver disease. The main cell type responsible for the development of fibrosis is the activated hepatic stellate cell (HSC). The molecule mechanism of activated hepatic stellate cells proliferate and synthesize extracellular matrix proteins to produce the fibrous scar is the research point recently. It has been suggested that the use of anti-inflammatory, anti-oxidative stress agents might be useful in preventing the activation of HSCs, consequently, in the development of liver fibrosis. HSC is the target cell that suffer from various kinds of hepatic toxic agents including hepatitis virus, alcohol metabolites and bile acid. The hepatic toxic agents destroy the hepatocyte, release reactive oxygen species (ROS) and inflammatory mediators causing that activate inflammatory cells and contributes to activate HSC to aggravate the development of liver fibrosis.
     This study select TAA and alcohol to make animal liver fibrosis and acute ethanol fatty liver models, research on the hepato-protective effect and the underlying mechanism of BA in vivo and in vitro.
     (1) Liver fibrosis was induced by intraperitoneal injections of thioacetamide (TAA,200mg/kg) twice weekly for6weeks in Wistar rats. The administration of BA (20mg/kg or50mg/kg) was started following TAA injections and was continued for6or8weeks to evaluate both the preventive and the protective effects. BA demonstrated great efficacy in preventing and curing hepatic fibrosis via attenuating the TAA-mediated increases in liver'tissue hydroxyproline and α-smooth muscle actin (a-SMA). In vitro, BA effectively decreased the HSC-T6cell viability induced by TNF-a and showed low toxicity in normal human chang liver cells. Moreover, BA significantly attenuated the expression of a-SMA and tissue inhibitor of metalloproteinase-1(TIMP-1) and increased the levels of matrix metalloprotease (MMP)-13. BA also inhibited the expression of toll-like receptor4(TLR4), myeloid differentiation factor88(MyD88) and the activation of nuclear factor-κB (NF-κB) in a time-dependent manner.
     (2) Mice were treated with ethanol (5g/kg, body weight) by gavage every12h for a total of3doses to induce acute fatty liver. BA and BT (50or20mg/kg) were gavaged simultaneously with ethanol for3doses. Hepatic stellate cells was activated by ethanol (50mM) for24h and simultaneous treated with BA or BT25μM and12.5μM to observe the protective effect against ethanol in vitro. BA or BT administration significantly reduced the increases in serum ALT, AST and triglyceride levels at4h after the last ethanol administration. BA and BT were also found to prevent ethanol-induced hepatic steatosis and necrosis, as indicated by liver histopathological studies. Meanwhile, both of them showed a powerful inhibitory effect on CYP2E1and SREBP-1expression. In vitro, ethanol concentrations among20-200mM exhibited hardly any effect on cell viability and treated with B A and BT did not influence the cell proliferation. Moreover, BA and BT effectively reduced the ECM accumulation via decreasing collagen-1levels and attenuating the expression of a-SMA. However, BA and BT also excellently decreased AMPK and STAT3levels that controlled SREBP-1expression in ethanol induced hepatic steatosis. The hepato-protective effect of BA and BT may be related with the inhibition of TLR4/MyD88signal pathway and the activation of NF-κB. Among that, BA showed a more powerful hepato-protective effect on ethanol induced liver steatosis.
     Thus, BA may be useful as a potential pharmacological therapy for the prevention of liver fibrosis and acute fatty liver. Further investigation is required to determine the exact protective mechanism and to discover the active candidates.
引文
1. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem.2000; 275:2247-2250.
    2. Fallowfield JA, Kendall TJ, Iredale JP. Reversal of fibrosis:no longer a pipe dream? Clin Liver Dis.2006;10:481-497.
    3. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134: 1655-1669.
    4. Friedman SL. Hepatic stellate cells:protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88:125-172.
    5. Friedman SL. Mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastroenterol. Hepatol.2004; 1:98-105.
    6. Friedman SL. Hepatic fibrosis Toxicology 2008; 254:120-129.
    7. Iredale JP. Cirrhosis:new research provides a basis for rational and targeted treatments. Br Med J.2003;327:143-147.
    8. Muller A, Machnik F, Zimmermann T, Schubert H. Thioacetamideinduced cirrhosis-like liver lesions in rats-usefulness and reliability of this animal model. Exp Pathol 1988;34:229-236.
    9. Liu EH, Chen MF, Yeh TS, Ho YP, Wu RC, Chen TC, et al. A useful model to audit liver resolution from cirrhosis in rats using functional proteomics. J Surg Res 2007;138:214-223.
    10. Stewart SF and Day CP. The management of alcoholic liver disease. J Hepatol 2003;38(Suppl 1):S2-S13
    11. Anania FA, Potter JJ, Rennie-Tankersley L, Mezey E. Activation by acetaldehyde of the promoter of the mouse alpha2(I) collagen gene when transfected into rat activated stellate cells, Arch Biochem Biophys 1996; 331:187-193.
    12. Lieber CS. Alcoholic fatty liver:its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 2004; 34:9-19.
    13. Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M, Hote P, McClain CJ. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 2007; 46:823-830.
    14. Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 2003; 124:1488-1499.
    15. Jonathan A. Therapeutic targets in liver fibrosis, Am. J. Physiol. Gastrointest. Liver. Physiol.2011; 300:709-715.
    16. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006; 130:1886-1900.
    17. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-b signaling and hepatic fibrosis. NatMed 2007;13:1324-1332.
    18. Wheeler MD. Endotoxin and Kupffer cell activation in alcoholic liver disease. Alcohol. Res. Health 2003; 27:300-306.
    19. Beutler B. Inferences, questions and possibilities in Toll-like receptor signaling. Nature 2004;430:257-263.
    20. Seki E, Minicis SD, Osterreicher CH, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis, Nat. Med.2007;13:1324-1332.
    21. Isayama F, Hines IN, Kremer M, et al. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice. Am. J. Physiol. Gastrointest. Liver Physiol.2006; 290:G1318-G1328.
    22. Nolan JP and Leibowitz AI. Endotoxin and the liver. III. Modification of acute carbon tetrachloride injury bypolymyxin b-an antiendotoxin. Gastroenterology 1978;75:445-449.
    23. Grinko I, Geerts A and Wisse E. Experimental biliary fibrosis correlates with increased numbers of fat-storing and Kupffer cells, and portal endotoxemia. J. Hepatol.1995; 23:449-458.
    24. Takeda K. and Akira S. Toll-like receptors in innate immunity. Int. Immunol. 2005;17:1-14.
    25. Oakley F, Meso M, Iredale JP, Green K, Marek CJ, Zhou X, May MJ, Millward-Sadler H, Wright MC, Mann DA. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 2005; 128:108-120.
    26. Watson MR, Wallace K, Gieling RG, Manas DM, Jaffray E, Hay RT, Mann DA, Oakley F. NF-kappaB is a critical regulator of the survival of rodent and human hepatic myofibroblasts. J Hepatol 2008; 48:589-597.
    27. Mann J and Mann DA. Transcriptional regulation of hepatic stellate cells, Adv. Drug Deliv. Rev.2009;61:497-512.
    28. Mariana MB, Fernando SR, Rafaela LC, Sergio Z, Roberto SC, Leandra NZ. Slight activation of nuclear factor kappa-B is associated with increased hepatic stellate cell apoptosis in human schistosomal fibrosis, Acta Trop.2010;113: 66-71.
    25. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS. NF-κB anti-apoptosis:Induction of TRAF-1, TRAF-2, c-IAP1 and c-IAP2 to suppress caspase 8 activation, Science 1998;281:1680-1683.
    26. Pinzani M. Unraveling the spider web of hepatic stellate cell apoptosis. Gastroenterology 2009;136:2061-2063.
    27. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Passerini CG, Formelli F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells, Cancer Lett.2002;175:17-25.
    28. Selzer E, Pimentel E, Wacheck W, Schlegel W, Pehamberger H, Jansen B, Kodym R. Effects of betulinic acid alone and in combination with irradiation in human melanoma cells, J. Invest. Dermatol.2000; 114:935-940.
    29. Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. Betulinic acid induced apoptosis in glioma cells:a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing, J. Pharmacol. Exp. Ther.1999;289:1306-1312.
    30. Kessler JH, Mullauer FB, Roo GM, Medema JP. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types, Cancer Lett.2007;251:132-145.
    31. Agnieszka SC, Krzysztof P, Jadwiga D, Martyna KS. Betulin and betulinic acid attenuate ethanol-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS); cytokine (TNF-a; TGF-β) production and by influencing intracellular signaling, Toxicology 2011;280:152-163.
    32. Zheng ZW, Song SZ, Wu YL, Lian LH, Wan Y, Nan JX. Betulinic acid prevention of D-galactosamine/lipopolysaccharide liver toxicity is triggered by activation of Bcl-2 and antioxidant mechanisms, J. Pharm. Pharmacol.2011;63: 572-578.
    33. Neuman RE and Logan MA. The determination of hydroxyproline, J. Biol. Chem. 1950;184:299-306.
    34. Wu YL, Wan Y, Jin XJ, OuYang BQ, Bai T, Zhao YQ, Nan JX.25-OCH3-PPD induces the apoptosis of activated t-HSC/Cl-6 cells via c-FLIP-mediated NF-κB activation, Chem. Biol. Interact.2011;194:106-112.
    35. Li XN, Benjamin IS, Alexander B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality, J. Hepatol.2002;36:488-493.
    36. Tsukamoto H, Matsuoka M, French SW. Experimental models of hepatic fibrosis: a review, Semin. Liver Dis.1990;10:56-65.
    37. Olaso E and Friedman SL. Molecular regulation of hepatic fibrogenesis, J. Hepatol.1998;29:836-847.
    38. Hua J, Qiu DK, Li EL, Chen XY, Peng YS. Expression of Toll-like receptor 4 in rat liver during the course of carbon tetrachloride-induced liver injury, J Gastroenterol. Hepatol.2007;22:862-869.
    39. Bataller R and Brenner D. Liver fibrosis, J. Clin. Invest.2005; 115:209-218.
    40. Canbay A, Taimr P, Torok N. Apoptotic body engulfment by a human stellate cell line is profibrogenic, Lab. Invest.2003; 83:655-663.
    41. Brenner DA. Molecular pathogenesis of liver fibrosis, Trans. Am. Clin. Climatol. Assoc.2009; 120:361-367.
    42. Paik YH, Schwabe RF, Bataller R. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells, Hepatology 2003;37:1043-1055.
    43. Soares JB, Pedro PN, Roberto RAJ, Adelino LM. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases, Hepatol. Int.2010;4:659-672.
    44. Kluwe J, Mencin A, Schwabe RF. Toll-like Receptors, Wound healing and Carcinogenesis, J Mol Med (Berl) 2009;87:125-138.
    45. Friedman SL. Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol.2010; 7:425-436.
    46. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity, Cell 2006;124:783-801.
    47. McDermott EMP and O'Neill LA. Signal transduction by the lipopolysaccharide receptor Toll-like receptor-4, Immunology 2004;113:153-162.
    48. Greten FR and Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer, Cancer Lett.2003; 206:193-199.
    49. Cao XH, Zhou MH, Wang CL, Hou LH, Zeng B. Lectin purified from Musca domestica pupa up-regulates NO and iNOS production via TLR4/NF-κB signaling pathway in macrophages, Int. J. Immunopharmacol.2011;11:399-405.
    50. Gao B and Bataller R. Alcoholic Liver Disease:Pathogenesis and New Therapeutic Targets Gastroenterology 2011; 141:1572-1585.
    51. Neuman MG. Cytokine-central factors in alcoholic liver disease. Alcohol Res Health 2003; 27:307-316.
    52. Ishak KG, Zimmerman HJ, Ray MB. Alcoholic liver disease:pathologic, pathogenetic and clinical aspects. Alcohol Clin Exp Res 1991; 15:45-66.
    53. He L, Simmen FA, Ronis MJ, Badger TM. Post-transcriptional regulation of sterol regulatory element-binding protein-1 by ethanol induces class I alcohol dehydrogenase in rat liver. J Biol Chem 2004; 279:28113-28121.
    54. M.G. Neuman, Cytokine-central factors in alcoholic liver disease, Alcohol. Res. Health,27 (2003) 307-316.
    55. K.G. Ishak, H.J. Zimmerman, M.B. Ray, Alcoholic liver disease:pathologic, pathogenetic and clinical aspects, Alcohol. Clin. Exp. Res,15 (1991) 45-66.
    56. L. He, F.A. Simmen, M.J. Ronis, T.M. Badger, Post-transcriptional regulation of sterol regulatory element-binding protein-1 by ethanol induces class I alcohol dehydrogenase in rat liver, J. Biol. Chem,279 (2004) 28113-28121.
    57. H.Q. Yin, M. Kim, J.H. Kim, G. Kong, K.S. Kang, H.L. Kim, M.O. Lee, B.H. Lee, Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice, Toxicol. Appl. Pharmacol,223 (2007) 225-233.
    58. M. You, M. Fischer, M.A. Deeg, D.W. Crabb, Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP), J.Biol. Chem,277 (2002) 29342-29347.
    59. Y.C. Long, J.R. Zierath, AMP-activated protein kinase signaling in metabolic regulation, J. Clin. Invest,116 (2006) 1776-1783.
    60. G. Zhou, R. Myers, Y. Li, Y.L. Chen, X.L. Shen, F.M. Judy, M. Wu, D. John Thomas, F. Nobuharu, M. Nicolas, F.H. Michael, J.G. Laurie, E.M. David, Role of AMP-activated protein kinase in mechanism of metformin action, J. Clin. Invest,108 (2001) 1167-1174.
    61. H.Z. Lin, S.Q. Yang, C. Chuckaree, F. Kuhajda, G. Ronnet, A.M. Diehl, Metformin reverses fatty liver disease in obese, leptin deficient mice, Nat. Med,6 (2000) 998-1003.
    62. M. Foretz, C. Pacot, I. Dugail, P. Lemarchand, C. Guichard, X.L. Liepvre,_B.L Cecile, B. Spiegelman, J.B. Kim, P. Ferre, F. Foufelle, ADD1/SREBP-lc is required in the activation of hepatic lipogenic gene expression by glucose, Mol. Cell. Biol,19 (1999) 3760-3768.
    63. R.J. Shaw, K.A. Lamia, D. Vasquez, S.H. Koo, N. Bardeesy, R.A. Depinho, M. Montminy, L.C. Cantley, The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science 310 (2005) 1642-1646.
    64. J. Yang, S. Maika, L. Craddock, J.A. King, Z.M. Liu, Chronic activation of AMP-activated protein kinase-alphal in liver leads to decreased adiposity in mice, Biochem. Biophys. Res. Commun,370 (2008) 248-253.
    65. E. Larrea, R. Aldabe, E. Molano, C.M. Fernandez-Rodriguez, A. Ametzazurra, M.P. Civeira, J. Prieto, Altered expression and activation of signal transducers and activators of transcription (STATs) in hepatitis C virus infection:in vivo and in vitro studies, Gut 55 (2006) 1188-1196.
    66. N. Horiguchi, E.J. Ishac, B. Gao, Liver regeneration is suppressed in alcoholic cirrhosis:correlation with decreased STAT3 activation, Alcohol,41 (2007) 271-280.
    67. P. Starkel, C. De Saeger, I. Leclercq, A. Strain, Y. Horsmans, Deficient Stat3 DNA-binding is associated with high Pias3 expression and a positive anti-apoptotic balance in human end-stage alcoholic and hepatitis C cirrhosis, J. Hepatol,43 (2005) 687-695.
    68. N. Horiguchi, L. Wang, P. Mukhopadhyay, O. Park, W.I. Jeong, F. Lafdil, D. Osei-Hyiaman, A. Moh, X.Y. Fu, P. Pacher, G. Kunos, B. Gao, Cell type-dependent pro-and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury, Gastroenterology 134 (2008) 1148-1158.
    69. H. Inoue, W. Ogawa, M. Ozaki, S.Haga, M. Matsumoto, K. Furukawa, N. Hashimoto, Y. Kido, T. Mori, H. Sakaue, K. Teshigawara, S. Jin, H. Iguchi, R. Hiramatsu, D. LeRoith, K. Takeda, S. Akira, M. Kasuga, Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo, Nat. Med,10(2004)168-174.
    70. S. Stewart, D. Jones, C.P. Day, Alcoholic liver disease:new insights into mechanisms and preventative strategies, Trends. Mol. Med,7 (2001) 408-413.
    71. A.A. Nanji, U. Khettry, S.M.H. Sadrzadeh, T. Yamanaka, Severity of liver injury in experimental alcoholic liver disease:correlation with plasma endotoxin, prostaglandin E2, leukotriene B4, and thromboxane B2, American Journal of Pathology,142 (1993) 367-373.
    72. N. Enomoto, K. Ikejima, B. Bradford, C. Rivera, H. Kono, D.A. Brenner, R.G. Thurman, Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin, Gastroenterology 115 (1998) 443-451.
    73. X.J. Zhao, Q. Dong, J. Bindas, J.D. Piganelli, A. Magill, J. Reiser, J.K. Kolls, TRIF and IRF-3 binding to the TNF promoter results in macrophage TNF dysregulation and steatosis induced by chronic ethanol, J. Immunol,181 (2008) 3049-3056.
    74. J. Petrasek, A. Dolganiuc, T. Csak, B. Nath, I. Hritz, K. Kodys, D. Catalano, E. Kurt-Jones, P. Mandrekar, G. Szabo, Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells, Hepatology 53 (2011) 649-660.
    75. M. Yin, M.D. Wheeler, H. Kono, B.U. Bradford, R.M. Gallucci, M.I. Luster, R.G. Thurman, Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice, Gastroenterology 117 (1999) 942-952.
    76. I. Hritz, P. Mandrekar, A. Velayudham, D. Catalano, A. Dolganiuc, K. Kodys, E. Kurt-Jones, G. Szabo, The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88, Hepatology 48 (2008)1224-1231.
    77. P.A. Baeuerle, The inducible transcription activator NF-kappa B:regulation by distinct protein subunits, Biochim. Biophys. Acta,1072 (1991) 63-80.
    78. A. Sami, M. Taru, K. Salme, Y. Jari, Pharmacological properties of the ubiquitous natural product betulin, Pharm. Acta. Helv,29 (2006) 1-13.
    79. Y. Wan, Y. L. Wu, L.H. Lian, W.X. Xie, X. Li, B.Q. OuYang, T. Bai, Q. Li, N. Yang, J. X. Nan, The anti-fibrotic effect of betulinic acid is mediated through the inhibition of NF-κB nuclear protein translocation, Chem. Biol. Interact,195 (2012)215-223.
    80. A. Szuster-Ciesielska, M. Kandefer-Szerszen, Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity in HepG2 cells, Pharmacol. Rep,57 (2005) 588-595.
    81. A. Szuster-Ciesielska, K. Sztanke, M. Kandefer-Szerszen, A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A2A receptors in ethanol-activated liver stellate cells, Chem. Biol. Interact,195 (2012) 18-24.
    82. S.V. Siegmund, S. Dooley, D.A. Brenner, Molecular mechanisms of alcohol-induced hepatic fibrosis, Dig. Dis,23 (2005) 264-274.
    83. R. Bataller, D.A. Brenner, Liver fibrosis, J. Clin. Invest,115 (2005) 209-218.
    84. B. Viollet, M. Foretz, B. Guigas, S. Horman, R. Dentin, L. Bertrand, L. Hue, F. Andreelli, Activation of AMP-activated protein kinase in the liver:a new strategy for the management of metabolic hepatic disorders, J. Physiol,574 (2006) 41-53.
    85. S.H. Ki, O. Park, M. Zheng, O. Morales-Ibanez, J.K. Kolls, R. Bataller, B. Gao, Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding:role of signal transducer and activator of transcription 3, Hepatology 52 (2010) 1291-1300.
    86. L. Yang, Y.X. Zhang, L.D. Wang, F.J. Fan, L. Zhu, Z.Q. Li, X.B. Ruan, H. Huang, Amelioration of high fat diet induced liver lipo genesis and hepatic steatosis by interleukin-22, J. Hepatol,53 (2010) 339-347.
    87. R.G. Thurman, B.U. Bradford, Y. Iimuro, K.T. Knecht, G.E. Arteel, M. Yin, H.D. Connor, C. Wall, J.A. Raleigh, M.V. Frankenberg, Y. Adachi, D.T. Forman, D. Brenner, M. Kadiiska, R.P. Mason, The role of gut-derived bacterial toxins and free radicals in alcohol-induced liver injury, J. Gastroenterol. Hepatol,13 (Suppl.) (1998) S39-50.
    88. J.D. Horton, J.L. Goldstein, M.S. Brown, SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver, J. Clin. Invest,109 (2002) 1125-1131.
    89. V. Purohit, D. Russo, Cellular and molecular mechanisms of alcoholic hepatitis: introduction and summary of the symposium, Alcohol 27(2002) 3-6.
    90. A.W. Yan, D.E. Fouts, J. Brandl, P. Starkel, M. Torralba, E. Schott, H. Tsukamoto, K.E. Nelson, D.A. Brenner, B. Schnabl, Enteric dysbiosis associated with a mouse model of alcoholic liver disease, Hepatology 53 (2011) 96-105.
    91. R. Rao, Endotoxemia and gut barrier dysfunction in alcoholic liver disease, Hepatology 50 (2009) 638-644.
    92. S. Akira, S. Uematsu, O. Takeuchi, Pathogen recognition and innate immunity, Cell 124 (2006) 783-801.
    93. E.M.P. McDermott, L.A.J. O'Neill, Signal transduction by the lipopolysaccharide receptor Toll-like receptor-4, Immunology 113 (2004) 153-162.
    94. Z.J. Chen, Ubiquitin signalling in the NF-κB pathway, Nat.Cell Biol,7 (2005) 758-765.
    95. A. Adhikari, M. Xu, Z.J. Chen, Ubiquitin-mediated activation of TAK1 and IKK, Oncogene 26 (2007) 3214-3226.
    96. S.H. Hwahng, S.H. Ki, E.J. Bae, H.E. Kim, S.G. Kim, Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones, Hepatology 49 (2009) 1913-1925.
    97. K.G. Park, A.K. Min, E.H. Koh, H.S. Kim, M.O. Kim, H.S. Park, Y.D. Kim, T.S. Yoon, B.K. Jang, J.S. Hwang, J.B. Kim, H.S. Choi, J.Y. Park, I.K. Lee, K.U. Lee, Alphalipoic acid decreases hepatic lipogenesis through adenosine monophosphateactivated protein kinase (AMPK)-dependent and AMPK-independent pathways, Hepatology 48 (2008) 1477-1486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700